JP4020224B2 - Molten metal processing parts - Google Patents

Molten metal processing parts Download PDF

Info

Publication number
JP4020224B2
JP4020224B2 JP27281198A JP27281198A JP4020224B2 JP 4020224 B2 JP4020224 B2 JP 4020224B2 JP 27281198 A JP27281198 A JP 27281198A JP 27281198 A JP27281198 A JP 27281198A JP 4020224 B2 JP4020224 B2 JP 4020224B2
Authority
JP
Japan
Prior art keywords
spinel
molten metal
mgo
sintered body
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27281198A
Other languages
Japanese (ja)
Other versions
JP2000103679A (en
Inventor
祥二郎 渡辺
健一 安達
信行 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP27281198A priority Critical patent/JP4020224B2/en
Publication of JP2000103679A publication Critical patent/JP2000103679A/en
Application granted granted Critical
Publication of JP4020224B2 publication Critical patent/JP4020224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は溶融金属処理用部材に関する。
【0002】
本発明でいう溶融金属処理用部材とは、溶鋼等の溶融金属と直接接触して溶融金属を取り扱ったり、何らかの処理を行うのに使用される部材のことであり、鋳造設備における測温用保護管、ノズル、タンディッシュ、タンディッシュと鋳型の接続部材、堰材、ストッパー又はブレークリングのいずれかを製造するための部材、であると定義される。
【0003】
【従来の技術】
溶融金属処理用部材は、半凝固状態を含んだ溶鋼等の溶融金属と直接接触するので、溶鋼、溶融スラグ、フラックスによって激しい浸食(溶損)を受け、頻繁に交換をしなければならない。そのため、この分野においては、溶融金属によって容易に浸食されない長寿命な溶融金属処理用部材、すなわち耐溶損性に優れた溶融金属処理用部材の出現が常に待たれている。
【0004】
従来、溶融金属処理用部材としては、窒化硼素(BN)材、窒化硼素/窒化けい素(BN/Si)系複合材、窒化硼素/窒化アルミニウム/アルミナ(BN/AlN/Al)系複合材等が実用化されている。また、更なる耐溶損性に優れた部材の開発も進められており、窒化硼素/窒化けい素/窒化アルミニウム/アルミナ(BN/Si/AlN/Al)系複合焼結体(特開昭60−96575号公報)、窒化硼素/窒化アルミニウム/酸化マグネシウム(BN/AlN/MgO)系複合焼結体(特開平7−277830号公報)、更には窒化硼素/窒化けい素(BN/Si)系複合材料又は窒化硼素/サイアロン系複合材料を、アルミナ(Al)、ジルコニア(ZrO)、マグネシア(MgO)、スピネル(MgAl)のうちから選ばれる1種以上で被覆した窒化硼素系複合材料(特開平4−280887号公報)、などの提案がある。
【0005】
【発明が解決しようとする課題】
しかしながら、溶融金属処理用部材の溶鋼による溶損は、溶鋼の対流によって部材が削り取られて進行する物理的要因と、溶鋼、溶融スラグ、フラックスと部材とが反応・浸食する化学的要因によって起こるものであるが、このような溶損は、上記提案によってかなり改善されたが、まだ十分とはいえない。また、上記提案による溶融金属処理用部材は、溶融金属と接触する際に生ずる急激な熱衝撃に対する配慮はなされておらず、クラックの発生しやすいものもあった。
【0006】
本発明は、上記に鑑みてなされたものであり、その目的は、更なる耐溶損性を改善し、しかも耐熱衝撃性を付与した溶融金属処理用部材を提供することである。
【0007】
【課題を解決するための手段】
本発明は、六方晶窒化硼素20〜80重量%とMgO・Alスピネル80〜20重量%との複合焼結体の表面に、MgO・Al スピネル質を主成分とする被膜が形成されてなり、上記複合焼結体を構成している粒子の平均の大きさが、六方晶窒化硼素については10〜50μm、MgO・Al スピネルについては5〜40μmであり、鋳造設備における測温用保護管を製造するためのものであるか、又は鋳造設備におけるノズル、タンディッシュ、タンディッシュと鋳型の接続部材、堰材、ストッパー又はブレークリングのいずれかを製造するためのものであることを特徴とするものである。
【0008】
【発明の実施の形態】
以下、本発明を更に詳しく説明する。
【0009】
本発明の溶融金属処理用部材を構成する、六方晶窒化硼素とMgO・Al スピネルとの複合焼結体(以下、「BN/スピネル複合焼結体」という。)の組成は、六方晶窒化硼素が20〜80重量%、MgO・Alスピネルが80〜20重量%である。六方晶窒化硼素が20重量%未満では、耐熱衝撃性と機械加工性が低下し、また80重量%を越えると耐溶損性が低下する。
【0010】
本発明で使用されるBN/スピネル複合焼結体には、その製造上、原料粉末から不可避的に混入する、SiO、CaO、MgO、Fe、Al、NaO、AlN、Si、ZrB、ZrO、SiC等が含まれていても差し支えない。これらの割合は少ないほど好ましいが、合計で10重量%まで許容できる。但し、AlN、Siの混入は、それらがスピネルのAl成分と反応してAlON、SIAlON等の酸窒化物を生成し、耐溶損性を低下させるので注意が必要である。
【0011】
本発明で使用されるBN/スピネル複合焼結体を構成している粒子の平均の大きさは、六方晶窒化硼素(BN)については10〜50μm、MgO・Al スピネルについては5〜40μmである。BN粒子の平均の大きさが50μmを越えると耐摩耗性が低下し、またスピネル粒子の平均の大きさが40μmを越えると耐溶損性が低下する。
【0012】
本発明の溶融金属処理用部材は、六方晶窒化硼素粉末、MgO粉末及びAl粉末からなる混合粉末、又は六方晶窒化硼素粉末とスピネル粉末の混合粉末を原料とし、常圧焼結法又は加圧焼結(ホットプレス、HIP等)によってBN/スピネル複合焼結体を製造し、それを所望形状に加工することによって作製することができる。
【0013】
六方晶窒化硼素粉末原料の酸素量は1〜4重量%が好ましい。スピネル成分は、MgO粉末とAl粉末を重量比2:3〜1:9の範囲で個別に添加しても良いし、スピネル粉末を用いてもよい。原料粉末の粒度は、90μm以下、特に50μm以下が好ましい。原料粉末の混合は、ボールミル、振動ミル、ミキサー等の混合機を用いて行われる。
【0014】
常圧焼結は、金型若しくはCIPを用い、成形圧0.1〜5ton/cmで成形後、温度1500〜2000℃、窒素、アルゴン等の不活性雰囲気中で行われる。ホットプレスでは、温度1500〜2000℃、圧力50〜150kg/cmの条件で行われる。
【0015】
このようにして製造されたBN/スピネル複合焼結体は、従来材と比較して、耐熱衝撃性を兼ね備え、耐溶損性に著しく優れたものとなる。ついで、BN/スピネル複合焼結体は、その表面にMgO・Alスピネル質を主成分とする被膜が形成されて本発明の溶融金属処理用部材となる。この被膜、BN/スピネル複合焼結体を溶融金属中に浸漬させることによって形成させることができる。被膜の厚みは数〜数百μmである。このような被覆構造によって、耐溶損性が一段と向上する。
【0016】
削除
【0017】
削除
【0018】
削除
【0019】
MgO・Alスピネル質被膜は、一般的に多孔質であること、スピネル同士が連続的に粒接合していること、BN/スピネル複合焼結体のスピネル粒子に比べて緻密化していること、BN/スピネル複合焼結体の界面では被膜とスピネル同士が粒接合していて密着性が大であること、などの理由から耐熱衝撃性が高く、著大な耐溶損性を示す。しかも、たとえMgO・Alスピネル質被膜が剥離したとしても、露出したBN/スピネル複合焼結体溶融金属に浸漬させることにより新たなMgO・Alスピネル質被膜が再生される特徴を有しており、上記特開平4−280887号公報の部材とは異なっているものである。
【0020】
本発明の溶融金属処理用部材は、鋳造設備における測温用保護管を製造するための部材であるか、又は鋳造設備におけるノズル、タンディッシュ、タンディッシュと鋳型の接続部材、堰材、ストッパー又はブレークリングのいずれかを製造するための部材である。
【0021】
測温用保護管は、溶融金属の測温を行う際に用いられる熱電対等の測温治具を収納する筒状治具である。ノズルは、取鍋に設置されタンディッシュに溶鋼を注ぎ込む器具であり、タンディッシュは、ノズルを通して取鍋から鋳型に溶鋼を注入する際の容器である。タンディッシュと鋳型との接続部材としては、例えば樋である。また、タンディッシュから鋳型への溶鋼流入の制御棒としてストッパーが使用される。更に、溶鋼の液面維持のための堰材及び水平連続鋳造プロセス等で使用されるブレークリングは溶融金属と絶えず接触している部材である。
【0022】
【実施例】
以下、本発明を実施例、比較例、参考例をあげて更に具体的に説明する。
【0023】
参考例1〜4 比較例1、2
六方晶窒化硼素粉末(酸素量2% 平均粒径4μm)とMgO・Alスピネル粉末(平均粒子径5μm)を表1に示す割合とし、ボールミルで3時間、均一に混合した。それを黒鉛ダイス中に充填し、1700℃、2時間ホットプレス焼結してBN/スピネル複合焼結体を製造した。これらの複合焼結体から測温用保護管形状として直径24mm×長さ150mmの部材を加工した。
【0024】
実施例1、2
参考例1で製造された保護管形状の溶融金属処理用部材を、1600℃の溶鋼中に0.5時間又は1時間浸漬させ、厚さ50μm(実施例1)又は100μm(実施例2)のMgO・Alスピネル質被膜を形成させて本発明の溶融金属処理用部材を製造した。
【0025】
比較例3〜5
比較例3としてBN単一材を、比較例4としてBN/窒化ケイ素複合焼結体を、比較例5としてBN/窒化アルミニウム/アルミナ/窒化ケイ素複合焼結体を参考例1に準じて製造し、その焼結体から保護管形状の溶融金属処理用部材を作製した。なお、比較例4、5の複合焼結体のBN含有量は約50%とした。
【0026】
これらの溶融金属処理用部材について、以下の方法に従い、耐溶損性・熱衝撃性と粒子の大きさの平均を測定した。それらの結果を表1に示す。
【0027】
耐溶損性・耐熱衝撃性は、鋳鉄を1600℃に加熱した溶鋼中に8時間連続浸漬させた後の直径の減少量を測定すると共に、割れ・クラックの有無を目視観察により評価した。
【0028】
BN/スピネル複合焼結体を構成している粒子の大きさの平均は、SEM/COMPO像(100倍)の60×60mmの領域について、最大のものから20点の大きさのBN及びスピネル粒子を測定し、それを平均して求めた。
【0029】
実施例1、2と、参考例1〜4のBN/スピネル複合焼結体について、X線回折により結晶相の同定を行ったところ、BN/スピネル相が検出され、それ以外の化合物は検出されなかった。更に、実施例1、2において表面に形成された被膜層のX線回折を行ったところ、MgO・Alスピネルが検出され、さらにEPMA分析を行った結果、微量のSi、Caが検出された。
【0030】
【表1】

