JPS6298595A - Manufacture of thin film el device - Google Patents

Manufacture of thin film el device

Info

Publication number
JPS6298595A
JPS6298595A JP60240163A JP24016385A JPS6298595A JP S6298595 A JPS6298595 A JP S6298595A JP 60240163 A JP60240163 A JP 60240163A JP 24016385 A JP24016385 A JP 24016385A JP S6298595 A JPS6298595 A JP S6298595A
Authority
JP
Japan
Prior art keywords
light
thin film
heat treatment
emitting layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60240163A
Other languages
Japanese (ja)
Other versions
JPH0532877B2 (en
Inventor
隆 小倉
浩司 谷口
勝 吉田
康一 田中
明義 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60240163A priority Critical patent/JPS6298595A/en
Priority to FI862108A priority patent/FI83015C/en
Priority to EP86106936A priority patent/EP0209668B1/en
Priority to DE8686106936T priority patent/DE3672916D1/en
Priority to US06/867,814 priority patent/US4707419A/en
Publication of JPS6298595A publication Critical patent/JPS6298595A/en
Publication of JPH0532877B2 publication Critical patent/JPH0532877B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 く技術分野〉 本発明は電界の印加に応答して(Electr。[Detailed description of the invention] Technical fields> The present invention responds to the application of an electric field (Electr.

Lum1nescence)  発光を呈する薄膜EL
素子の製造方法に関し、特に発光層形成後の安定化熱処
理に関するものである。
Luminescence) Thin film EL that emits light
The present invention relates to a method for manufacturing an element, and particularly to a stabilizing heat treatment after forming a light emitting layer.

〈従来技術とその問題点〉 発光中心をドープしたZnSに9:流電界を印加するこ
とにより高輝度のEL全発光呈する薄膜発光素子が開発
されて以来、数多くの研究が行なわれ、特に、発光中心
としてMnをドープしたZnS発光層を絶縁層で両面か
ら挾持し、さらにその両側を少なくとも一方が透明な電
極でサンドインチしγこ二重絶縁構造の薄膜発光素子は
高輝度でかつ長寿命であるなどの特性を生かして、軽量
・薄型のELパネルとして商品化されるに至っている。
<Prior art and its problems> Since the development of a thin film light-emitting device that exhibits high-brightness EL total emission by applying a current electric field to ZnS doped with a luminescent center, numerous studies have been carried out, and in particular, A thin-film light-emitting element with a double insulation structure has a Mn-doped ZnS light-emitting layer sandwiched between insulating layers and sandwiched between electrodes, at least one of which is transparent, to achieve high brightness and long life. Taking advantage of these characteristics, it has been commercialized as a lightweight and thin EL panel.

しかしながら、上述の薄膜発光素子は、Mn固有の黄橙
色の発光しか得られないため、発光色の異なる薄膜発光
素子の出現が望まれている。
However, since the above-mentioned thin film light emitting device can only emit yellow-orange light unique to Mn, it is desired to develop a thin film light emitting device that emits light of a different color.

発光中心として、希土類元素あるいはそれらの化合物を
用いると希土類元素の種類により、種々の発光色が得ら
れることが知られている。例えば、T b F  Sm
 F 3 lTmF a 、P r F a等の希土類
7ツ化物を用いると、それぞれ緑色、赤色、青色、白色
に発光する素子が得られる。しかしながらこれらは輝度
の点で問題があり、充分な実用輝度を有する素子は得ら
れていない。
It is known that when a rare earth element or a compound thereof is used as a luminescent center, various luminescent colors can be obtained depending on the type of rare earth element. For example, T b F Sm
When rare earth heptadides such as F 3 lTmFa and P rFa are used, elements that emit green, red, blue, and white light can be obtained, respectively. However, these have problems in terms of brightness, and elements with sufficient practical brightness have not been obtained.

通常、薄膜EL累子では、発光層形成後発光中心を均一
に拡散させること及び発光層母材の結晶性を改善するこ
とを企図して熱処理が行なわれている0この場合の熱処
理温度は元素の拡散移動を促進し結晶欠陥を消滅させる
意味′でできるだけ高温で行なう方が望ましい。しかし
ながら希土類フッ化物を発光中心とし1こ薄膜EL素子
では実際には高温で熱処理を行なうと発光層の発光輝度
が低下するという現象が生じ、このfこめ最大輝度を得
る1こめの最適熱処理温度は通常400℃〜500℃の
範囲に存在することとなる。従って、比較的低温度での
熱処理しかできず、発光層母材の結晶性の改善などが不
十分であり発光特性の良い薄膜EL素子を得ることは困
難であった。
Normally, in a thin film EL layer, heat treatment is performed after forming the light emitting layer with the aim of uniformly diffusing the light emitting centers and improving the crystallinity of the light emitting layer base material. It is desirable to carry out the process at as high a temperature as possible in order to promote the diffusion movement of and eliminate crystal defects. However, in a single thin film EL device that uses rare earth fluoride as the center of luminescence, a phenomenon occurs in which the luminance of the luminescent layer decreases when heat treatment is performed at high temperatures. It usually exists in the range of 400°C to 500°C. Therefore, heat treatment can only be performed at a relatively low temperature, and the crystallinity of the light-emitting layer base material is not sufficiently improved, making it difficult to obtain a thin-film EL element with good light-emitting characteristics.

高温熱処理による希土類フッ化物を発光中心とした薄膜
EL素子の輝度低下の原因としては、発光層のスパッタ
時あるいは蒸着時にペルジャー内に存在する残留ガスや
ターゲットあるいは蒸着ベレットの吸着ガス等が不純物
として発光層中に取り込まれ、これらの不純物が熱処理
時にZnSや希土類元素と反応して発光層の膜質を劣化
させていることが主要因であると考えられる。
The reason for the reduction in brightness of thin film EL devices that mainly emit light from rare earth fluorides due to high-temperature heat treatment is that residual gas present in the Pelger during sputtering or vapor deposition of the emissive layer, adsorbed gas in the target or vapor deposition pellet, etc., emit light as impurities. The main factor is considered to be that these impurities are taken into the layer and react with ZnS and rare earth elements during heat treatment, thereby deteriorating the film quality of the light emitting layer.

〈発明の目的〉 本発明は、上述の問題点に鑑みてなされたもので、希土
類元素または希土類化合物を発光中心とした発光層のス
パッタ時もしくは蒸着時の真空管理や材料管理を詳細に
検討し、発光層中の不純物を低減させた結果500℃よ
り高い高温の熱処理を行なっても輝度が低下せず、従来
より高輝度で発光する薄膜EL素子を作製することがで
きることが確かめられたことより、発光層成膜後の熱処
理温度を500℃以上に設定して発光層母材の結晶性を
改善するとともに発光中心を均一に分散せしめ、発光特
性を改善した薄膜EL素子を作製する製造技術を提供す
ることを目的とする。
<Objective of the Invention> The present invention has been made in view of the above-mentioned problems, and is based on a detailed study of vacuum management and material management during sputtering or vapor deposition of a light-emitting layer containing a rare earth element or rare earth compound as the main light-emitting layer. As a result of reducing impurities in the light emitting layer, it was confirmed that the brightness did not decrease even when heat treatment was performed at temperatures higher than 500°C, making it possible to create a thin film EL element that emitted light with higher brightness than before. , we have developed a manufacturing technology that improves the crystallinity of the light-emitting layer base material by setting the heat treatment temperature after forming the light-emitting layer at 500°C or higher, and uniformly dispersing the light-emitting centers to create a thin-film EL device with improved light-emitting characteristics. The purpose is to provide.

〈実施例〉 第1図は本発明の1実施例の説明に供する薄膜EL素子
の基本構成図である。ガラス基板1上にS no 2 
、I To (酸化インジウム)等の透明電極2、さら
にその上に積層してSi N SiO2,Y2O3゜8
  4’ At203等の下部絶縁層3がスパッタ法、電子ビーム
蒸着法等の薄膜生成技術により厚さ+ 000A〜30
00A程度形成される。次に適量のTbF3を発光中心
としてドープしたZnS材をスパッタ用ターゲットに用
いたRFスパッタ法により、発光層4を下部絶縁層3上
に約7000A程度の厚さで形成する。
<Embodiment> FIG. 1 is a basic configuration diagram of a thin film EL element for explaining one embodiment of the present invention. S no 2 on glass substrate 1
, I To (indium oxide), etc. transparent electrode 2, further laminated thereon with SiN SiO2, Y2O3゜8
4' The lower insulating layer 3 made of At203 or the like is formed to a thickness of +000A to 30% using a thin film production technique such as sputtering or electron beam evaporation.
Approximately 00A is formed. Next, a light emitting layer 4 is formed on the lower insulating layer 3 to a thickness of about 7000 Å by RF sputtering using a ZnS material doped with an appropriate amount of TbF3 as a light emitting center as a sputtering target.

通常、スパッタ法により薄膜を形成する場合には、材料
源となるスパッタ用ターゲット表面の汚れや吸着ガスな
どを取り除く目的でグリスバッタを適当な時間桁ない、
ターゲット表面を清浄にした後に本スパッタを行なって
膜の形成を行なう0しかしながらこのブリスパッタ時に
はメインバルブはほとんど閉成され1こ状態であるため
、ターゲットから出てくるガスなどはベルジャ内に留ま
ることが多く、このガスなどが本スパッタ時に成膜中に
不純物として取り込まれ、発光特性に悪影響を与えると
考えられる0このため、発光層4をRFスパッタ法によ
り形成する際に、膜中に取り込まれる不純物を低減する
手段として、例えばブリスパッタを途中で止めベルジャ
内を高真空に排気しターゲットから抜は出たガスなどを
ベルジャ内から取り除くという操作を少なくとも1回行
なう0これによって得られる発光層4は不純物の抑制さ
れた純度の高いZ n S : T b F a層とな
る。
Normally, when forming a thin film by sputtering, grease batter is applied for an appropriate period of time to remove dirt and adsorbed gas from the surface of the sputtering target, which is the material source.
After cleaning the target surface, main sputtering is performed to form a film.However, during this bliss sputtering, the main valve is mostly closed and in a single state, so gases etc. coming out of the target may remain in the bell jar. It is thought that many of these gases are taken in as impurities during film formation during main sputtering and have a negative effect on the light-emitting characteristics.For this reason, when forming the light-emitting layer 4 by RF sputtering, impurities taken into the film. As a means to reduce this, for example, the operation of stopping the bliss sputtering midway and evacuating the inside of the bell jar to a high vacuum and removing the gas extracted from the target from inside the bell jar is performed at least once.The luminescent layer 4 thus obtained is free from impurities. This results in a highly pure ZnS:TbFa layer with suppressed .

発光層4を形成した後、500℃より高い適当な温度で
熱処理を行なう。本実施例ではこの温度を600℃ に
設定し1こ。熱処理は真空中または不活性ガス、硫化性
ガス等のガス雰囲気で行なう。熱処理の完了した発光層
4の上には、下部絶縁層と同様の材料からなる上部絶縁
層5が積層され二重絶縁構造が形成される。更に上部絶
縁層5上にA7等からなる背面電極6が蒸着形成される
。透明電極2と背面電極6を交流電源に接続して交流電
圧を印加することにより発光層4より緑色のEL発光が
得られる。
After forming the light emitting layer 4, heat treatment is performed at a suitable temperature higher than 500°C. In this example, this temperature was set to 600°C. The heat treatment is carried out in a vacuum or in a gas atmosphere such as an inert gas or a sulfidic gas. An upper insulating layer 5 made of the same material as the lower insulating layer is laminated on the light-emitting layer 4 that has been heat-treated to form a double insulating structure. Furthermore, a back electrode 6 made of A7 or the like is formed on the upper insulating layer 5 by vapor deposition. By connecting the transparent electrode 2 and the back electrode 6 to an AC power source and applying an AC voltage, green EL emission can be obtained from the light emitting layer 4.

第2図は上述の薄膜EL素子の発光層4を形成した後の
熱処理条件を、熱処理なし、400℃で熱処理、600
℃で熱処理、の3種類とした場合の発光輝度−印加電圧
特性を示す説明図である。図中の曲線t は熱処理なし
、t2 は400℃で熱処理、t3は600℃で熱処理
した場合の特性曲線である。印加電圧に対して最も発光
輝度効率が高い曲線はt3であり、発光層4に600℃
の熱処理を行なった薄膜EL素子が他の条件のものに比
べて高輝度のEL光発光呈することとなる0これは発光
層4中にTbやFと反応する不純物が少なく高温熱処理
によっても反応生成物が形成されないためである。
FIG. 2 shows the heat treatment conditions after forming the light emitting layer 4 of the thin film EL element described above: no heat treatment, heat treatment at 400°C, heat treatment at 600°C.
FIG. 3 is an explanatory diagram showing emission brightness-applied voltage characteristics in the case of three types of heat treatment at °C. The curve t in the figure is the characteristic curve without heat treatment, t2 is the characteristic curve with heat treatment at 400°C, and t3 is the characteristic curve with heat treatment at 600°C. The curve with the highest luminance efficiency against the applied voltage is t3, and when the luminescent layer 4 is heated to 600°C
Thin-film EL devices subjected to heat treatment under these conditions emit EL light with higher brightness than those under other conditions. This is because there are fewer impurities in the light-emitting layer 4 that react with Tb and F, which can be reacted even with high-temperature heat treatment. This is because things are not formed.

尚、上記実施例は発光中心としてTbF3を用いた場合
について、説明し1こが、本発明はこれに限定されるも
のではなく他の希土類フッ化物を用い1こ場合にも適用
可能である。また発光層母材はZnS以外にZ n S
 e + Ca S+ Cd S等の硫化物やセレン化
物が用いられる。
Although the above embodiment describes the case where TbF3 is used as the luminescent center, the present invention is not limited thereto, and can also be applied to the case where other rare earth fluorides are used. In addition to ZnS, the light-emitting layer base material is ZnS.
Sulfides and selenides such as e + Ca S + Cd S are used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の説明に供する薄膜発光素子
の構成図である。第2図は発光層形成後の熱処理条件を
変化させた場合の発光輝度−印加電圧特性を示す特性図
である。 】・・・ガラス基板、2・・・透明電極、3・・・下部
絶縁層、4・・・発光層、5・・・上部絶縁層、6・・
・背面電極代理人 弁理士 福 士 愛 彦 (他2名
)第1r2J 卸     電5
FIG. 1 is a configuration diagram of a thin film light emitting device used to explain one embodiment of the present invention. FIG. 2 is a characteristic diagram showing the emission brightness-applied voltage characteristics when the heat treatment conditions after the formation of the light emitting layer are changed. ]...Glass substrate, 2...Transparent electrode, 3...Lower insulating layer, 4...Light emitting layer, 5...Upper insulating layer, 6...
・Rear electrode agent Patent attorney Aihiko Fukushi (and 2 others) No. 1r2J Wholesale Electric 5

Claims (1)

【特許請求の範囲】[Claims]  1.希土類元素又は希土類元素の化合物をドープする
ことにより発光中心を形成した発光層を有する薄膜EL
素子の製造方法において、前記発光層を成膜した後、5
00℃より高い温度で熱処理することを特徴とする薄膜
EL素子の製造方法。
1. Thin film EL having a light-emitting layer in which a light-emitting center is formed by doping a rare earth element or a compound of a rare earth element
In the device manufacturing method, after forming the light emitting layer, 5
1. A method for manufacturing a thin film EL device, characterized in that heat treatment is performed at a temperature higher than 00°C.
JP60240163A 1985-05-28 1985-10-24 Manufacture of thin film el device Granted JPS6298595A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60240163A JPS6298595A (en) 1985-10-24 1985-10-24 Manufacture of thin film el device
FI862108A FI83015C (en) 1985-05-28 1986-05-20 TUNNFILMELEKTROLUMINISCENSANORDNING OCH PROCESS FOER DESS PRODUKTION.
EP86106936A EP0209668B1 (en) 1985-05-28 1986-05-22 Thin film electroluminescence devices and process for producing the same
DE8686106936T DE3672916D1 (en) 1985-05-28 1986-05-22 THICK LAYER ELECTROLUMINESCENT DEVICES AND METHOD FOR THE PRODUCTION THEREOF.
US06/867,814 US4707419A (en) 1985-05-28 1986-05-27 Thin film EL devices and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60240163A JPS6298595A (en) 1985-10-24 1985-10-24 Manufacture of thin film el device

Publications (2)

Publication Number Publication Date
JPS6298595A true JPS6298595A (en) 1987-05-08
JPH0532877B2 JPH0532877B2 (en) 1993-05-18

Family

ID=17055430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60240163A Granted JPS6298595A (en) 1985-05-28 1985-10-24 Manufacture of thin film el device

Country Status (1)

Country Link
JP (1) JPS6298595A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186088A (en) * 1975-01-27 1976-07-28 Sharp Kk Sekishokuhatsukoerekutorominesensuhakumakunoseiseiho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186088A (en) * 1975-01-27 1976-07-28 Sharp Kk Sekishokuhatsukoerekutorominesensuhakumakunoseiseiho

Also Published As

Publication number Publication date
JPH0532877B2 (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JPS6244989A (en) Thin film el element
JPH0485388A (en) Organic electroluminescent element
KR20030064028A (en) Electroluminescent Display and method for manufacturing the same
JPS6298595A (en) Manufacture of thin film el device
JPS5829880A (en) Electric field luminescent element
JP3976892B2 (en) Thin film EL device
JP2532506B2 (en) Color EL display device
JPS61253797A (en) Manufacture of electroluminescence element
JPS61121290A (en) Manufacture of thin film el element
JP3569625B2 (en) Manufacturing method of thin film EL element
JPH0831571A (en) Thin film electroluminescent element and multi-color thin film electroluminescent panel
JPH02306585A (en) Manufacture of thin film electroluminescence element
JPS60172196A (en) Electroluminescent element and method of producing same
JPS61273894A (en) Thin film el element
JPS5956390A (en) Method of forming el thin film
JPS61214395A (en) Manufacture of thin film electroluminescence element
JPS6158194A (en) Method of producing zns:mn thin film el element
JPS5910033B2 (en) Method for manufacturing thin film electroluminescent devices
JPH04366593A (en) Thin film el element and manufacture thereof
JPS6314833B2 (en)
JPH0266872A (en) White light emitting film type el element
JPH02306581A (en) Manufacture of thin film electroluminescence element
JPH024115B2 (en)
JPS62110299A (en) Manufacture of thin film el device
JPH06200242A (en) Organic thin-film luminescent element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees