JPS624354B2 - - Google Patents

Info

Publication number
JPS624354B2
JPS624354B2 JP53009187A JP918778A JPS624354B2 JP S624354 B2 JPS624354 B2 JP S624354B2 JP 53009187 A JP53009187 A JP 53009187A JP 918778 A JP918778 A JP 918778A JP S624354 B2 JPS624354 B2 JP S624354B2
Authority
JP
Japan
Prior art keywords
weight
silicon nitride
sintering
protection tube
protective tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53009187A
Other languages
Japanese (ja)
Other versions
JPS54103085A (en
Inventor
Hiroaki Tanji
Yoshio Ogata
Akira Myai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP918778A priority Critical patent/JPS54103085A/en
Publication of JPS54103085A publication Critical patent/JPS54103085A/en
Publication of JPS624354B2 publication Critical patent/JPS624354B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は熱電対保護管、特に窒化珪素を主体と
したアルミニウム等の溶融金属に対してすぐれた
耐食性を有し、かつ耐熱衝撃性にすぐれた熱電対
保護管に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermocouple protection tube, and particularly to a thermocouple protection tube that has excellent corrosion resistance against molten metals such as aluminum, mainly composed of silicon nitride, and has excellent thermal shock resistance.

種々の金属の鋳造、精練においてその溶融物の
温度を検知し、制御することは極めて重要であ
り、現在は測定の正確さ、迅速さの面から白金―
白金ロジウム、クロメル―アルメル等の熱電対が
広く用いられている。
It is extremely important to detect and control the temperature of the molten material in the casting and smelting of various metals.
Thermocouples such as platinum rhodium and chromel-alumel are widely used.

このような熱電対を用いて溶融金属の温度測定
を行う場合には、熱電対と溶融金属との反応によ
る破損を防ぐため、熱電対保護管(以下、保護管
という)を使用する必要があり、現在は耐熱鋼、
鋳鉄等の金属、カーボランダム等の耐火物、アル
ミナ、ムライト等の耐熱磁器が保護管用材料とし
て使用されている。保護管は、溶融金属中へ投入
された時に生ずる熱衝撃に耐え、溶融金属に対し
耐食性を有し、溶融金属がしみ込まない緻密なも
ので、かつ測温に時間遅れを生じないために熱伝
導率が高いことが必要である。
When measuring the temperature of molten metal using such a thermocouple, it is necessary to use a thermocouple protection tube (hereinafter referred to as protection tube) to prevent damage due to the reaction between the thermocouple and the molten metal. , currently heat-resistant steel,
Metals such as cast iron, refractories such as carborundum, and heat-resistant porcelain such as alumina and mullite are used as materials for protective tubes. The protective tube is made of a dense material that can withstand the thermal shock that occurs when it is thrown into molten metal, has corrosion resistance against molten metal, does not allow molten metal to seep in, and is heat conductive so that there is no time delay in temperature measurement. It is necessary that the ratio is high.

従来の保護管でこれらの特性を全て満たし得る
ものはなく、耐食性、耐熱衝撃性を兼ね備えた保
護管が待望されていた。
No conventional protection tube has been able to satisfy all of these characteristics, and there has been a long-awaited need for a protection tube that has both corrosion resistance and thermal shock resistance.