Figure 0004020224
【0031 】
【発明の効果】
本発明の溶融金属処理用部材は、耐溶損性に極めて優れ、しかも耐熱衝撃性をも兼ね備えたものとなる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to molten metal processing member.
[0002]
The molten metal processing member as used in the present invention is a member used to handle molten metal in direct contact with molten metal such as molten steel, or to perform some kind of processing , and is a protection for temperature measurement in a casting facility. It is defined to be a tube, nozzle, tundish, tundish-mold connection member, weir material, member for producing either a stopper or break ring.
[0003]
[Prior art]
Since the member for processing a molten metal is in direct contact with a molten metal such as molten steel including a semi-solidified state, the molten metal processing member is subjected to severe erosion (melting damage) due to molten steel, molten slag, and flux and must be frequently replaced. Therefore, in this field, the appearance of a long-life molten metal processing member that is not easily eroded by molten metal, that is, a molten metal processing member excellent in resistance to erosion is always awaited.
[0004]
Conventionally, molten metal processing members include boron nitride (BN) materials, boron nitride / silicon nitride (BN / Si 3 N 4 ) based composite materials, boron nitride / aluminum nitride / alumina (BN / AlN / Al 2 O). 3 ) System composite materials have been put into practical use. Further, development of a member having further excellent resistance to melting damage has been promoted, and boron nitride / silicon nitride / aluminum nitride / alumina (BN / Si 3 N 4 / AlN / Al 2 O 3 ) -based composite sintered body. (Japanese Patent Laid-Open No. 60-96575), boron nitride / aluminum nitride / magnesium oxide (BN / AlN / MgO) composite sintered body (Japanese Patent Laid-Open No. 7-277830), and boron nitride / silicon nitride ( The BN / Si 3 N 4 ) -based composite material or boron nitride / sialon-based composite material is selected from alumina (Al 2 O 3 ), zirconia (ZrO 2 ), magnesia (MgO), and spinel (MgAl 2 O 3 ). There is a proposal of a boron nitride-based composite material (Japanese Patent Laid-Open No. 4-280887) coated with one or more of the above.
[0005]
[Problems to be solved by the invention]
However, the melting loss of molten metal processing parts due to molten steel is caused by physical factors that cause the member to be scraped off by convection of molten steel and chemical factors that cause reaction and erosion of molten steel, molten slag, flux, and the member. However, such melting damage has been considerably improved by the above proposal, but it is still not sufficient. Moreover, the molten metal processing member proposed above does not take into account the rapid thermal shock that occurs when it comes into contact with the molten metal, and some of them are prone to cracks.
[0006]
The present invention has been made in view of the above, and an object of the present invention is to provide a member for processing a molten metal that has further improved resistance to melting and imparted thermal shock resistance.
[0007]
[Means for Solving the Problems]
The present invention, on the surface of the composite sintered body of hexagonal boron nitride 20 to 80 wt% and MgO · Al 2 O 3 spinel 80-20 wt%, the film mainly containing MgO · Al 2 O 3 spinel There will be formed, the average size of the particles constituting the composite sintered body, 10 to 50 [mu] m for the hexagonal boron nitride, the MgO · Al 2 O 3 spinel is 5 to 40 m, the casting those with either for the manufacture of a protective tube for temperature measurement in the facility, or nozzles in the casting equipment, tundish, the tundish and the mold of the connecting member, the weir member, intended for the production of either the stopper or break rings It is characterized by being.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0009]
That make up the molten metal processing member of the present invention, the composite sintered body of hexagonal boron nitride and MgO · Al 2 O 3 spinel (hereinafter, referred to as. "BN / spinel composite sintered body") the composition of the Hexagonal boron nitride is 20 to 80 % by weight, and MgO.Al 2 O 3 spinel is 80 to 20 % by weight . When the hexagonal boron nitride is less than 20 % by weight, the thermal shock resistance and the machinability are lowered, and when it exceeds 80 % by weight, the erosion resistance is lowered .
[0010]
In the BN / spinel composite sintered body used in the present invention, SiO 2 , CaO, MgO, Fe 2 O 3 , Al 2 O 3 , Na 2 O, which are inevitably mixed from the raw material powder in production. AlN, Si 3 N 4 , ZrB 2 , ZrO 2 , SiC, or the like may be contained. These ratios are preferably as small as possible, but up to 10% by weight is acceptable. However, it should be noted that mixing of AlN and Si 3 N 4 reacts with the Al 2 O 3 component of the spinel to produce oxynitrides such as AlON and SIAlON, thereby reducing the resistance to melting.
[0011]
The average particle size of the BN / spinel composite sintered body used in the present invention is 10 to 50 μm for hexagonal boron nitride (BN) and 5 to 5 for MgO.Al 2 O 3 spinel. 40 μm. When the average size of the BN particles exceeds 50 μm, the wear resistance decreases, and when the average size of the spinel particles exceeds 40 μm, the erosion resistance decreases .
[0012]
The molten metal processing member of the present invention uses a hexagonal boron nitride powder, a mixed powder composed of MgO powder and Al 2 O 3 powder, or a mixed powder of hexagonal boron nitride powder and spinel powder as a raw material, and a normal pressure sintering method Alternatively, it can be produced by producing a BN / spinel composite sintered body by pressure sintering (hot press, HIP, etc.) and processing it into a desired shape.
[0013]
