JPS6244989A - Thin film el element - Google Patents
Thin film el elementInfo
- Publication number
- JPS6244989A JPS6244989A JP60185331A JP18533185A JPS6244989A JP S6244989 A JPS6244989 A JP S6244989A JP 60185331 A JP60185331 A JP 60185331A JP 18533185 A JP18533185 A JP 18533185A JP S6244989 A JPS6244989 A JP S6244989A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thin film
- film
- insulating layer
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は発光表示装置や面光源として利用される交流駆
動型の薄膜EI、素子に係り、特に低電圧駆動、且つ高
信頼な薄膜BL累子に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an AC-driven thin film EI and element used as a light emitting display device or a surface light source, and particularly relates to a thin film BL stack with low voltage drive and high reliability. It's about children.
(従来技術)
第2図に代表的な交流駆動の薄膜HL素子の断面構造を
示す(ニス・アイ・ディ・74 ダイジェスト・オブ・
テクニカル・ヘー バー ス84 fA +5ID74
digest of technical pap
ers)。(Prior art) Figure 2 shows the cross-sectional structure of a typical AC-driven thin film HL element (Nis.I.D.74 Digest of
Technical Havers 84 fA +5ID74
digest of technical pap
ers).
図に示すように前記薄膜EL素子は透明ガラス基板21
上にI T O膜やネサ膜からなる透明電極22、薄膜
下部絶縁体層23 、 ZnS : Mn +ZnS
:TbF、薄膜等の発光層24.更にその上に薄膜上
部絶縁体層25.A/薄膜等の背面電極26からなる多
層薄膜構造を有している。この素子の両電極間に交流電
圧を印加することにより発光が得られるコこθ)発光は
2MV/cps程度の高電場により伝導帯に上げられ、
且つ高速に加速された発光層内の電子がMn等の発光中
心を衝突励起することにより生ずるものである。発光色
は発光中心0】励起状態と装底状態のエネルギー準位差
で決定される例えばMnでは黄撹色でありTbでは緑色
U)発光が得られる0また、第2図中の絶縁体層は直流
的に発光層に過大な電流が流れ素子が破壊することを防
ぐと共に、分極による電場が外部駆動の交流電場に重畳
される効果により発光効率の向上、電圧輝度特性の非線
型性の増大等の発光特性の改善をももたらしており、こ
の絶縁体層の採用によシ薄y&EI、素子が始めて実用
的なものとなった。絶縁体層としては従来からYIOH
A1205g 8isNi、T”t05sSm103+
’rio、、 BaTi01.8rTi03. Pb
Ti0.等の薄膜が真を#看やスパッタ法により形成さ
れ使用されている。As shown in the figure, the thin film EL element has a transparent glass substrate 21.
On top there is a transparent electrode 22 made of an ITO film or a NESA film, a thin lower insulator layer 23, and ZnS: Mn + ZnS.
: Light emitting layer 24 such as TbF, thin film, etc. Furthermore, a thin film upper insulator layer 25 is formed thereon. A: It has a multilayer thin film structure consisting of a back electrode 26 such as a thin film. Light emission is obtained by applying an alternating current voltage between both electrodes of this element (θ) The light emission is raised to the conduction band by a high electric field of about 2 MV/cps,
It is generated when electrons in the light-emitting layer accelerated at high speed collide and excite light-emitting centers such as Mn. The color of the emitted light is determined by the energy level difference between the excited state and the bottom state.For example, Mn emits a yellow color, while Tb emits green light. This prevents excessive DC current from flowing through the light-emitting layer and destroying the device, and also improves luminous efficiency and increases nonlinearity in voltage-luminance characteristics due to the effect of superimposing the electric field due to polarization on the externally driven AC electric field. The use of this insulating layer made it possible to make thin Y&EI devices practical for the first time. YIOH has traditionally been used as an insulator layer.
A1205g 8isNi, T"t05sSm103+
'rio,, BaTi01.8rTi03. Pb
Ti0. Thin films such as these are formed and used by the real-time process or sputtering method.
(発明が解決しようとする問題点)
交流駆動型の薄iEL素子にとって絶縁体層は非常に重
要であるoEL素子の動作特性上は絶縁体層はコンデン
サーとして等価回路的に理解される。即ち、両電極間に
印加された外部電圧は絶縁体層と発光層の各容量に反比
例して各々の層に分割印加される口従って絶縁体I−の
容量が小さい素子構成の場合は外部電圧が有効に発光層
に印加されないために非常に高い外部電圧が必要となる
0また、交流的に発光層内を流れ発光に寄与する′1流
は絶縁体層の容量に比例するために、絶縁体層の容量が
小さい場合は高輝度発光を得ることができない。従って
、絶縁体層の容量を大きくするととはEL水素子低電圧
駆動化、高輝度化にとって重要である。絶縁体層の大容
葉化の実現のために通常使用されているY、0.、 A
/llO,、St、N4等を極めて薄い膜厚とする方策
はBL水素子絶縁破壊が著しく発生するために不適当で
あり、誘′#L4の尚い材料で絶縁体層を構成すること
が好ましい。例えばスパッタ法により形成された約20
0の比誘電率を有するPb’l’i0B N膜を絶縁体
層として採用することにより低電圧駆動E L素子が実
現されることが報告されている(アイ・イー・イー・イ
ー・トランザクシ目ンズ・オン・エレクトロン・デバイ
スズ、 IEEETrans、 Electron
DevicesED−28,P698(1981)、(
%開開56−45595)o l、かし、BL素子用と
して誘電率の高いPbTiOs膜をスパッタ法により形
成するためには前記の文献で報告されているようにスパ
ッタ成膜に伴なう組成ずれがあシ杏現性にとほしくまた
高誘電率の結晶相を得るためには600℃程度の非常に
高い基板温度が要求される0表示パネルとして必要な大
面積基板への成膜にとうては上述した問題は非常に厳し
いものであり、十分な生産性を実現することは困難であ
る。更に%pb’rio、 (7)スパッタ成膜により
基板ガラスの腐食やT T O透明電極の黒化等の問題
があり薄膜EL素子の絶縁体層として採用しにくいもの
であった。また、高誘電率であるために比較的厚い膜厚
のPbTiO3膜を採用したとしてもスパッタ等の成膜
法で作成した膜ではピンホール等の微小な欠陥を皆無に
することは困難であり、この欠陥部を核として通電によ
る素子破壊が生じやすい鴨肉があった0従りてPbTi
0m寺を代表とする高誘電率の薄膜を絶縁体層として採
用することはEL紫子特性上魅力のあるものであるが、
工業的に採用することは困難であった〇
そこでスパッタ法や蒸着法に代わり、有機金属、・・8
)
溶液の塗布、焼成によ′すpb’rto、等のTiを含
む高誘電率酸化物薄膜を下部絶縁体層として形成したE
I、素子を検討してきた。より具体的には、例えばPb
’rto、膜を絶縁体層とするものではテトラブトキシ
チタン: Tl(OC41(1)4と酸化鉛: PbO
とをTi/Pb比が1になるように秤取し、アセチルア
セトンに溶解反応させたPb’rtos形成前駆動溶液
を調整し、これをITO透明電極が形成されてなるガラ
ス基板に浸漬法やスピンコード、ローラコート、スプレ
ー法等で塗布し500℃程度の温度で加熱焼成する。−
回の工程で数100Xから2000X程度の膜が形成さ
れ、必要に応じて複数回これを繰り返えし所定の膜厚の
PbTiOs膜を得ることができる。このようにして作
成されたPbTi0.膜は200程度の誘電率を有して
いる0また溶液からの成膜であり、且つ複数回繰シ返し
塗布焼成を行なうためにピンホールのない下部絶縁体層
として良好な膜を得ることができる。この上にZnS:
lJnを蒸着法等で形成し、更にY、0.やTa101
等の上部絶縁体層、背面電極を形成して薄@EL素子を
得る。このようにして作成された薄膜EL素子は低電圧
で動作し%また絶縁破壊も生じにくい特長を有しており
、また成膜プロセス的にも大面積化、低コスト化に有利
なものである。(Problems to be Solved by the Invention) The insulator layer is very important for an AC-driven thin IEL device.In terms of the operating characteristics of an OEL device, the insulator layer can be understood in terms of an equivalent circuit as a capacitor. That is, the external voltage applied between both electrodes is dividedly applied to each layer in inverse proportion to the capacitance of the insulator layer and the light emitting layer. 0 is not effectively applied to the emissive layer, so a very high external voltage is required.In addition, the current flowing in the emissive layer in an alternating current and contributing to light emission is proportional to the capacitance of the insulating layer. If the capacitance of the body layer is small, high-intensity light emission cannot be obtained. Therefore, increasing the capacitance of the insulator layer is important for driving EL hydrogen atoms at a low voltage and increasing brightness. Y, 0.0, which is usually used to realize a large capacity insulation layer. , A
The strategy of making the film thickness of /llO,, St, N4, etc. extremely thin is inappropriate because it causes significant BL hydrogen dielectric breakdown, and it is not possible to construct the insulator layer with a material other than dielectric #L4. preferable. For example, about 20
It has been reported that a low-voltage drive EL device can be realized by employing a Pb'l'i0B N film with a dielectric constant of 0 as an insulating layer (I.E.E. Trans. Electronics on Electron Devices, IEEE Trans, Electron
Devices ED-28, P698 (1981), (