即ち、金属製の保護管は溶融金属に激しく侵さ
れ、特にアルミニウムの場合にはその反応が著し
く、アルミニウムが汚染されるばかりでなく保護
管の寿命も100時間程度と極めて短かいものであ
つたし、カーボランダム保護管の場合もアルミニ
ウム溶融物との反応、アルミニウムの汚染という
問題がやはり存在した。また、カーボランダム保
護管は多くの気孔を有するために溶融金属が浸透
し、内部の熱電対と反応して温度測定を不能にす
る場合もあつた。更に、アルミナ、ムライト系の
耐熱磁器製保護管は、溶融金属への耐食性には優
れた特性を有しているが、その反面耐熱衝撃性の
面で欠点があり、わずか2〜3回程度の温度測定
で破損してしまう。他方、窒化珪素は溶融金属、
特にアルミニウム等の非鉄溶融金属に全く侵され
ず、そして耐熱性、耐酸化性、耐熱衝撃性に極め
て優れた材料であり、これを保護管として利用す
ることが従来より試みられてきた。しかし、窒化
珪素は焼結性に乏しい材料であるため窒化珪素成
型体は、反応焼結法か、焼結促進剤を多量に添加
して常圧で焼結するという方法によつてしか安価
に得ることはできなかつた。
In other words, metal protection tubes were severely attacked by molten metal, and in the case of aluminum in particular, the reaction was severe, and not only did the aluminum become contaminated, but the lifespan of the protection tube was extremely short, around 100 hours. However, in the case of carborundum protection tubes, there still existed problems such as reaction with aluminum melt and aluminum contamination. Furthermore, since the carborundum protection tube has many pores, molten metal sometimes penetrates and reacts with the thermocouple inside, making temperature measurement impossible. Furthermore, alumina and mullite-based heat-resistant porcelain protective tubes have excellent corrosion resistance against molten metal, but on the other hand, they have a drawback in terms of thermal shock resistance, and they can be used only two or three times. It will be damaged during temperature measurement. On the other hand, silicon nitride is a molten metal,
In particular, it is a material that is completely uncorroded by nonferrous molten metals such as aluminum, and has extremely excellent heat resistance, oxidation resistance, and thermal shock resistance, and attempts have been made to utilize it as a protective tube. However, since silicon nitride is a material with poor sinterability, silicon nitride molded bodies can only be produced at low cost by using the reaction sintering method or by adding a large amount of sintering accelerator and sintering at normal pressure. I couldn't get it.

即ち、反応焼結法は、金属珪素粉末を予備成型
し、1000〜1400℃で窒素と反応させ、窒化珪素成
型体とする方法であるが、得られる成型体は20〜
30%もの気孔を有しており、溶融金属がしみ込ん
だり、熱伝導率が悪いため測温中に時間遅れを生
じたり、水分が内部に吸着しているため溶融金属
中に入れた時に割れを生じたりすることが多く、
保護管として満足できるものでなかつた。また焼
結促進剤を添加して焼結するという方法の場合、
従来のアルミナ等の焼結促進剤を用いて気孔率の
小さい緻密な熱伝導の良い成型体を得ようとする
と、焼結促進剤を多量に添加することが必要とさ
れ、多量に添加された焼結促進剤によつて窒化珪
素の本来有しているすぐれた耐食性が著しく損な
われてしまつていた。
That is, the reaction sintering method is a method in which metal silicon powder is preformed and reacted with nitrogen at 1000 to 1400°C to form a silicon nitride molded body.
It has 30% porosity, so molten metal can seep into it, there is a time delay during temperature measurement due to poor thermal conductivity, and moisture can be adsorbed inside, causing cracks when placed in molten metal. It often occurs,
It was not satisfactory as a protection tube. In addition, in the case of sintering with the addition of a sintering accelerator,
When trying to obtain a compact molded body with low porosity and good thermal conductivity using conventional sintering accelerators such as alumina, it is necessary to add a large amount of sintering accelerator, The inherent excellent corrosion resistance of silicon nitride has been significantly impaired by the sintering accelerator.

本発明者は、窒化珪素の焼結促進剤についてい
ろいろ研究した結果、酸化マグネシウムとランタ
ン族酸化物を添加して焼結すれば、緻密な成型体
が得られ、窒化珪素が本来有しているすぐれた耐
食性、耐熱衝撃性が全く損なわれないという知見
により本発明を完成したものである。
As a result of various studies on sintering accelerators for silicon nitride, the present inventor found that if magnesium oxide and lanthanum group oxides are added and sintered, a dense molded body can be obtained, and silicon nitride originally has The present invention was completed based on the knowledge that excellent corrosion resistance and thermal shock resistance are not impaired at all.