The oxygen content of the hexagonal boron nitride powder raw material is preferably 1 to 4% by weight. As the spinel component, MgO powder and Al 2 O 3 powder may be individually added in a weight ratio of 2: 3 to 1: 9, or spinel powder may be used. The particle size of the raw material powder is preferably 90 μm or less, particularly preferably 50 μm or less. The raw material powder is mixed using a mixer such as a ball mill, a vibration mill, a mixer or the like.
[0014]
The normal pressure sintering is performed using a mold or CIP at a molding pressure of 0.1 to 5 ton / cm 2 and then in an inert atmosphere such as a temperature of 1500 to 2000 ° C., nitrogen, argon or the like. Hot pressing is performed under conditions of a temperature of 1500 to 2000 ° C. and a pressure of 50 to 150 kg / cm 2 .
[0015]
The BN / spinel composite sintered body produced in this manner has a thermal shock resistance as compared with the conventional material, and is extremely excellent in resistance to melting. Next, the BN / spinel composite sintered body is formed with a film mainly composed of MgO.Al 2 O 3 spinel on the surface thereof , and becomes a member for molten metal treatment of the present invention . The coating Ru can be formed by dipping the BN / spinel composite sintered body in the molten metal. Ru thickness optic lobe number to several hundred μm der of the film. Therefore the coating structure such as this, melting loss resistance is further improved.
[0016]
Delete [0017]
Delete [0018]
Delete [0019]
MgO · Al 2 O 3 spinel coating is generally porous, spinel is continuously grain-bonded, and densified compared to spinel particles of BN / spinel composite sintered body it, it coating and spinel each other at the interface of BN / spinel composite sintered body adhesiveness are grains bonded is large, a high thermal shock resistance because of such shows Chodai of melting loss resistance. Moreover, even if MgO · Al 2 O 3 spinel film is peeled off, the exposed B N / spinel composite sintered body of molten metal MgO · Al 2 O Do was new Ri by the be immersed in 3 spinel coating Is reproduced, and is different from the member of the above-mentioned Japanese Patent Laid-Open No. 4-280877.
[0020]
Molten metal processing member of the present invention is either a member for producing a temperature measuring protective tube in casting equipment, or nozzles in the casting equipment, tundish, the tundish and the mold of the connecting member, the weir member, a stopper Or it is a member for manufacturing either a break ring.
[0021]
The temperature measuring protection tube is a cylindrical jig that houses a temperature measuring jig such as a thermocouple used when measuring the temperature of the molten metal. The nozzle is a device that is installed in a ladle and pours molten steel into the tundish, and the tundish is a container for pouring molten steel from the ladle into the mold through the nozzle. The connecting member between the tundish and the mold is, for example, a spear. A stopper is used as a control rod for inflow of molten steel from the tundish to the mold. Furthermore, the weir material for maintaining the liquid level of the molten steel and the break ring used in the horizontal continuous casting process are members that are constantly in contact with the molten metal.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, comparative examples , and reference examples .
[0023]
Reference Examples 1-4 Comparative Examples 1, 2
Hexagonal boron nitride powder (oxygen 2%, average particle size 4 μm) and MgO.Al 2 O 3 spinel powder (average particle size 5 μm) were mixed in a ball mill for 3 hours at the ratio shown in Table 1. It was filled in a graphite die and hot-press sintered at 1700 ° C. for 2 hours to produce a BN / spinel composite sintered body. From these composite sintered bodies, a member having a diameter of 24 mm and a length of 150 mm was processed as a temperature measuring protective tube shape .
[0024]
Examples 1 and 2
The protective tube-shaped molten metal treatment member produced in Reference Example 1 is immersed in molten steel at 1600 ° C. for 0.5 hour or 1 hour, and has a thickness of 50 μm ( Example 1 ) or 100 μm ( Example 2 ). The member for molten metal treatment of the present invention was manufactured by forming a MgO.Al 2 O 3 spinel film .
[0025]
Comparative Examples 3-5
In accordance with Reference Example 1 , a BN single material was manufactured as Comparative Example 3, a BN / silicon nitride composite sintered body as Comparative Example 4, and a BN / aluminum nitride / alumina / silicon nitride composite sintered body as Comparative Example 5. From the sintered body, a protective tube-shaped molten metal processing member was produced. Note that the BN content of the composite sintered bodies of Comparative Examples 4 and 5 was about 50%.
[0026]
About these molten metal processing members, the average of the erosion resistance, thermal shock resistance and particle size was measured according to the following method. The results are shown in Table 1.
[0027]
The resistance to melting loss and thermal shock resistance was evaluated by visually observing the presence or absence of cracks and cracks while measuring the amount of decrease in diameter after continuously immersing cast iron in molten steel heated to 1600 ° C. for 8 hours.
[0028]
The average size of the particles constituting the BN / spinel composite sintered body is BN and spinel particles having a maximum size of 20 points in the 60 × 60 mm region of the SEM / COMPO image (100 times). Was measured and averaged.
[0029]
When the crystal phase of the BN / spinel composite sintered bodies of Examples 1 and 2 and Reference Examples 1 to 4 was identified by X-ray diffraction, BN / spinel phase was detected, and other compounds were detected. There wasn't. Furthermore, when X-ray diffraction of the coating layer formed on the surface in Examples 1 and 2 was performed, MgO · Al 2 O 3 spinel was detected, and further, EPMA analysis showed that trace amounts of Si and Ca were detected. It was done.
[0030]
[Table 1]
Figure 0004020224
[0031]
【The invention's effect】
The member for processing a molten metal according to the present invention is extremely excellent in resistance to erosion and also has thermal shock resistance.

Claims (1)

六方晶窒化硼素20〜80重量%とMgO・Alスピネル80〜20重量%との複合焼結体の表面に、MgO・Alスピネル質を主成分とする被膜が形成されてなり、上記複合焼結体を構成している粒子の平均の大きさが、六方晶窒化硼素については10〜50μm、MgO・Alスピネルについては5〜40μmであり、鋳造設備における測温用保護管を製造するためのものであるか、又は鋳造設備におけるノズル、タンディッシュ、タンディッシュと鋳型の接続部材、堰材、ストッパー又はブレークリングのいずれかを製造するためのものであることを特徴とする溶融金属処理用部材。On the surface of the composite sintered body of hexagonal boron nitride 20 to 80% by weight and MgO · Al 2 O 3 spinel 80 to 20% by weight, a film mainly composed of MgO · Al 2 O 3 spinel is formed. The average size of the particles constituting the composite sintered body is 10 to 50 μm for hexagonal boron nitride and 5 to 40 μm for MgO.Al 2 O 3 spinel. For manufacturing protective pipes for use , or for manufacturing nozzles, tundishes, tundish-mold connecting members, weirs, stoppers or break rings in casting equipment A member for processing a molten metal.
JP27281198A 1998-09-28 1998-09-28 Molten metal processing parts Expired - Fee Related JP4020224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27281198A JP4020224B2 (en) 1998-09-28 1998-09-28 Molten metal processing parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27281198A JP4020224B2 (en) 1998-09-28 1998-09-28 Molten metal processing parts

Publications (2)

Publication Number Publication Date
JP2000103679A JP2000103679A (en) 2000-04-11
JP4020224B2 true JP4020224B2 (en) 2007-12-12

Family

ID=17519092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27281198A Expired - Fee Related JP4020224B2 (en) 1998-09-28 1998-09-28 Molten metal processing parts

Country Status (1)

Country Link
JP (1) JP4020224B2 (en)

Also Published As

Publication number Publication date
JP2000103679A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
US4885264A (en) Pressure-sintered polycpystalline mixed materials with a base of hexagonal boron nitride, oxides and carbides
EP0793629B1 (en) Novel materials consisting of refractory grains bonded by a titanium nitride-containing aluminium nitride or sialon matrix
US4870037A (en) Prevention of Al2 O3 formation in pouring nozzles and the like
US5389587A (en) BN-group ceramics having excellent resistance to loss by dissolving
JPS6348828B2 (en)
JP4020224B2 (en) Molten metal processing parts
KR20090129275A (en) Silicon nitration ceramic composition material and device for protecting sensor measuring temperature of molten steel
JPH0617268B2 (en) Refractory for continuous casting
KR20040082399A (en) Articles for casting applications comprising ceramic composite and methods for making articles thereof
JPS6335593B2 (en)
US5975382A (en) Continuous casting nozzle for casting molten steel
EP0396779A1 (en) Boron nitride ceramic having excellent resistance against fusing damage
JP2698186B2 (en) Manufacturing method of casting nozzle member
US6533146B1 (en) Continuous casting nozzle for molten steel
JP2003321286A (en) Aluminum titanate ceramics-made member for improving non-wettability against aluminum alloy melt and manufacturing method therefor
JP2893410B2 (en) BN ceramics with excellent erosion resistance
JP3587493B2 (en) Composite sintered body of boron nitride and spinel
JP4589151B2 (en) Nozzle for continuous casting and continuous casting method
CA2312482C (en) A continuous casting nozzle for molten steel
EP0970768B1 (en) A continuous casting nozzle for molten steel
JPH05262566A (en) Refractory for horizontal continuous casting
JPH06322457A (en) Silicon nitride parts for melting and casting of aluminum and melting and casting equipment using the same
WO1998001405A1 (en) Ceramic compositions
TW490333B (en) Continuous casting nozzle
JP2004323260A (en) Nozzle material for continuous casting and nozzle for continuous casting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees