JP2893410B2 - BN ceramics with excellent erosion resistance - Google Patents

BN ceramics with excellent erosion resistance

Info

Publication number
JP2893410B2
JP2893410B2 JP1289672A JP28967289A JP2893410B2 JP 2893410 B2 JP2893410 B2 JP 2893410B2 JP 1289672 A JP1289672 A JP 1289672A JP 28967289 A JP28967289 A JP 28967289A JP 2893410 B2 JP2893410 B2 JP 2893410B2
Authority
JP
Japan
Prior art keywords
ceramic
erosion
resistance
erosion resistance
heated melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1289672A
Other languages
Japanese (ja)
Other versions
JPH03218976A (en
Inventor
真澄 中島
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Original Assignee
Koransha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd filed Critical Koransha Co Ltd
Priority to JP1289672A priority Critical patent/JP2893410B2/en
Publication of JPH03218976A publication Critical patent/JPH03218976A/en
Application granted granted Critical
Publication of JP2893410B2 publication Critical patent/JP2893410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、金属やガラス等の加熱溶融体に対する耐溶
損性に優れたh−BN系セラミックスに係るものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an h-BN ceramic having excellent resistance to erosion to a molten metal such as metal or glass.

〈従来の技術〉 h−BNセラミックスは、金属やガラス等の加熱溶融体
に対する難濡れ性に極めて優れた特性を発揮する反面、
難焼結性材料であるため通常ホットプレス法で作られて
おり、このため極めて高価となり加熱溶融体部材として
普及しないのが現状である。
<Conventional technology> h-BN ceramics exhibit extremely excellent wettability to heated melts such as metal and glass,
Since it is a hard-to-sinter material, it is usually made by a hot press method, and is therefore extremely expensive and not widely used as a heated melt.

また、ホットプレスの製造上、h−BNセラミックスと
比較的濡れやすいB2O3系ガラスをバインダーとして作製
しているために、バインダーが高温下で軟化、さらにBN
セラミック表面に溶出し、高温強度の極端な低下や加熱
溶融体との反応による溶損が生じ、高温下での加熱溶融
体部材として普及しない原因の一端があった。
Also, in the production of hot press, since the binder is made of B2O3-based glass which is relatively wettable with h-BN ceramics, the binder softens at high temperature, and BN
It is eluted on the ceramic surface, causing an extreme decrease in high-temperature strength and erosion due to reaction with the heated melt, which is one of the reasons why it is not widely used as a heated melt member at high temperatures.

最近、B2O3系ガラスを含まないSi3N4−h−BN等のBN
成分以外のセラミックを主成分とした常圧あるいは反応
焼結複合体があるが、これらは本来h−BNの持つ難濡れ
性、高耐蝕性、耐熱衝撃性等の優れた特性を無視したも
のである。これらはBN成分を少量含有させることによ
り、たかだか耐熱衝撃性がわずかに改善できる程度のも
のであり、全般的に加熱溶融体部材としては適用されて
いないのが現状である。従ってBNセラミックの優れた諸
特性を保持したまま加熱溶融体用部材として広く適応さ
せるためには、あくまでもh−BN成分を主成分とし、耐
溶損性、難濡れ特性、耐熱衝撃性に優れた特性を発揮さ
せるような今までにない新しい材料の開発が必要であ
る。
Recently, BN such as Si3N4-h-BN that does not contain B2O3-based glass
There are normal-pressure or reaction-sintered composites mainly composed of ceramics other than the components, but these originally ignore the excellent properties of h-BN such as poor wettability, high corrosion resistance, and thermal shock resistance. is there. These materials can only slightly improve the thermal shock resistance by adding a small amount of the BN component, and are currently not generally used as a heated melt member. Therefore, in order to widely adapt as a material for heated melt while maintaining the excellent properties of BN ceramic, it is necessary to use a h-BN component as the main component and to have excellent erosion resistance, poor wettability, and thermal shock resistance. It is necessary to develop a new material that does not exist until now.

〈発明が解決する問題点〉 本発明はかかる現状技術の問題点に鑑みて成されたも
ので、その目的とするところは金属やガラス等の加熱溶
融体に対する耐溶損性に優れ、しかも常圧焼結法でも作
製可能に安価なh−BN系セラミック材料を提供すること
にある。
<Problems to be Solved by the Invention> The present invention has been made in view of the problems of the current state of the art, and has as its object the object of being excellent in erosion resistance to a heated melt such as metal or glass, and at normal pressure. It is an object of the present invention to provide an inexpensive h-BN ceramic material that can be manufactured by a sintering method.

〈問題点を解決するための手段〉 本発明者は、上記問題点に関して鋭意研究を行った結
果、次のような新しい知見を得た。
<Means for Solving the Problems> As a result of earnest studies on the above problems, the present inventors have obtained the following new knowledge.

焼結体中に50%以上のh−BNと(AlN、Si3N4、Al2O
3、SiO2)の中から選ばれた二種以上の化合物からなる
複合化合物を1〜50%未満含有させると、金属やガラス
等の加熱溶融体に対する耐溶損性が著しく向上するこ
と。
More than 50% of h-BN and (AlN, Si3N4, Al2O
3, if less than 1 to 50% of a composite compound composed of two or more compounds selected from SiO2), the erosion resistance to a hot melt such as metal or glass is remarkably improved.