本発明は、従来の欠点のない保護管を提供する
ことを目的とするもので、窒化珪素を主成分と
し、焼結促進剤として酸化マグネシウム及びラン
タン族酸化物とを存在させた粉末混合物を常法に
よつて予備成型し常圧焼結することにより、見掛
気孔率が1%以下と小さく緻密で熱伝導が良く迅
速な測温が可能で、かつ水分の吸着や溶融金属の
しみ込みは全くおきず、耐食性、耐熱衝撃性のす
ぐれた保護管である。
The purpose of the present invention is to provide a protective tube that does not have the drawbacks of the conventional ones, and uses a powder mixture containing silicon nitride as a main component and magnesium oxide and lanthanum group oxides as sintering accelerators. By preforming and pressureless sintering using a method, it has a small apparent porosity of 1% or less, is dense, has good heat conduction, and allows for quick temperature measurement, and does not absorb moisture or seep in molten metal. It is a protective tube with no scratches, excellent corrosion resistance, and thermal shock resistance.

本発明の保護管は、窒化珪素70〜99重量%、残
部の酸化マグネシウム及びランタン族酸化物が、
それぞれ0.5重量%以上である粉末混合物を泥漿
鋳込法、アイソスタテイツクプレス法、押し出し
法等により予備成型し、非酸化性雰囲気中1600〜
1800℃で常圧焼結することにより得られる。
The protective tube of the present invention contains 70 to 99% by weight of silicon nitride, and the balance is magnesium oxide and lanthanum group oxide.
Powder mixtures each containing 0.5% by weight or more are preformed by a slurry casting method, an isostatic press method, an extrusion method, etc.
Obtained by normal pressure sintering at 1800℃.

以下、これらの限定の理由を順に述べる。 The reasons for these limitations will be explained below.

粉末混合物の配合において窒化珪素が70重量%
より少いと、焼結促進剤が多すぎるために、窒化
珪素の有している溶融物に対する耐食性、耐熱衝
撃が著しく損なわれて寿命が低下するし、また99
重量%より多いと焼結促進剤が少すぎるために見
掛気孔率1%以下の緻密な成型体が得られず熱伝
導率が悪くなつてしまう。そして焼結促進剤であ
る酸化マグネシウムとランタン族酸化物のどちら
か一方が0.5重量%より少い場合には耐熱衝撃性
が急激に悪化する。なお、焼結促進剤は原料配合
時から必ずしも酸化物として添加されなくても良
く、焼結過程で酸化物に変化するこれらの炭酸
塩、硝酸塩等を用いても良く、ランタン族酸化物
は1種以上を選択して用いても、焼結促進の効果
は変わらない。
70% silicon nitride by weight in powder mixture formulation
If the amount is less, the sintering accelerator will be too large, which will significantly impair the corrosion resistance and thermal shock resistance of silicon nitride against molten substances, resulting in a shortened life span.
If it exceeds % by weight, the sintering accelerator is too small and a dense molded body with an apparent porosity of 1% or less cannot be obtained, resulting in poor thermal conductivity. If either the sintering accelerator, magnesium oxide or lanthanum group oxide, is less than 0.5% by weight, the thermal shock resistance will deteriorate rapidly. Note that the sintering accelerator does not necessarily have to be added as an oxide from the time of blending the raw materials, and carbonates, nitrates, etc. of these which change into oxides during the sintering process may be used. Even if more than one species is selected and used, the effect of promoting sintering remains the same.

焼結雰囲気は、窒化珪素の酸化を防ぐために窒
素、アルゴン等の非酸化性雰囲気とするのが良
く、また焼結温度は迅速な焼結の進行を得るため
に1600℃以上、窒化珪素の熱分解を防ぐために
1800℃以下とする必要がある。
The sintering atmosphere should be a non-oxidizing atmosphere such as nitrogen or argon to prevent oxidation of silicon nitride, and the sintering temperature should be 1600℃ or higher to ensure rapid sintering progress. to prevent decomposition
Must be below 1800℃.

以下、実施例、比較例に従つて本発明を詳細に
説明する。
Hereinafter, the present invention will be explained in detail according to Examples and Comparative Examples.

実施例 1 酸化マグネシウム15重量%、酸化セリウム15重
量%、窒化珪素70重量%からなる粉末混合物に
CMC3重量%と適量の水を加え、造粒した後、所
要の形状のゴム型に充填してアイソスタテイツク
プレス法にて予備成型した。該予備成型体を窒素
雰囲気中1600℃で2時間加熱焼結して外径15mm、
内径10mm、長さ80cmの保護管を得た。この焼結体
は見掛気孔率0.1%と緻密で、クラツクや“す”
は全く認められなかつた。
Example 1 A powder mixture consisting of 15% by weight of magnesium oxide, 15% by weight of cerium oxide, and 70% by weight of silicon nitride
After adding 3% by weight of CMC and an appropriate amount of water and granulating it, it was filled into a rubber mold of the desired shape and preformed using an isostatic press method. The preform was heated and sintered at 1600°C in a nitrogen atmosphere for 2 hours to give an outer diameter of 15 mm.
A protective tube with an inner diameter of 10 mm and a length of 80 cm was obtained. This sintered body is dense with an apparent porosity of 0.1%, making it difficult to crack or
was not recognized at all.

この保護管に白金―白金ロジウム(PR―13)
熱電対を入れ、1400℃の溶融した鉄の測温を行つ
た。最初室温に保持されていた保護管を1400℃の
溶融した鉄中に入れ、5分間浸漬して測温した
後、これを放冷するというサイクルを繰り返した
ところ、従来のアルミナ製保護管が1回目で割れ
てしまい測温不能となつたのに対し、本発明の保
護管は20回の繰り返し後も、何の異常も認められ
ず、すぐれた耐熱衝撃性を有することが明らかに
なつた。また溶融した鉄に浸漬してから真温度を
指示するまでの時間遅れもわずか20秒で、緻密で
熱伝導率が良いという効果が十分に示された。
This protection tube contains platinum-platinum rhodium (PR-13).
A thermocouple was inserted to measure the temperature of molten iron at 1400℃. The protective tube, which was initially kept at room temperature, was placed in molten iron at 1400°C, immersed for 5 minutes to measure the temperature, and then allowed to cool.The cycle was repeated, and it was found that the conventional alumina protective tube In contrast, the protective tube of the present invention showed no abnormalities even after 20 repetitions, demonstrating that it has excellent thermal shock resistance. In addition, the time delay from immersion in molten iron to reading the true temperature was only 20 seconds, fully demonstrating the effectiveness of its dense structure and good thermal conductivity.

実施例 2 酸化マグネシウム5重量%、酸化プラセオジウ
ム0.5重量%、窒化珪素94.5重量%からなる粉末
混合物にポリビニルアルコール1.5重量%と適量
の水を加えて泥漿を作り、これを所要の形状の石
膏型に鋳込んで乾燥脱型した後、アルゴン雰囲気
中1800℃で30分間加熱焼結して、外径15mm、内径
10mm、長さ1mの保護管を得た。この焼結体の見
掛気孔率は0.4%と緻密で、クラツクや“す”は
全く認められなかつた。
Example 2 A slurry was made by adding 1.5% by weight of polyvinyl alcohol and an appropriate amount of water to a powder mixture consisting of 5% by weight of magnesium oxide, 0.5% by weight of praseodymium oxide, and 94.5% by weight of silicon nitride, and the slurry was molded into a plaster mold of the desired shape. After casting and drying, it was heated and sintered at 1800℃ for 30 minutes in an argon atmosphere to form a mold with an outer diameter of 15 mm and an inner diameter.
A protective tube with a length of 10 mm and a length of 1 m was obtained. The apparent porosity of this sintered body was 0.4%, which was dense, and no cracks or pores were observed at all.

実施例 3 酸化マグネシウム0.5重量%、酸化セリウム0.5
重量%、窒化珪素99重量%からなる粉末混合物に
メチルセルロース3重量%と適量の水を加え、充
分にねつ合した後、押し出し成型機によつて所要
の形状に予備成型した。これを窒素とと水素との
混合雰囲気中1800℃で2時間加熱焼結して外径15
mm、内径10mm、長さ1mの保護管を得た。この焼
結体は見掛気孔率1.0%と緻密で、クラツクや
“す”はやはり認められなかつた。
Example 3 Magnesium oxide 0.5% by weight, cerium oxide 0.5%
3% by weight of methylcellulose and an appropriate amount of water were added to a powder mixture consisting of 99% by weight of silicon nitride, thoroughly kneaded together, and then preformed into the desired shape using an extrusion molding machine. This was heated and sintered at 1,800℃ for 2 hours in a mixed atmosphere of nitrogen and hydrogen to obtain an outer diameter of 15 mm.
A protective tube with an inner diameter of 10 mm and a length of 1 m was obtained. This sintered body was dense with an apparent porosity of 1.0%, and no cracks or pores were observed.

比較例 1 酸化マグネシウム20重量%、酸化セリウム20重
量%、窒化珪素60重量%からなる配合量が本発明
の範囲外である粉末混合物を用い、実施例1と同
一の方法で予備成型し、窒素雰囲気中1600℃で30
分間加熱焼結して外径15mm、内径10mm、長さ1m
の保護管を得た。この焼結体は見掛気孔率0.2%
であつた。
Comparative Example 1 A powder mixture containing 20% by weight of magnesium oxide, 20% by weight of cerium oxide, and 60% by weight of silicon nitride was preformed in the same manner as in Example 1 using a powder mixture having a blending amount outside the scope of the present invention. 30 at 1600℃ in atmosphere
After heating and sintering for minutes, the outer diameter is 15 mm, the inner diameter is 10 mm, and the length is 1 m.
A protective tube was obtained. This sintered body has an apparent porosity of 0.2%
It was hot.

比較例 2 酸化マグネシウム0.2重量%、酸化セリウム0.3
重量%、窒化珪素99.5重量%からなる配合量が本
発明の範囲外である粉末混合物を実施例2と同一
の方法で予備成型し、アルゴン雰囲気中1800℃で
2時間加熱焼結して、外径15mm、内径10mm、長さ
1mの保護管を得た。この焼結体は見掛気孔率が
23%と大きいものであつた。
Comparative example 2 Magnesium oxide 0.2% by weight, cerium oxide 0.3
A powder mixture having a blending amount of 99.5% by weight of silicon nitride, which is outside the range of the present invention, was preformed in the same manner as in Example 2, heated and sintered at 1800°C for 2 hours in an argon atmosphere, and then extruded. A protective tube with a diameter of 15 mm, an inner diameter of 10 mm, and a length of 1 m was obtained. This sintered body has an apparent porosity of
It was a large 23%.

実施例2、3と比較例1、2により得られた保
護管と、同一形状の鋳鉄製保護管に白金―白金ロ
ジウム(PR―13)熱電対を入れ、800℃の溶融ア
ルミニウムの連続温度測定を行つた。鋳鉄製保護
管が96時間で溶損し、測温不能となつたのに対
し、実施例2、3及び比較例1の保護管にはアル
ミニウムに侵食された様子は認められなかつた。
しかし200時間後には比較例1の保護管は表面が
侵され始め、300時間後に測温不能となつた。ま
た比較例2の保護管は気孔率が23%と大きいため
にアルミニウムのしみ込みがあり、50時間後には
しみ込んだアルミニウムと熱電対が反応し測温不
能となつた。しかし実施例2、3の保護管は3000
時間後も表面の侵食、アルミのしみ込みはなく、
更に1000時間以上使用することができ、本発明の
熱電対保護管が極めてすぐれた耐食性を有するこ
とが示された。
A platinum-platinum-rhodium (PR-13) thermocouple was inserted into a cast iron protection tube of the same shape as the protection tubes obtained in Examples 2 and 3 and Comparative Examples 1 and 2, and continuous temperature measurement of molten aluminum at 800°C was carried out. I went there. While the cast iron protection tube melted away in 96 hours, making temperature measurement impossible, the protection tubes of Examples 2 and 3 and Comparative Example 1 showed no signs of corrosion by aluminum.
However, after 200 hours, the surface of the protective tube of Comparative Example 1 began to be corroded, and it became impossible to measure the temperature after 300 hours. In addition, the protection tube of Comparative Example 2 had a large porosity of 23%, so aluminum seeped into it, and after 50 hours, the soaked aluminum reacted with the thermocouple, making temperature measurement impossible. However, the protection tubes of Examples 2 and 3 have a resistance of 3000
Even after hours, there is no surface erosion or aluminum seepage.
Furthermore, the thermocouple protection tube of the present invention could be used for more than 1000 hours, demonstrating that it has extremely excellent corrosion resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化珪素70〜90重量%、残部の酸化マグネシ
ウム及びランタン族酸化物が、それぞれ0.5重量
%以上である粉末混合物を予備成型し、それを非
酸化性雰囲気中、1600〜1800℃の温度で常圧焼結
してなることを特徴とする見掛気孔率1%以下の
窒化珪素質熱電対保護管。
1. Preform a powder mixture containing 70 to 90% by weight of silicon nitride and the balance of magnesium oxide and lanthanum group oxides each of 0.5% by weight or more, and heat it at a temperature of 1600 to 1800°C in a non-oxidizing atmosphere. A silicon nitride thermocouple protection tube with an apparent porosity of 1% or less, which is made by pressure sintering.
JP918778A 1978-01-30 1978-01-30 Thermocople protecting tube Granted JPS54103085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP918778A JPS54103085A (en) 1978-01-30 1978-01-30 Thermocople protecting tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP918778A JPS54103085A (en) 1978-01-30 1978-01-30 Thermocople protecting tube

Publications (2)

Publication Number Publication Date
JPS54103085A JPS54103085A (en) 1979-08-14
JPS624354B2 true JPS624354B2 (en) 1987-01-29

Family

ID=11713518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP918778A Granted JPS54103085A (en) 1978-01-30 1978-01-30 Thermocople protecting tube

Country Status (1)

Country Link
JP (1) JPS54103085A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170656U (en) * 1986-04-17 1987-10-29
JP4529102B2 (en) * 1999-06-10 2010-08-25 日立金属株式会社 High thermal conductivity silicon nitride sintered body and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523647A (en) * 1975-05-21 1977-01-12 British Industrial Plastics Thermosetting resin compound containing thixotropic agent
JPS5231910A (en) * 1975-09-08 1977-03-10 Toshiba Corp Cutting tool
JPS5257100A (en) * 1975-11-07 1977-05-11 Toshiba Corp Method for production of sintered material of silicon nitride system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523647A (en) * 1975-05-21 1977-01-12 British Industrial Plastics Thermosetting resin compound containing thixotropic agent
JPS5231910A (en) * 1975-09-08 1977-03-10 Toshiba Corp Cutting tool
JPS5257100A (en) * 1975-11-07 1977-05-11 Toshiba Corp Method for production of sintered material of silicon nitride system

Also Published As

Publication number Publication date
JPS54103085A (en) 1979-08-14

Similar Documents

Publication Publication Date Title
US2752258A (en) Silicon nitride-bonded silicon carbide refractories
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
CN104387073A (en) Method for manufacturing ultrafine high-toughness silicon carbide ceramic material based on reaction sintering technology
US4528244A (en) Fused silica shapes
JPS624354B2 (en)
JPS58213677A (en) Silicon nitride composite sintered body
US4067792A (en) Solid metal oxide electrolyte and method of making
JPS5950074A (en) Continuous casting refractories
ES2214139B2 (en) PROCEDURE FOR OBTAINING SILICON NITRIDE SURFACE COATINGS ON CERAMIC PARTS AND COMPONENTS.
JPS6335593B2 (en)
JPS5921581A (en) Refractories for continuous casting
TWI597255B (en) Silicon carbide refractory block
JPS5832063A (en) Heat impact resistant anticorrosive ceramic material
JPS6058296B2 (en) heat resistant material
KR101090275B1 (en) Ceramic compositions for mullite-bonded silicon carbide body, sintered body and its preparing method
JP3944871B2 (en) Carbon-containing ceramic sintered body
JP2933943B2 (en) Break ring for horizontal continuous casting
JPS624351B2 (en)
US1273529A (en) Refractory ceramic article and method of making the same.
JPH0712980B2 (en) Silicon carbide sintered body and method for producing the same
JPH0345034B2 (en)
SU505488A1 (en) Mixture for making foundry ceramic molds and cores
JP4020224B2 (en) Molten metal processing parts
JP2000191364A (en) Shaped magnesia-chrome refractory
JPS6125676B2 (en)