In order to form a PbTiOs film with a high dielectric constant for a BL element by sputtering, the composition associated with sputtering film formation is as reported in the above literature. It is suitable for film formation on large-area substrates necessary for zero display panels, which require a very high substrate temperature of about 600°C to obtain a crystalline phase with a high dielectric constant and to avoid misalignment. However, the above-mentioned problems are extremely severe, and it is difficult to achieve sufficient productivity. Furthermore, %pb'rio, (7) sputtering film formation caused problems such as corrosion of the substrate glass and blackening of the T TO transparent electrode, making it difficult to use as an insulator layer for thin film EL devices. Furthermore, even if a relatively thick PbTiO film is adopted due to its high dielectric constant, it is difficult to completely eliminate minute defects such as pinholes in a film created by a film forming method such as sputtering. There was a piece of duck meat that was likely to cause element destruction due to energization with this defective part as the nucleus. Therefore, PbTi
Adopting a thin film with a high dielectric constant, such as Omdera, as an insulator layer is attractive due to the characteristics of EL.
It was difficult to adopt it industrially.Therefore, instead of sputtering and vapor deposition methods, organic metals...8
) E in which a thin film of a high dielectric constant oxide containing Ti, such as PB'RTO, is formed as a lower insulating layer by solution coating and baking.
I. I have been considering elements. More specifically, for example, Pb
'rto, in which the film is an insulating layer, tetrabutoxytitanium: Tl (OC41(1)4 and lead oxide: PbO
A pre-formation driving solution of Pb'rtos is prepared by dissolving and reacting in acetylacetone so that the Ti/Pb ratio is 1, and this is applied to a glass substrate on which an ITO transparent electrode is formed by immersion method or spin method. It is coated using a cord, roller coat, spray method, etc., and then heated and baked at a temperature of about 500°C. −
A film with a thickness of several 100X to 2000X is formed in several steps, and this process can be repeated multiple times as necessary to obtain a PbTiOs film with a predetermined thickness. PbTi0. The film has a dielectric constant of about 200 and is formed from a solution, and because it is coated and fired multiple times, it is difficult to obtain a good film as a lower insulator layer without pinholes. can. ZnS on top of this:
1Jn is formed by a vapor deposition method, and further Y, 0. YaTa101
A thin @EL element is obtained by forming an upper insulating layer and a back electrode. The thin film EL device produced in this way operates at low voltage and has the advantage of being less likely to cause dielectric breakdown, and is also advantageous in terms of film formation process for increasing the area and reducing costs. .
しかしながら上述の#膜EL素子の製造に際していくつ
かの問題が生じた0ひとつは特性改善のための発光層に
対する高温の熱処理が行なえないことである0通常、高
温で熱処理する程、発光輝度や発光開距電圧が抜書され
500〜600℃程度での熱処理がZnS:Mn発光層
形成後に実施されている口しかし有機金属溶液から形成
したPbTi0゜等の膜を下部絶縁体層とし発光層を形
成してから1IiIi温熱処理すると膜が黒化する現象
が見られ発光特性もかえって悪くなっていた。従って高
温熱処理はできず400℃程度が限度であり熱処理によ
る十分な特性改善が行なえなかった〇
更に上述のように作成したEL素子の乾燥雰囲気で行な
った長期の発光試験においても輝度が徐々に低下して行
く劣化が見られ実用上問題となっていた。However, several problems arose during the production of the #film EL device mentioned above. One of them was that it was impossible to perform high-temperature heat treatment on the light-emitting layer to improve its characteristics. Normally, the higher the heat treatment, the higher the luminance and luminance. The opening voltage is set and heat treatment at about 500 to 600°C is carried out after forming the ZnS:Mn emissive layer. When the film was then subjected to 1IiIi thermal treatment, a phenomenon of blackening of the film was observed, and the luminescent properties were even worse. Therefore, high-temperature heat treatment was not possible, and the temperature was limited to around 400°C, and the characteristics could not be sufficiently improved by heat treatment.Furthermore, even in long-term luminescence tests conducted in a dry atmosphere of the EL element created as described above, the brightness gradually decreased. As a result, deterioration was observed over time, posing a practical problem.
本発明は上述の諸問題を解決し低電圧駆動、高輝度発光
且つ信頼性の高いBL表示装置を提供することを目的と
している口
(問題点を解決するための手段)
本発明のftiMEL累子は有機金属の前駆体溶液を塗
布、加熱焼成することによりTiを含む高誘電率酸化物
薄膜を下部絶縁体層とした薄膜EL素子において該下部
絶縁体層と発光層の間にイオンの拡散を防止するだめの
酸化物薄膜等の介在層が形成されてなることを特徴とす
るものである。The present invention aims to solve the above-mentioned problems and provide a BL display device that is driven at low voltage, emits high brightness, and has high reliability. In a thin film EL element with a lower insulating layer made of a high dielectric constant oxide thin film containing Ti, ion diffusion is achieved between the lower insulating layer and the light emitting layer by coating an organic metal precursor solution and heating and baking it. It is characterized in that an intervening layer such as a thin oxide film is formed to prevent the damage.
(作用)
前駆体溶液の塗布焼成により作成されたPbTi0゜等
のTiを含む酸化物薄膜を下部絶縁体層とし、その上に
直接ZnS : Mn等の発光層n形成した構造のEL
素子において熱処理や長期間の稼動に伴彦う劣化の原因
はなんらかのイオン等の拡散反応によると思われる0絶
縁体層中の有機金属の熱分解反応でのCやC−H基等の
残渣や不純物、あるいは遊離した’ri−?Pb等のイ
オン、あるいは発光層からのZn等が拡散したものと思
われる硬こで本発明では下部絶縁体層と発光層の間に拡
散を防止(7) ゛・
するための介在層を形成したものである。介在層として
はA/20as Yt01+ sio、 e 8i0s
TatOse8mtO@ y 8 i −N等の酸化
物や窒化物が好ましい。また、介在層の厚さを厚くする
ことけ高誘電率のTiを含むC波化物薄膜を絶縁体層と
したことの利点を損なうものであり、介在層は不必賛に
厚くするべきではない0使用する材料により異なるが0
.01〜0.1μ程度が好ましい◎とのような介在層の
挿入により高温の熱処理によっても黒化が見られず発光
特性が向上し寿命特性も良好なものになった。(Function) An EL structure in which a thin oxide film containing Ti, such as PbTi0°, created by coating and firing a precursor solution is used as the lower insulating layer, and a light-emitting layer, such as ZnS:Mn, is directly formed on the lower insulating layer.
The cause of deterioration that occurs with heat treatment and long-term operation in devices is thought to be due to diffusion reactions of some kind of ions, etc.Residues and impurities such as C and C-H groups from thermal decomposition reactions of organic metals in the insulator layer , or free 'ri-? In the present invention, an intervening layer is formed between the lower insulating layer and the light emitting layer to prevent the diffusion (7) of the hard particles that are thought to have diffused ions such as Pb or Zn from the light emitting layer. This is what I did. As the intervening layer, A/20as Yt01+ sio, e 8i0s
Oxides and nitrides such as TatOse8mtO@y8i-N are preferred. In addition, increasing the thickness of the intervening layer detracts from the advantage of using a C-wave compound thin film containing Ti with a high dielectric constant as an insulating layer, and the intervening layer should not be unnecessarily thick. Depends on the material used, but 0
.. By inserting an intervening layer such as ⊚, which preferably has a value of about 0.01 to 0.1 μm, no blackening was observed even after high-temperature heat treatment, and the light emitting characteristics were improved and the life characteristics were also good.
なそ、本発明は発光層を成膜した後に形成される上部絶
縁体層の有無や材料、構成により制限されるものではな
い〇
(実施例)
第1図に本実施例の薄膜El、素子の断面構造を示し、
以下に説明する。コーニング7059ガラス基板1.1
上にITOを約0.2ミクロン成膜し透明電極12を形
成した。テトラプトキシチタ/:Ti(QC,He)4
と酢酸鉛: P b (CI(、COO)、とをTi/
pb比が1になるように秤量しパラキシレン中において
130〜140℃に加熱し反応させ粉末状の反応生成物
: Pb−Ti01(QC4I(、)1を得た0これを
アセチルアセトンに溶解しP b T i Os換算濃
度12重ii % 0) PbTi0.形成前駆体溶液
を調整した0この溶液をローラーコーターにより前記基
板に塗布した。ついで500℃に保持されたトンネル炉
によプ加熱焼成した。500℃加熱温度の保持時間は約
30分間である。この塗布焼成工程を5回縁9返して厚
さ0.6ミクロンのPbTi0B膜の下部絶縁体Jd1
3を得た。この膜の比誘電率は約200であり薄膜とし
ては大きな誘電率が実現されていた0次に介在層14と
して8i、N、の焼結体ターゲットをもちいてスパッタ
法によF)Sr−N膜を0.02ミクロン形城した◎そ
の後、Mnを1モルチ含んだZnS:Mnn層膜真空蒸
着法により0.3ミクロンの厚さに成膜し発光層15と
した後、550℃で2時間Ar中での熱処理を行なった
■熱処理による膜の黒化けなく、介在層の有効性を示し
ていた。Incidentally, the present invention is not limited by the presence or absence, material, and structure of the upper insulating layer formed after forming the light emitting layer. shows the cross-sectional structure of
This will be explained below. Corning 7059 Glass Substrate 1.1
A transparent electrode 12 was formed by forming a film of about 0.2 microns of ITO thereon. Tetrapoxytita/:Ti(QC,He)4
and lead acetate: P b (CI(,COO), and Ti/
It was weighed so that the pb ratio was 1, and reacted by heating it in paraxylene at 130 to 140°C to obtain a powdery reaction product: Pb-Ti01 (QC4I(,)1). This was dissolved in acetylacetone to obtain Pb-Ti01 (QC4I(,)1). b T i Os equivalent concentration 12 times ii % 0) PbTi0. The prepared precursor solution was applied to the substrate using a roller coater. Then, it was heated and fired in a tunnel furnace maintained at 500°C. The holding time at the heating temperature of 500° C. is about 30 minutes. This coating and firing process was repeated 5 times to form a lower insulator Jd1 of PbTi0B film with a thickness of 0.6 microns.
I got 3. The relative dielectric constant of this film was about 200, and a large dielectric constant was achieved for a thin film.F)Sr-N The film was formed into a 0.02 micron film. After that, a ZnS:Mnn layer containing 1 mole of Mn was formed to a thickness of 0.3 micron by vacuum evaporation method to form the light emitting layer 15, and then heated at 550°C for 2 hours. Heat treatment was performed in Ar. (2) The film did not darken due to heat treatment, demonstrating the effectiveness of the intervening layer.
次にYlo、を0.15ミクロン上部絶縁体It116
として形成し、更にAI!の蒸着により背面電極を形成
し本実施例の薄gBL素子を得た口
本実施例の素子は従来の介在層がなく400℃以下で熱
処理された試料より40−以上高輝度であった。また、
介在層が薄いために発光開始電圧の上昇はムく、かえっ
て高温熱処理の効果により数V程度低下させることがで
きた。また、寿命試験においても輝度の低下は少なく良
好な特性を示した。Then Ylo, 0.15 micron top insulator It116
Formed as an AI! The thin gBL element of this example was obtained by forming a back electrode by vapor deposition of . Also,
Since the intervening layer was thin, the emission start voltage did not increase, and on the contrary, it was able to be lowered by several volts due to the effect of high temperature heat treatment. In addition, in the life test, it showed good characteristics with little decrease in brightness.
以上0】ような介在層の効果はSt −N膜以外に’1
’a10gやAltOB、8i01、あるいはこれらの
複合酸化物やYIO@18mg(%等でも同様であった
0ま先発光層としてZnS:Mn以外にZnSe :
Mn +ZnS aTbF、等を使用した場合でも同様
に効果があった。In addition to the St-N film, the effect of the intervening layer such as
In addition to ZnS:Mn, ZnSe:
Similar effects were obtained when Mn + ZnS aTbF, etc. were used.
fLを、本実施例では第1図に示したように2重絶縁型
の素子に関して述べたが、上部絶縁体層を取りさった片
絶縁型構造の素子に関しても同様に有効である。In this embodiment, fL has been described with respect to a double insulation type element as shown in FIG. 1, but it is equally effective for an element with a single insulation type structure in which the upper insulating layer is removed.
C発明の効果)
本発明によシ、有機金属を含む前駆体溶液を塗布、加熱
焼成して高誘電率のTiを含む酸化物薄膜を下部絶縁体
層とする薄膜EL素子の発光特性。C) Effects of the invention) Luminescence characteristics of a thin film EL device according to the invention, in which a precursor solution containing an organic metal is coated, heated and baked, and an oxide thin film containing Ti having a high dielectric constant is used as a lower insulating layer.
寿命特性が改善された0これにより低電圧駆動で高信頼
な薄膜EL表示装置が実現される0The lifespan characteristics have been improved.0 This makes it possible to realize a highly reliable thin film EL display device driven at low voltage.0
第1図は本発明の実施例の薄1digL素子の断面構造
を示したものであり、第2図は一般的な従来の薄J[E
L素子を示したものである口11.21・・・ガラス基
板、12.22・・・透明電極、13・・・下部絶縁体
層(前駆体溶液から形成されたTiを含む酸化−,23
−・・下部絶縁体層、14・・・介在層、15.24・
・・発光層、16.25・・・上部絶縁体層、17.2
6・・・背面電極ロオ 1 図
一躬
72図FIG. 1 shows the cross-sectional structure of a thin 1-digL element according to an embodiment of the present invention, and FIG. 2 shows a general conventional thin J[E
11.21...Glass substrate, 12.22...Transparent electrode, 13...Lower insulator layer (oxide containing Ti formed from precursor solution), 23
-... lower insulator layer, 14... intervening layer, 15.24.
...Light emitting layer, 16.25...Top insulator layer, 17.2
6...Back electrode bottom 1 Figure 72
Claims (1)
S:MnやZnS:TbF_3等の薄膜発光層と該発光
層の片側あるいは両側に絶縁体層を挾持してなり、該絶
縁体層のうち少なくとも発光層に先立って形成される下
部絶縁体層が有機金属の前駆体溶液の塗布、加熱焼成に
より成膜されたTiを含む高誘電率酸化物薄膜からなる
薄膜EL素子において該下部絶縁体層と発光層の間に酸
化物や窒化物等の絶縁体の介在層を設けた構造を有する
ことを特徴とする薄膜EL素子。Zn between a pair of electrodes, at least one of which is translucent
It consists of a thin film light emitting layer such as S:Mn or ZnS:TbF_3 and an insulating layer sandwiched on one or both sides of the light emitting layer, and at least the lower insulating layer formed prior to the light emitting layer of the insulating layer is In a thin film EL device consisting of a high dielectric constant oxide thin film containing Ti, which is formed by coating an organic metal precursor solution and heating and baking, an insulator such as an oxide or nitride is used between the lower insulating layer and the light emitting layer. A thin film EL device characterized by having a structure including an intervening layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60185331A JPS6244989A (en) | 1985-08-22 | 1985-08-22 | Thin film el element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60185331A JPS6244989A (en) | 1985-08-22 | 1985-08-22 | Thin film el element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6244989A true JPS6244989A (en) | 1987-02-26 |
Family
ID=16168947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60185331A Pending JPS6244989A (en) | 1985-08-22 | 1985-08-22 | Thin film el element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6244989A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63226895A (en) * | 1987-03-17 | 1988-09-21 | アルプス電気株式会社 | Manufacture of electroluminescence device |
JPH03107491A (en) * | 1989-08-10 | 1991-05-07 | Rhone Poulenc Chim | Diaphragm containing asbestos fiber and its manufacture |
JPH0410392A (en) * | 1990-04-26 | 1992-01-14 | Fuji Xerox Co Ltd | Thin film electroluminescent element |
JP2002158094A (en) * | 2000-11-17 | 2002-05-31 | Tdk Corp | Thin film el element and its manufacturing method |
US6577059B2 (en) | 2000-11-17 | 2003-06-10 | Tdk Corporation | Thin-film EL device, and its fabrication process |
US6650046B2 (en) | 2000-11-17 | 2003-11-18 | Tdk Corporation | Thin-film EL device, and its fabrication process |
US6677059B2 (en) | 2000-12-12 | 2004-01-13 | Tdk Corporation | EL device and making method |
US6734469B2 (en) | 2000-11-17 | 2004-05-11 | Tdk Corporation | EL phosphor laminate thin film and EL device |
US6793962B2 (en) | 2000-11-17 | 2004-09-21 | Tdk Corporation | EL phosphor multilayer thin film and EL device |
US6803122B2 (en) | 2000-12-12 | 2004-10-12 | Tdk Corporation | EL device |
US7011896B2 (en) | 2002-02-06 | 2006-03-14 | The Westaim Corporation | Phosphor thin film, preparation method, and EL panel |
-
1985
- 1985-08-22 JP JP60185331A patent/JPS6244989A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63226895A (en) * | 1987-03-17 | 1988-09-21 | アルプス電気株式会社 | Manufacture of electroluminescence device |
JPH03107491A (en) * | 1989-08-10 | 1991-05-07 | Rhone Poulenc Chim | Diaphragm containing asbestos fiber and its manufacture |
JPH0410392A (en) * | 1990-04-26 | 1992-01-14 | Fuji Xerox Co Ltd | Thin film electroluminescent element |
JP2002158094A (en) * | 2000-11-17 | 2002-05-31 | Tdk Corp | Thin film el element and its manufacturing method |
US6577059B2 (en) | 2000-11-17 | 2003-06-10 | Tdk Corporation | Thin-film EL device, and its fabrication process |
US6650046B2 (en) | 2000-11-17 | 2003-11-18 | Tdk Corporation | Thin-film EL device, and its fabrication process |
US6734469B2 (en) | 2000-11-17 | 2004-05-11 | Tdk Corporation | EL phosphor laminate thin film and EL device |
US6793962B2 (en) | 2000-11-17 | 2004-09-21 | Tdk Corporation | EL phosphor multilayer thin film and EL device |
KR100506833B1 (en) * | 2000-11-17 | 2005-08-10 | 더 웨스타임 코퍼레이션 | Thin Film EL Device and Preparation Method |
US6677059B2 (en) | 2000-12-12 | 2004-01-13 | Tdk Corporation | EL device and making method |
US6803122B2 (en) | 2000-12-12 | 2004-10-12 | Tdk Corporation | EL device |
US7011896B2 (en) | 2002-02-06 | 2006-03-14 | The Westaim Corporation | Phosphor thin film, preparation method, and EL panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4751427A (en) | Thin-film electroluminescent device | |
JPS6244989A (en) | Thin film el element | |
JPH05182762A (en) | Organic thin film luminous element | |
JP4528923B2 (en) | EL element | |
US20020125821A1 (en) | Electroluminescent display formed on glass with a thick film dielectric layer | |
JPS6244986A (en) | Manufacture of thin film el element | |
JPH01320796A (en) | Electroluminescence element | |
JPS59175593A (en) | Electroluminescent display unit | |
JPH01130495A (en) | Film type electroluminescence element | |
JPS6124192A (en) | Thin film electroluminescent element | |
JPS63232296A (en) | Thin film electroluminescence device | |
JPS6298595A (en) | Manufacture of thin film el device | |
JPS6147096A (en) | Method of producing thin film el element | |
JPH0529077A (en) | Electroluminescence element | |
JPS6314833B2 (en) | ||
JPS6388791A (en) | Thin film electroluminescence device | |
JPS6244988A (en) | Thin film el element | |
JPH01243391A (en) | Thin-film el device | |
JPS5956390A (en) | Method of forming el thin film | |
JPH11126690A (en) | Manufacture of thin film electroluminescent element | |
JP2001250682A (en) | Manufacturing method of organic electroluminescence element | |
JPS60202687A (en) | Thin film electroluminescent element | |
JPS62269986A (en) | Film formation for thin film display panel | |
JPS63294693A (en) | Manufacture of film electroluminescent element | |
JPH06200242A (en) | Organic thin-film luminescent element |