焼結体中に50%以上のh−BNと(AlN、Si3N4、Al2O
3、SiO2)の中から選ばれた二種以上の化合物からなる
複合化合物を30%未満含有させると、耐溶損性を保持し
たまま強度が著しく向上すること。
More than 50% of h-BN and (AlN, Si3N4, Al2O
(3, SiO2) When the content of a composite compound composed of two or more compounds selected from less than 30% is contained in less than 30%, the strength is remarkably improved while maintaining the erosion resistance.

特に上記複合化合物としてAl6Si2O13、 Si2Al3O7N、Si3Al2.67N4O4、 Si3Al3O3N5、Al3O3N、 Si6Al10O21N4を含有させると耐溶損性の他にBNの持つ本
来の特性−難濡れ性や耐熱衝撃性−が極めて向上するこ
とを見出した。
In particular, when Al6Si2O13, Si2Al3O7N, Si3Al2.67N4O4, Si3Al3O3N5, Al3O3N, Si6Al10O21N4 are contained as the above-mentioned composite compound, it has been found that the original properties of BN, such as resistance to wettability and thermal shock resistance, in addition to erosion resistance are extremely improved. Was.

本発明は上記知見に基づいてなされたものである。 The present invention has been made based on the above findings.

〈作用〉 本発明でセラミックス中のh−BN量を50%以上にする
のは、50%未満では必然的に他のセラミック成分が50%
を越えることになり、むしろこのセラミック成分の特性
が強くなり、本来h−BNの持つ特性、特に耐溶損性、耐
熱衝撃性が稀薄になる。従ってh−BN以外のセラミック
成分として(AlN、Si3N4、Al2O3、SiO2)から選ばれた
二種以上の化合物からなる複合化合物の上限値は、必然
的に50%未満にすることが必要である。該複合化合物の
下限を1%にするのは、1%未満では金属やガラス等の
加熱溶融体に対する耐溶損性で十分な効果が発揮されな
いためである。本来BNセラミックスは耐熱衝撃性に優れ
ているが、h−BN以外のセラミックス成分量により耐熱
衝撃性は変化する。h−BN成分が50%以上、即ちh−BN
以外のセラミックス成分が50%未満であれば殆どの場
合、加熱溶融体部材として何の支障もなく適応できる
が、特殊な適応部材として、加熱溶融体が少なくとも一
部凝固し、そり凝固域部材(例えば水平連鋳機のフィー
ドノズルとCuモールドとのジョイント部やセラミックモ
ールド又はCuモールド内張り材、ガラス成形用引き抜き
ノズル等)で用いられる場合には、好ましくはh−BN70
%以上、h−BN以外の成分1〜30%未満、さらに好まし
くはh−BN70〜97%、h−BN以外の成分3〜30%であ
る。
<Function> The reason why the amount of h-BN in ceramics is set to 50% or more in the present invention is that if the amount is less than 50%, other ceramic components are necessarily 50%.
Rather, the properties of this ceramic component become stronger, and the properties inherent to h-BN, especially the erosion resistance and thermal shock resistance, are reduced. Therefore, the upper limit of the composite compound composed of two or more compounds selected from (AlN, Si3N4, Al2O3, SiO2) as a ceramic component other than h-BN must necessarily be less than 50%. The reason why the lower limit of the composite compound is set to 1% is that if it is less than 1%, a sufficient effect is not exhibited in the erosion resistance to a heated melt such as metal or glass. Although BN ceramics are originally excellent in thermal shock resistance, the thermal shock resistance changes depending on the amount of ceramic components other than h-BN. h-BN component is 50% or more, that is, h-BN
In most cases, if the ceramic component other than 50% is less than 50%, it can be applied without any problem as a heated melt member. For example, when used in a joint portion between a feed nozzle and a Cu mold of a horizontal continuous caster, a lining material of a ceramic mold or a Cu mold, a drawing nozzle for glass molding, etc.), preferably h-BN70
%, Less than 1 to 30% of components other than h-BN, more preferably 70 to 97% of h-BN, and 3 to 30% of components other than h-BN.

h−BN以外のセラミックス成分として(AlN、Si3N4、
Al2O3、SiO2)の中から選ばれた二種以上の複合化合物
を選択するのは、耐溶損性に優れているのはもちろんの
こと、従来のh−BN複合体には見られなかった非常に優
れた耐熱衝撃性、難濡れ性を示すからである。特に複合
化合物組成がAl6Si2O13、Si2Al3O7N、Si3Al2.67N4O4、S
i3Al3O3N5、 Al3O3N、Si6Al10O21N4、 例えば3Al2O3・2SiO2、2SiO2・AlN・Al2O3、2SiO2・2.6
7AlN・1/3Si3N4、AlN、Si3N4・Al2O3、Al2O3・AlN、6Si
O2・3Al2O3・4AlNになる時効果が顕著に現れる。
Ceramic components other than h-BN (AlN, Si3N4,
(Al2O3, SiO2) is not only excellent in erosion resistance, but also very difficult to find in conventional h-BN composites. This is because they exhibit excellent thermal shock resistance and poor wettability. In particular, the composite compound composition is Al6Si2O13, Si2Al3O7N, Si3Al2.67N4O4, S
i3Al3O3N5, Al3O3N, Si6Al10O21N4, for example, 3Al2O3 ・ 2SiO2, 2SiO2 ・ AlN ・ Al2O3, 2SiO2 ・ 2.6
7AlN ・ 1 / 3Si3N4, AlN, Si3N4 ・ Al2O3, Al2O3 ・ AlN, 6Si
The effect is remarkable when it becomes O2 · 3Al2O3 · 4AlN.

これらの複合化合物は、焼結体h−BN系セラミックスに
前述範囲で存在しておれば、いかなる製造方法でも適応
できる。例えば出発原料として複合化合物組成の単独成
分を含有させ焼結してもよいし、焼結過程で該複合化合
物を生成させてもよい。
These composite compounds can be applied by any production method as long as they are present in the above-mentioned range in the sintered body h-BN ceramics. For example, a single component of the composite compound composition may be contained as a starting material and sintered, or the composite compound may be generated during the sintering process.

複合成分以外の成分として、AlN、Si3N4、Al2O3、SiO
2を選択したのは、これらは本発明者が特願昭63−19542
4号で開示した様にBNに単独成分として含有させても優
れた耐融性を示し、また製造方法いかんによってはh−
BN中の複合化合物成分の不可避的な不純物として含まれ
るからである。
As components other than the composite component, AlN, Si3N4, Al2O3, SiO
The reason why 2 was selected is that these were determined by the present inventors in Japanese Patent Application No. 63-19542.
As disclosed in No. 4, even when BN is contained as a single component, it shows excellent fusion resistance, and depending on the production method, h-
This is because they are contained as inevitable impurities of the composite compound component in BN.

〈実施例〉 実施例によって本発明を詳細に説明する。<Example> The present invention will be described in detail with reference to an example.

実施例1. No.1〜8のサンプルは、ラバープレスで棒状に成形
後、N2雰囲気で1,500℃〜1,800℃で常圧焼結し、 10φ×70lに加工し作製された。
Example 1 Samples Nos. 1 to 8 were formed into rods by a rubber press, then sintered under normal pressure at 1,500 ° C. to 1,800 ° C. in an N 2 atmosphere, and processed to 10φ × 70 l.

これらのサンプル焼結体相はX線回折により調査され
た。また、高周波溶解炉で1,500℃〜1,550℃に溶解した
溶鋼(JIS.Sus−304)中にAlを0.02%加え、No.1〜8の
サンプルを浸漬し、60rpmの速度で回転させながら0.5h
r.保持し、溶損量を測定した。
These sample sintered phases were investigated by X-ray diffraction. Also, 0.02% of Al was added to molten steel (JIS. Sus-304) melted at 1,500 ° C to 1,550 ° C in a high-frequency melting furnace, and the samples of Nos. 1 to 8 were immersed in the steel for 0.5h while rotating at a speed of 60 rpm.
r. Hold and measure the amount of erosion.

結果を表1に示した。The results are shown in Table 1.

No.1〜8の焼結体成分はh−BNと(AlN、Si3N4、Al2O
3、SiO2)から選ばれた二種以上の複合化合物とその他
(AlN、Si3N4、Al2O3、SiO2)から選ばれた化合物から
構成され、いずれのサンプルも浸漬後の直径は浸漬前の
直径10mmφとほぼ同じであり、耐溶損性に非常に優れて
いた。
The sintered components of Nos. 1 to 8 are h-BN and (AlN, Si3N4, Al2O
3, SiO2) is composed of two or more compound compounds selected from the group consisting of other compounds (AlN, Si3N4, Al2O3, SiO2). The diameter of each sample after immersion is almost 10mmφ before immersion. It was the same and very excellent in erosion resistance.

実施例2. No.9〜14のサンプルは、ラバープレスで角棒状に成形
後、N2雰囲気で1,800℃で常圧焼結し、25□×220lに加
工し作製された。これらのサンプルの焼結体相はX線回
折により調査された。
Example 2 Samples Nos. 9 to 14 were formed into square bars by a rubber press, then sintered under normal pressure at 1,800 ° C. in an N 2 atmosphere, and processed to 25 □ × 220 l. The sintered phases of these samples were investigated by X-ray diffraction.

また、高周波溶解炉で1,550℃〜1,568℃に溶解した溶
鋼(JIS.SCR−420)中にAlを0.053%加え、No.9〜14の
サンプルを浸漬し、0.33rpsの速度で回転させながら3h
r.保持し溶損量を測定した。
Also, 0.053% of Al was added to molten steel (JIS.SCR-420) melted at 1,550 ° C to 1,568 ° C in a high-frequency melting furnace, and samples of Nos. 9 to 14 were immersed and rotated at a speed of 0.33 rps for 3 hours.
r. Hold and measure the amount of erosion.

結果を表2に示した。 The results are shown in Table 2.

No.9〜13のサンプルはいずれの場合にも浸漬後溶損は
見られず、耐溶損性に非常に優れていた。また、No.14
のサンプルは試験中、熱応力によって破損した。
Samples Nos. 9 to 13 did not show any erosion after immersion in any case, and were very excellent in erosion resistance. No.14
The sample failed during the test due to thermal stress.

実施例3. 実施例2のNo.9〜14のサンプルは、ラバープレスでパ
イプ状に成形された後、N2雰囲気で1,800℃で常圧焼結
され、ID50mmφ×OD60mmφ×50mmlに加工された。
Example 3 Samples Nos. 9 to 14 of Example 2 were formed into a pipe shape by a rubber press, then sintered under normal pressure at 1,800 ° C. in an N 2 atmosphere, and processed into ID50 mmφ × OD60 mmφ × 50 mml.

これらのサンプルは室温または〜900℃までの所定の
温度で30分余熱され、1,600℃の溶鋼に1分間浸漬し、
耐熱衝撃性が調査された。結果は図1に示してある。
These samples are heated for 30 minutes at room temperature or a predetermined temperature up to 900 ° C, immersed in molten steel at 1600 ° C for 1 minute,
Thermal shock resistance was investigated. The results are shown in FIG.

h−BN量が50%でΔT≒1,300℃と非常に高く、70%
ではΔT=1,600℃すなわち室温から1,600℃の溶鋼に直
接浸漬しても破損しなかった。
Very high ΔT ≒ 1,300 ℃ at 50% h-BN content, 70%
Did not break even when immersed directly in molten steel at ΔT = 1,600 ° C., that is, from room temperature to 1,600 ° C.

h−BN量が50%以上であると、本来h−BNの持つ耐熱
衝撃性が損なわれず、また70%以上だと加熱溶融体が少
なくとも一部凝固するような部材として使用可能であ
る。
If the amount of h-BN is 50% or more, the thermal shock resistance inherent in h-BN is not impaired, and if it is 70% or more, it can be used as a member in which the heated melt solidifies at least partially.

実施例4. No.15〜19のサンプルは、ラバープレスでルツボ状に成
形された後、N2雰囲気で1,800℃で常圧焼結され、ID10m
mφ、厚み約5mmφのルツボに加工された。
Example 4. The samples of Nos. 15 to 19 were formed into a crucible shape by a rubber press, and then were sintered under normal pressure at 1,800 ° C. in an N2 atmosphere, and ID10m
It was processed into a crucible with mφ and thickness of about 5mmφ.

焼結体相はX線回折で調査され、また耐蝕性は、作製し
たルツボ中で金属(JIS.Sus−304)をAr雰囲気下、1,55
0℃、1時間の保持の条件で溶解し調査した。結果は表
3に示した。
The sintered phase was investigated by X-ray diffraction, and the corrosion resistance was measured by using a metal (JIS.
The sample was dissolved under the condition of holding at 0 ° C. for 1 hour and examined. The results are shown in Table 3.

表3の溶損状況は、図2で示した。 The erosion status in Table 3 is shown in FIG.

溶損が激しい場合は金属と接したルツボ内面が激しく
拡大するか、またはルツボに穴があくこともある。
If the melting is severe, the inner surface of the crucible in contact with the metal may be severely enlarged or the crucible may have holes.

No.15〜19のいずれのサンプルも耐溶損性に優れてい
た。
All the samples of Nos. 15 to 19 were excellent in erosion resistance.

No.15〜19サンプルいずれの場合にも溶解後、ルツボ
の金属(SUS−304)凝固体は、ルツボ内面と強固に反応
付着することなしに取り出すことができた。
After melting in any of the samples Nos. 15 to 19, the solidified metal (SUS-304) of the crucible could be taken out without strongly reacting and adhering to the inner surface of the crucible.

ルツボの状態はNo.15〜17で内面が赤茶色に変色して
いた。No.18、19では上面または内面に金属と反応した
ガラス状の青色物が付着していた。また、金属凝固体の
状態はNo.18、19で金属の光沢を示し、見かけ上難濡れ
性を示した。
The condition of the crucible was No. 15-17, and the inside was discolored reddish brown. In Nos. 18 and 19, a glassy blue substance that had reacted with the metal adhered to the upper or inner surface. In addition, the state of the metal coagulated body was No. 18 and No. 19, showing the luster of the metal, and apparently poor wettability.

実施例5. 表3のNo.15〜19のサンプルがガラス成形用引き抜き
ノズルとして適応された。図3にガラス成形の概略図を
示し、以下図3により説明する。
Example 5 Samples Nos. 15 to 19 in Table 3 were adapted as drawing nozzles for glass forming. FIG. 3 shows a schematic view of glass forming, which will be described below with reference to FIG.

加熱溶融体は、ノズル内側(図中B部)から凝固を開
始し、凝固体2はノズル内面形状に成形されながら引き
抜かれる(図中矢印方向)。従ってノズル内面(図中B
部)は凝固温度以下である。一方ノズルは加熱溶融体1
とも一部図中A部で接触しており、ノズル内面よりも高
温である。すなわちノズルは加熱溶融相とその凝固相の
二相に接触し、ノズル内で温度差が大きく生じる。結果
として、ノズル材は耐溶損性の他に耐熱衝撃性や耐熱応
力性に優れていなければならない。
The heated melt starts to solidify from the inside of the nozzle (part B in the figure), and the solidified body 2 is drawn out while being formed into the nozzle inner surface shape (the direction of the arrow in the figure). Therefore, the inner surface of the nozzle (B in the figure)
Part) is below the solidification temperature. On the other hand, the nozzle is heated melt 1
Both of them are in contact at the portion A in the figure, and the temperature is higher than the inner surface of the nozzle. That is, the nozzle comes into contact with the two phases of the heat-melted phase and the solidified phase, and a large temperature difference occurs in the nozzle. As a result, the nozzle material must have excellent thermal shock resistance and thermal stress resistance in addition to erosion resistance.

ノズルとしてID17.5mmφ、OD27mmφ、長さ20mmlのNo.
15〜19の焼結体が作製され、加熱溶融体としてSiO2系ガ
ラスを用い、温度約1,400℃で加熱溶融されたガラスを
引き抜いたところ、割れもなくガラス成形体の品質も良
好なものが得られた。
No. of ID17.5mmφ, OD27mmφ, length 20mml as nozzle.
Sintered bodies of 15 to 19 were produced, and SiO2 glass was used as the heated melt, and the glass that was heated and melted at a temperature of about 1,400 ° C was drawn out. Was done.

実施例6. 表3のNo.18、19のサンプルが水平連鋳機のブレーク
リングとして適応された。
Example 6. Samples Nos. 18 and 19 in Table 3 were used as break rings in a horizontal continuous caster.

図4に水平連鋳機の概略図を示し、以下図4をもって
説明する。
FIG. 4 shows a schematic view of a horizontal continuous casting machine, which will be described below with reference to FIG.

図4のようにブレークリングはタンディッシュと水冷
されたCuモールド3とを連結させる部材である。タンデ
ィッシュ内の加熱溶融体1は、水冷されたCuモールド3
に熱を奪われ、ブレークリング(図中B部)から凝固が
開始されるように設計されている。従ってブレークリン
グは図中A部で加熱溶融体相と、図中B部でその凝固相
と、2つの相に接触している。さらにブレークリング
は、水冷Cuモールド3とも図中C部で接触しており、ブ
レークリング材の温度勾配は 1,500℃と大きくなる。結果としてブレークリング材は
耐蝕性の他に優れた耐熱衝撃性、耐熱応力性が必要とな
る。
As shown in FIG. 4, the break ring is a member for connecting the tundish and the water-cooled Cu mold 3. The heated melt 1 in the tundish is a water-cooled Cu mold 3
The heat is deprived of heat and solidification is started from the break ring (part B in the figure). Therefore, the break ring is in contact with the heated melt phase in part A in the figure, its solidified phase in part B in the figure, and the two phases. Further, the break ring is also in contact with the water-cooled Cu mold 3 at the portion C in the figure, and the temperature gradient of the break ring material is The temperature increases to 1,500 ° C. As a result, the break ring material needs to have excellent thermal shock resistance and thermal stress resistance in addition to corrosion resistance.

凝固体2はCuモールド3の形状に従い、連続的に引き
抜かれ(図中矢印方向)鋳造される。ブレークリングと
してID180mmφ、OD210mmφ、高さ20mmHのNo.18および19
の焼結体を、加熱溶融体として溶鋼(JIS.Sus−304)を
用い、温度約1,520℃で加熱溶融された溶鋼を鋳造した
結果、ブレークリングは割れもなく、変形もなく、摩耗
も少なく良好であった。また、使用後のブレークリング
内面を調査した結果、MnOを含む化合物の生成が認めら
れた。これらの融点は溶鋼よりも低いため、操業中には
液相として存在し、凝固shellとブレークリング間の潤
滑に寄与し、摩耗も少なくなったと考えられた。また鋳
造品の品質も良好であった。
The solidified body 2 is continuously drawn out (in the direction of the arrow in the drawing) and cast according to the shape of the Cu mold 3. No.18 and 19 of ID180mmφ, OD210mmφ, height 20mmH as break ring
As a result of casting molten steel heated and melted at a temperature of about 1,520 ° C using a molten steel (JIS.Sus-304) as a heated melt, the break ring has no cracks, no deformation, and little wear It was good. In addition, as a result of examining the inner surface of the break ring after use, formation of a compound containing MnO was observed. Since these melting points were lower than molten steel, it was thought that they existed as a liquid phase during operation, contributed to lubrication between the solidified shell and the break ring, and reduced wear. The quality of the cast product was also good.

実施例7. 焼結体中にh−BN70%以上、残りの成分として複合化
合物組成がSi6Al2O13となるように出発原料としてBN、A
lN、Al2O3、SiO2を表4の所定量混合し、ラバープレス
でルツボ状に成形した後、N2雰囲気で1,500℃〜1,800℃
で常圧焼結しID10mmφ、厚み約5mmtのルツボに加工され
た。
Example 7. BN and A were used as starting materials so that h-BN was 70% or more in the sintered body and the composite compound composition was Si6Al2O13 as the remaining component.
lN, Al2O3, and SiO2 were mixed in the specified amounts shown in Table 4 and molded into a crucible by a rubber press.
Under normal pressure and processed into a crucible with ID10mmφ and thickness about 5mmt.

焼結体相はX線回折で調査され、実施例4と同様に耐
溶損性が調査された。結果は表4に示した。
The sintered body phase was examined by X-ray diffraction, and the erosion resistance was examined as in Example 4. The results are shown in Table 4.

No.20、21のサンプルは焼成中に成分Al2O3とSiO2が反
応しAl6Si2O13相を生じ、またNo.22は焼結中BN成分中の
酸素とAlNが反応しAl2O3を生じ、さらにAl2O3とSiO2が
反応し Si6Al2O13を生じたものである。このようにいずれのサ
ンプルもh−BN成分以外の焼結体組成は Si6Al2O13を示し、また耐溶損性にも優れた結果であっ
た。また表4中には強度値も示した。No.20のサンプル
のみ低い強度を示したが、残りのサンプルは強度値に関
し問題はなかった。
In the samples of Nos. 20 and 21, the components Al2O3 and SiO2 reacted during firing to produce an Al6Si2O13 phase, and in No.22, the oxygen and AlN in the BN components reacted during sintering to produce Al2O3, and Al2O3 and SiO2 were further converted. It reacted to produce Si6Al2O13. As described above, in all samples, the composition of the sintered body other than the h-BN component was Si6Al2O13, and the results were excellent in erosion resistance. Table 4 also shows intensity values. Only the sample of No. 20 showed low intensity, but the other samples had no problem with the intensity value.

実施例8. 実施例4と同様にNo.15〜19のサンプルがルツボ形状
に作製され、純NiおよびFe−50%Niの金属に対する耐溶
損性が、Ar雰囲気下、1,600℃、1hr、保持の条件で調査
された。その結果、いずれのサンプルも耐溶損性に優れ
ていた。
Example 8. Samples Nos. 15 to 19 were fabricated in a crucible shape in the same manner as in Example 4. The erosion resistance to pure Ni and Fe-50% Ni metal was maintained at 1600 ° C. for 1 hour in an Ar atmosphere. The conditions were investigated. As a result, all samples were excellent in erosion resistance.

実施例9. 実施例4のNo.17のサンプルがセラミックモールドと
して適応された。図5にセラミックモールドの概略図を
示し、以下図5で説明する。
Example 9. The sample No. 17 of Example 4 was adapted as a ceramic mold. FIG. 5 is a schematic view of a ceramic mold, which will be described below with reference to FIG.

基本的構造は実施例6で示した水平連鋳機と同じであ
る。セラミックモールドとブレークリングとの異なる点
は形状である。セラミックモールドは水冷Cuモールド3
内面をすべて覆った形状になっており、凝固体2の形状
を決定するモールドの役目も果たしている。
The basic structure is the same as the horizontal continuous caster shown in the sixth embodiment. The difference between the ceramic mold and the break ring is the shape. Ceramic mold is water-cooled Cu mold 3
It has a shape that covers the entire inner surface, and also serves as a mold for determining the shape of the solidified body 2.

セラミックモールドもまた加熱溶融体1と図中A部
で、凝固体とは図中B部で接触する。また水冷Cuモール
ドとも図中C部で接触しており、モールド材としてはブ
レークリングと同様な特性が必要となる。
The ceramic mold also comes into contact with the heated melt 1 at the portion A in the figure and with the solidified body at the portion B in the figure. Further, it is in contact with the water-cooled Cu mold at the portion C in the figure, and the same properties as the break ring are required as the mold material.

セラミックモールドとしてID20mmφ、OD36mmφ、長さ
160mmlのNo.17の焼結体を、加熱溶融体としてはFe−50
%Niを用い、温度約1,600℃で鋳造したところ、セラミ
ックモールドは割れもなく鋳造できた。
ID20mmφ, OD36mmφ, length as ceramic mold
No. 17 sintered body of 160 mml, Fe-50
% Ni was cast at a temperature of about 1,600 ° C., and the ceramic mold could be cast without cracking.

実施例10. 実施例のNo.15〜19のサンプルで保護管を作製し、溶
鋼レベル上面から直接浸漬し、タンディッシュ内の溶鋼
温度を測定した。そのとき用いた保護管形状を図6に示
す。図6中斜線部がNo.15〜19のサンプルで作製した保
護管である。
Example 10 A protective tube was prepared from the samples Nos. 15 to 19 of the example, and was directly immersed from the upper surface of the molten steel level, and the temperature of the molten steel in the tundish was measured. FIG. 6 shows the shape of the protective tube used at that time. The hatched portion in FIG. 6 is a protection tube made of the samples of Nos. 15 to 19.

結果は、いずれの場合にも保護管は破損せず、溶鋼の
温度が接続的に測定できた。
As a result, in each case, the protection tube was not damaged, and the temperature of the molten steel could be connected and measured.

実施例11. 実施例4と同様No.15〜19のサンプルが外径10mmφ×
長さ100Lmmの丸棒で作製され、1550℃の溶鋼(SS材)に
140min浸漬された。浸漬後の丸棒サンプルは直径が測定
され、溶損量として図7に示された。いずれのサンプル
にも全溶損することなく、耐溶損性に優れていた。特に
サンプルNo.15〜17は溶損がなく優れていた。
Example 11. As in Example 4, samples of Nos. 15 to 19 had an outer diameter of 10 mmφ ×
Made of 100Lmm length round bar, 1550 ℃ molten steel (SS material)
Dipped for 140 min. The diameter of the round bar sample after immersion was measured, and is shown in FIG. 7 as the amount of erosion. Each sample was excellent in erosion resistance without total erosion. In particular, Sample Nos. 15 to 17 were excellent without erosion.

これらのサンプルの外観は、No.18、19においては浸
漬前と同じ白色をしており、またNo.15、16においては
赤茶色に変色していた。
The appearance of these samples was the same white as before immersion in Nos. 18 and 19, and turned reddish brown in Nos. 15 and 16.

実施例12. No.17〜22のサンプルはラバープレスで丸棒形状に成
形された後、N2雰囲気で1800℃で常圧焼結され、外径10
φmm×長さ100Lmmに加工された。
Example 12. The samples of Nos. 17 to 22 were formed into a round bar shape by a rubber press, and then were sintered under normal pressure at 1800 ° C. in an N 2 atmosphere to have an outer diameter of 10
Processed to φmm x length 100Lmm.

焼結体相はX線回折で調査され、また1550℃のステン
レス鋼(JIS SUS−321)溶湯に30min Ar雰囲気でサンプ
ルを60rpmで回転させながら浸漬し、溶損特性が調査さ
れた。結果は表4に示した。
The sintered phase was investigated by X-ray diffraction, and the sample was immersed in a 1550 ° C. molten stainless steel (JIS SUS-321) for 30 min in an Ar atmosphere while rotating at 60 rpm, and the erosion characteristics were examined. The results are shown in Table 4.

Si6Al10O21N4、Si3Al3O31N5、Si2Al6O13を含むサンプ
ルNo.17〜21は溶損速度が小さく、耐溶損性に優れてい
た。
Samples Nos. 17 to 21 containing Si 6 Al 10 O 21 N 4 , Si 3 Al 3 O 31 N 5 , and Si 2 Al 6 O 13 had low erosion rates and were excellent in erosion resistance.

実施例13. 表3のNo.15のサンプルが実施例6と同じように水平
連鋳機のブレークリングとして使用された。
Example 13. The sample of No. 15 in Table 3 was used as a break ring of a horizontal continuous caster in the same manner as in Example 6.

操業条件はブレークリングサイズ外径210φmm、内径1
80φmm、厚さ20mmH、鋼種ステンレス鋼(SUS−304)×
0.02%Al、温度1520℃である。
Operating conditions are break ring size outer diameter 210φmm, inner diameter 1
80φmm, thickness 20mmH, steel grade stainless steel (SUS-304) ×
0.02% Al, temperature 1520 ° C.

実機操業はトラブルもなく完鋳できた。しかしながら
操業後のブレークリングは熱膨張が大きく、熱応力に弱
いせいか放射状に割れていた。また、ブレークリングの
損傷状況は、見かけの濡れ特性が悪いために凝固体の滑
りが悪く、凝固開始部付近が選択的に摩耗していた。
The operation of the actual machine was completed without any trouble. However, the break ring after operation had a large thermal expansion and was cracked radially probably because of its weakness to thermal stress. In addition, the damage of the break ring was such that the apparent wettability was poor and the solidified body slipped poorly, and the vicinity of the solidification starting portion was selectively worn.

実施例14. 表4のNo.20のサンプルが水平連鋳機のブレークリン
グとして使用された。鋼種はステンレス鋼(SUS 321)
で、他の条件は実施例6と同じである。
Example 14. The sample No. 20 in Table 4 was used as a break ring in a horizontal continuous caster. Steel type is stainless steel (SUS 321)
The other conditions are the same as in the sixth embodiment.

ブレークリングは割れもなく、また操業トラブルもな
く完鋳できた。
The break ring was completely cast without cracks and no operational troubles.

〈発明の効果〉 (1)加熱溶融体に対する耐溶損性に優れたh−BN系セ
ラミックスが常圧焼結により安価に製造できる。
<Effects of the Invention> (1) An h-BN ceramic having excellent resistance to erosion to a heated melt can be produced at low cost by normal pressure sintering.

(2)耐溶損性および耐熱衝撃性に優れたh−BN系セラ
ミックスが常圧焼結により安価に製造でき、ブレークリ
ングやセラミックモールドへの応用ができる。
(2) h-BN ceramics excellent in erosion resistance and thermal shock resistance can be manufactured at low cost by normal pressure sintering, and can be applied to break rings and ceramic molds.

(3)加熱溶融体への直接浸漬により簡易にしかも安価
に加熱溶融体の温度が測定できる。
(3) The temperature of the heated melt can be easily and inexpensively measured by direct immersion in the heated melt.

【図面の簡単な説明】[Brief description of the drawings]

第1図は耐熱衝撃性ΔTとBN量の関係図である。 第2図は耐蝕性の評価写真を図に表したもので、溶解テ
スト後のルツボの上面図と切断断面図である。 第3図〜第5図は加熱溶融体が少なくとも一部凝固する
ような部材への適応を説明した図である。 1…加熱溶融体、2…凝固体 3…水冷されたCuモールド A…適応部材が加熱溶融体と接触する部位 B…適応部材が凝固体と接触する部位 C…適応部材が水冷モールドと接触する部位 第6図は加熱溶融体温度を測定した保護管セット図を説
明している。 第7図は、溶損テスト結果を説明した図である。
FIG. 1 is a diagram showing the relationship between the thermal shock resistance ΔT and the BN amount. FIG. 2 is a photograph showing an evaluation photograph of corrosion resistance, and is a top view and a cross-sectional view of the crucible after a dissolution test. FIG. 3 to FIG. 5 are diagrams illustrating the adaptation to a member in which the heated melt solidifies at least partially. DESCRIPTION OF SYMBOLS 1 ... Heated melt, 2 ... Solidified body 3 ... Water-cooled Cu mold A ... Site where an adaptation member comes into contact with a heated melt B ... Site where an adaptation member comes into contact with a solidified body C ... Adaptive member comes into contact with a water-cooled mold Parts FIG. 6 illustrates a protection tube set diagram in which the temperature of the heated melt is measured. FIG. 7 is a diagram for explaining the results of the erosion test.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結体中に50%以上のh−BNと(AlN、Si3
N4、Al2O3、SiO2)の中から選ばれた二種以上の化合物
からなる複合化合物を1〜50%未満含むことを特徴とす
る加熱溶融体に対する耐溶損性に優れたh−BN系セラミ
ックス。
(1) More than 50% of h-BN and (AlN, Si3
An h-BN ceramic having excellent erosion resistance to a heated melt, characterized by containing less than 1 to 50% of a composite compound comprising two or more compounds selected from N4, Al2O3 and SiO2).
【請求項2】焼結体中に50%以上のh−BNと(AlN、Si3
N4、Al2O3、SiO2)の中から選ばれた二種以上の化合物
からなる複合化合物を1〜50%未満と該複合化合物以外
の(AlN、Si3N4、Al2O3、SiO2)の中から選ばれた一種
あるいは二種以上の化合物を30%未満含むことを特徴と
する加熱溶融体に対する耐溶損性に優れたh−BN系セラ
ミックス。
2. The sintered body contains at least 50% of h-BN and (AlN, Si3
N4, Al2O3, SiO2) 1 to less than 50% of a composite compound composed of two or more compounds selected from among the above-mentioned composite compounds (AlN, Si3N4, Al2O3, SiO2) An h-BN ceramic having excellent erosion resistance to a heated melt, characterized by containing less than 30% of two or more compounds.
【請求項3】上記複合化合物がAl6Si2O13、 Si2Al3O7N、Si3Al2.67O4N4、 Si3Al3O3N5、Al3O3N、Si6Al10O21N4 である請求項、に記載のセラミックス。3. The ceramic according to claim 1, wherein the composite compound is Al6Si2O13, Si2Al3O7N, Si3Al2.67O4N4, Si3Al3O3N5, Al3O3N, Si6Al10O21N4. 【請求項4】上記複合化合物がAl6Si2O13、 Si3Al3O3N5、Al3O3N、Si6Al10O21N4 であって、加熱溶融体の一部凝固した相と接する部位に
使用される請求項、に記載のセラミックス。
4. The ceramic according to claim 1, wherein the composite compound is Al6Si2O13, Si3Al3O3N5, Al3O3N, Si6Al10O21N4, and is used in a portion in contact with a partially solidified phase of the heat-melt.
【請求項5】上記複合化合物がAl6Si2O13、 Si3Al3O3N5、Al3O3N、Si6Al10O21N4 である請求項、に記載の加熱溶融体温度測定用保護
管セラミックス。
5. The protective tube ceramic for measuring a temperature of a heated melt according to claim 1, wherein the composite compound is Al6Si2O13, Si3Al3O3N5, Al3O3N, Si6Al10O21N4.
JP1289672A 1988-11-10 1989-11-06 BN ceramics with excellent erosion resistance Expired - Fee Related JP2893410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289672A JP2893410B2 (en) 1988-11-10 1989-11-06 BN ceramics with excellent erosion resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28486888 1988-11-10
JP63-284868 1988-11-10
JP1289672A JP2893410B2 (en) 1988-11-10 1989-11-06 BN ceramics with excellent erosion resistance

Publications (2)

Publication Number Publication Date
JPH03218976A JPH03218976A (en) 1991-09-26
JP2893410B2 true JP2893410B2 (en) 1999-05-24

Family

ID=26555637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289672A Expired - Fee Related JP2893410B2 (en) 1988-11-10 1989-11-06 BN ceramics with excellent erosion resistance

Country Status (1)

Country Link
JP (1) JP2893410B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336454A (en) * 1993-03-26 1994-08-09 Advanced Ceramics Corporation Ceramic composite and method
JP2002530263A (en) * 1998-11-19 2002-09-17 ベスビウス クルーシブル カンパニー Composite material
CN111548130A (en) * 2020-05-11 2020-08-18 齐鲁工业大学 h-BN @ Al is added2O3Self-lubricating ceramic cutter material of coated solid lubricant and preparation method thereof

Also Published As

Publication number Publication date
JPH03218976A (en) 1991-09-26

Similar Documents

Publication Publication Date Title
US4885264A (en) Pressure-sintered polycpystalline mixed materials with a base of hexagonal boron nitride, oxides and carbides
US4870037A (en) Prevention of Al2 O3 formation in pouring nozzles and the like
EP0554198A1 (en) Oxidation resistant superalloy castings
US5389587A (en) BN-group ceramics having excellent resistance to loss by dissolving
JP2893410B2 (en) BN ceramics with excellent erosion resistance
JPH05261507A (en) Sleeve for die casting machine
KR0134026B1 (en) Bn-group ceramic having excellent resistance to loss by dissolving
SE464116B (en) SET FOR MELTING AND CASTING BETA TITANA ALLOYS
JP3213699B2 (en) Nozzle for continuous casting of steel
JP2627473B2 (en) Long stopper for continuous casting
JPH0617268B2 (en) Refractory for continuous casting
JP4129507B2 (en) Method for producing metal-ceramic composite material
JP4020224B2 (en) Molten metal processing parts
JP3339141B2 (en) Ceramic stalk
JPS62202869A (en) Nozzle for high anticorrosion continuous casting
JPS5830265B2 (en) Refractories for continuous casting
JPH08150467A (en) Manufacture of nozzle for continuous casting
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof
JPH06322457A (en) Silicon nitride parts for melting and casting of aluminum and melting and casting equipment using the same
Hoggard et al. Prevention of Al 2 O 3 formation in pouring nozzles and the like
JPS5832554A (en) Nozzle for continuous casting
JP2758975B2 (en) Ceramic break ring
JPH05262566A (en) Refractory for horizontal continuous casting
JPH0834673A (en) Vessel for nonferrous metal
JPH0671387A (en) Silicon oxynitride composite sintered body for continuous cast braking and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees