JPS624344A - Master-slice-type semiconductor integrated circuit - Google Patents

Master-slice-type semiconductor integrated circuit

Info

Publication number
JPS624344A
JPS624344A JP14502485A JP14502485A JPS624344A JP S624344 A JPS624344 A JP S624344A JP 14502485 A JP14502485 A JP 14502485A JP 14502485 A JP14502485 A JP 14502485A JP S624344 A JPS624344 A JP S624344A
Authority
JP
Japan
Prior art keywords
wiring
basic
cell
basic cell
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14502485A
Other languages
Japanese (ja)
Inventor
Fusao Tsubokura
坪倉 富左雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14502485A priority Critical patent/JPS624344A/en
Publication of JPS624344A publication Critical patent/JPS624344A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Abstract

PURPOSE:To improve the extent of integrating of a device, by providing, in wiring regions provided between basic cells, diffused regions connected to the well potential of the basic cell and to the substrate potential source. CONSTITUTION:A plurality of basic cells 200A each consisting of two MOS transistors are provided on a semiconductor substrate so as to form cell arrays. Wiring regions 7 and 17 for providing logic circuits in future processes are provided between the cells. An N<+> type diffused region 8 and a P<+> type diffused region 18 are provided in these wiring regions 7 and 17, respectively, and they are connected to the well potential of the basic cell and the substrate potential source. It is thereby enabled to decrease the width of the basic cell 200A to the distance defined between wires 16 with polycide structure and thus to decrease the size of the basic cell. Accordingly, the extent of integration of the device can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマスタースライス型半導体集積回路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a master slice type semiconductor integrated circuit.

〔従来の技術〕[Conventional technology]

マスタースライス型半導体装置は、第3図に示すように
、複数の基本セル200Bからなるセル列201と、I
10ブロック204からなるブロック列205から主に
構成されている。以下基本セルの構造について説明する
As shown in FIG. 3, the master slice type semiconductor device includes a cell row 201 consisting of a plurality of basic cells 200B, and an I
It mainly consists of a block row 205 consisting of 10 blocks 204. The structure of the basic cell will be explained below.

第4図は第3図に示す基本セル200Bの詳細平面図で
あり、第5図は第4図に示す基本セルのB−B’断面図
である。
4 is a detailed plan view of the basic cell 200B shown in FIG. 3, and FIG. 5 is a BB' sectional view of the basic cell shown in FIG. 4.

第4図及び第5図において、101はPチャンネルMO
8)ランジスタ(以下PMU8Tと記す)領域、111
はNチャンネルMO8)ランジスタ(以下NN08Tと
記す)領域である。PMOS T領域は、ゲート電極1
02が2本又NMOS T領域もゲート電極112が2
本用意されていて、2人力NANDゲート、2人力NO
Rゲート又はインバータ回路が構成出来るようになって
いる。
4 and 5, 101 is a P channel MO
8) Transistor (hereinafter referred to as PMU8T) area, 111
is an N-channel MO8) transistor (hereinafter referred to as NN08T) region. The PMOS T region is the gate electrode 1
There are two gate electrodes 02 and two gate electrodes 112 in the NMOS T region.
We have prepared two-person NAND gate, two-person NO
It is possible to configure an R gate or an inverter circuit.

AI配線104,114は共に電源ラインで各々高電位
又は低電位(■DD)ライン、接地(GND)ラインで
ある。106はN+拡散領域でありコンタクト5により
AI配線104と接続しており、Nウェル内にvDD電
位を印加する。116はP+拡散領域であり、同様に半
導体基板(以下単に基板という〕にGND電位を印加す
る。こnらN+拡散領域106及びP+拡散領域116
は、Nウェル内及び基板の電位を安定にし、トランジス
タのバックゲー)%性及びラッチアヅプ特性の改善に寄
与してきた。
The AI wirings 104 and 114 are both power supply lines, a high potential or low potential (DD) line, and a ground (GND) line, respectively. Reference numeral 106 denotes an N+ diffusion region, which is connected to the AI wiring 104 through a contact 5, and applies a vDD potential into the N well. Reference numeral 116 denotes a P+ diffusion region, to which a GND potential is similarly applied to the semiconductor substrate (hereinafter simply referred to as the substrate).These N+ diffusion regions 106 and P+ diffusion regions 116
This stabilizes the potential in the N-well and the substrate, and has contributed to improving the backgassing characteristics and latch-up characteristics of transistors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述し九従来の基本セルは、トランジスタのソース・ド
レイン領域103,113の周囲にNウェル及び基板の
電位を供給する拡散領域を配置した構造となっている。
The nine conventional basic cells described above have a structure in which an N well and a diffusion region for supplying a substrate potential are arranged around the source/drain regions 103 and 113 of the transistor.

従って、トランジスタのソース・ドレイン領域103及
び113とNウェル及び基板の電位を供給する拡散領域
106及び116はP、N相反する拡散領域となる。
Therefore, the source/drain regions 103 and 113 of the transistor and the diffusion regions 106 and 116 that supply the potentials of the N well and substrate become P and N opposite diffusion regions.

この相反する拡散領域を作成するときには、当然マスク
材の関係でウェットエツチングに際して、サイドエツチ
ング量が大きくなるため、相反する拡散領域間には、十
分な間隔(例えば数μm)を確保する必要があり、基本
セルのサイズが大きくなってしまう欠点がめる。
When creating these conflicting diffusion regions, of course the side etching amount will be large during wet etching due to the mask material, so it is necessary to ensure a sufficient distance (for example, several μm) between the conflicting diffusion regions. , the disadvantage is that the size of the basic cell becomes large.

本発明の目的は、上記欠点を除去し、基本セルサイズを
小さくシ、集積度の向上したマスタースライス型半導体
集積回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a master slice type semiconductor integrated circuit which eliminates the above-mentioned drawbacks, has a smaller basic cell size, and has an improved degree of integration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のマスタースライス型半導体集積回路は、半導体
基板上に複数の基本セルからなるセル列を配設し、この
セル列間に設けられた配線領域を用いて前記基本セルを
接続することにより所望の論理回路を構成するマスター
スライス型半導体集積回路でろって、基本セルのフェル
ミ位源及び基板電位源rcM1続される拡散領域を前記
配線領域に設けたものである。
The master slice type semiconductor integrated circuit of the present invention arranges cell rows consisting of a plurality of basic cells on a semiconductor substrate, and connects the basic cells as desired using wiring regions provided between the cell rows. In the master slice type semiconductor integrated circuit constituting the logic circuit, a diffusion region connected to the Fermi potential source and substrate potential source rcM1 of the basic cell is provided in the wiring region.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

抗化の為のポリシリコン20Bと高融点金属のシリサイ
ド20Aの2層からなるポリサイド構造のゲート電極で
るり、ポリシリコンはP型でおる。
The gate electrode has a polycide structure consisting of two layers of polysilicon 20B for resistivity and silicide 20A of high melting point metal, and the polysilicon is of P type.

3はPMO8Tのソース・ドレイン領域、4はVDD電
位源に接続するAI配線%6はポリサイド構造の配線で
ポリシリコンはPIJで、トランジスタのゲート電極2
と同型を使用している。5はAn配線とポリサイド構造
の配線6を接続するコンタクトである。また7はAI配
線4と接続するポリサイド構造の配線でポリシリコンは
Nf!llである。8はN+型の拡散領域であり、ポリ
サイド構造の配線7とはダイレクトコンタクト9を介し
て接続されている。
3 is the source/drain region of PMO8T, 4 is the AI wiring connected to the VDD potential source, %6 is the wiring with polycide structure, the polysilicon is PIJ, and the gate electrode 2 of the transistor.
I am using the same type as . A contact 5 connects the An wiring and the wiring 6 having a polycide structure. Further, 7 is a polycide structured wiring connected to the AI wiring 4, and the polysilicon is Nf! It is ll. Reference numeral 8 denotes an N+ type diffusion region, which is connected to the wiring 7 having a polycide structure via a direct contact 9.

PMO8Tにおいては■DD電位はAn配線4t−通シ
、ポリサイド構造の配線6を通ってN+型拡散領域8に
印加される。
In PMO8T, the DD potential is applied to the N+ type diffusion region 8 through the An wiring 4t- and through the wiring 6 having a polycide structure.

NMO8T領域11においては、12はポリサイド構造
のゲート電極であり、この場合のポリシリコン20Bは
N型である。13はNMOS Tのソースドレイン領域
である。14はGND電位源に接続するAI配線、16
はポリサイド構造の配線でポリシリコンll1N型でト
ランジスタのゲート電極12と同型を使用している。1
5はAJ配線14とポリサイド構造の配線16t−接続
するコンタクトでめる。また17はAJ配線14と接続
するポリサイド構造の配線でポリシリコンはP型である
In the NMO8T region 11, 12 is a gate electrode having a polycide structure, and the polysilicon 20B in this case is of N type. 13 is a source/drain region of the NMOS T. 14 is an AI wiring connected to the GND potential source, 16
The wiring has a polycide structure and uses a polysilicon ll1N type, which is the same type as the gate electrode 12 of the transistor. 1
5 is a contact connecting the AJ wiring 14 and the polycide structure wiring 16t. Further, reference numeral 17 denotes a wiring having a polycide structure connected to the AJ wiring 14, and the polysilicon is of P type.

18はP+型拡散領域でありポリサイド構造の配線17
とはダイレクトコンタクト19t−介して接続されてい
る。
18 is a P+ type diffusion region, and wiring 17 has a polycide structure.
is connected to via a direct contact 19t.

NMO8’l”Kjrいては、GND電位uAl配線1
4管通り、更にポリサイド構造の配線16を通ってP+
型拡散領域18に印加される。
For NMO8'l''Kjr, GND potential uAl wiring 1
P+ through the 4 pipes and further through the polycide structure wiring 16
applied to the mold diffusion region 18.

このように2つのMOS)ランジスタから構成された基
本セル200Aは、第3図に示したと同様にセル列20
1を構成する。そしてこのセル列201間には校工程で
論理回路を形成する為の配線領域202が設けられてい
る。
The basic cell 200A constituted of two MOS transistors in this way is connected to the cell row 20 in the same way as shown in FIG.
1. A wiring region 202 is provided between the cell rows 201 for forming a logic circuit in the proofing process.

第1図に示したN+型拡散領域8及びP+型拡散領域1
8Fiこの配線領域202内に形成されるため、基本セ
ル200Aの幅は第2図に示したポリサイド構造の配線
16間の距離XAとなる。従って第5図に示した従来の
基本セル200BC)@XBに比べP1型拡散領域11
6の幅だけ小さくできる。
N+ type diffusion region 8 and P+ type diffusion region 1 shown in FIG.
8Fi is formed within this wiring region 202, so the width of the basic cell 200A is equal to the distance XA between the wirings 16 of the polycide structure shown in FIG. Therefore, compared to the conventional basic cell 200BC) @XB shown in FIG.
It can be made smaller by the width of 6.

尚、上記実施例においてはゲート電極や配線をポリサイ
ド構造の場合について説明したが、ポリシリコンや他の
金属で形成してもよいことは勿論である。
In the above embodiments, the gate electrodes and interconnections have a polycide structure, but of course they may be made of polysilicon or other metals.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明し友ように本発明は、基板及びウェルに
電位を固定するための拡散領域上配線領域に形成して基
本セルを小さくすることにより、集積[1−同上させ得
る効果がある。
As described in detail above, the present invention has the advantage of being able to be integrated by forming it in the wiring region over the diffusion region for fixing the potential in the substrate and the well, thereby reducing the size of the basic cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の平面図、第2図は第1図0
A−A’断面図、第3図は従来のマスタースライス型半
導体集積回路の基本セルの配置図、第4図は第3図に示
す基本セルの詳細平面図、第5図は第4図のB−B’断
面図である。 1+10i・・・・・・PMO8T領域、2,102・
・・・・・・・・・・・ゲート電極、3,103・・・
・・・ソース・ドレイン領域、4,104・・・・・・
AJ配線、5・・・・・・コンタクト、6.7・・・・
・・配線、8,106・・・・・・N+型拡−散領域、
9,19・・・・・・ダイレクトコンタクト層、10・
・・・・・分離酸化膜、11,111・・・・・・NM
U S T領域、12,112・・・・・・ゲート電極
、13 、113・・・・・・ソース・ドレイン領域、
14,114・山・・AJ配線、16.17・・・・・
・配線、18,116・・・・・・P+型拡散領域、2
00A、200B・山・・基本セル、201・・・・・
・セル列、202・・・・・・配線領塘、203・・・
・・・セル領域、204・・・・・・I10ブロック、
205・・・・・・プpツク列。 %例屋本セ・L 芽 l 図 j72  図 茅 5I!I 茅31!I 茅 4 面
FIG. 1 is a plan view of an embodiment of the present invention, and FIG. 2 is a plan view of an embodiment of the present invention.
3 is a layout diagram of a basic cell of a conventional master slice type semiconductor integrated circuit, FIG. 4 is a detailed plan view of the basic cell shown in FIG. 3, and FIG. 5 is a cross-sectional view of the basic cell shown in FIG. It is a BB' cross-sectional view. 1+10i...PMO8T area, 2,102.
......Gate electrode, 3,103...
...Source/drain region, 4,104...
AJ wiring, 5... Contact, 6.7...
...Wiring, 8,106...N+ type diffusion region,
9, 19...Direct contact layer, 10.
...isolation oxide film, 11,111...NM
UST region, 12, 112... gate electrode, 13, 113... source/drain region,
14,114・mountain・・AJ wiring, 16.17・・・・
・Wiring, 18, 116...P+ type diffusion region, 2
00A, 200B・mountain・・basic cell, 201・・・・
・Cell row, 202...Wiring area, 203...
... Cell area, 204 ... I10 block,
205... Pp tsuku row. %Example Yamotose L Bud l Figure j72 Figure Kaya 5I! I Kaya 31! I grass 4 sides

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に複数の基本セルからなるセル列を配設し
、該セル列間に設けられた配線領域を用いて前記基本セ
ルを接読することにより所望の論理回路を構成するマス
タースライス型半導体集積回路において、前記基本セル
のウェル電位源及び基板電位源に接続される拡散領域を
前記配線領域に設けたことを特徴とするマスタースライ
ス型半導体集積回路。
A master slice type semiconductor that configures a desired logic circuit by arranging cell rows consisting of a plurality of basic cells on a semiconductor substrate and directly reading the basic cells using wiring areas provided between the cell rows. A master slice type semiconductor integrated circuit, characterized in that a diffusion region connected to a well potential source and a substrate potential source of the basic cell is provided in the wiring region.
JP14502485A 1985-07-01 1985-07-01 Master-slice-type semiconductor integrated circuit Pending JPS624344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14502485A JPS624344A (en) 1985-07-01 1985-07-01 Master-slice-type semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14502485A JPS624344A (en) 1985-07-01 1985-07-01 Master-slice-type semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS624344A true JPS624344A (en) 1987-01-10

Family

ID=15375662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14502485A Pending JPS624344A (en) 1985-07-01 1985-07-01 Master-slice-type semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS624344A (en)

Similar Documents

Publication Publication Date Title
US6590802B2 (en) Semiconductor storage apparatus
JPH0516188B2 (en)
JPH0520910B2 (en)
JPH09232447A (en) Semiconductor memory
US6868001B2 (en) Semiconductor memory device
JPH0434309B2 (en)
JPH0558582B2 (en)
JP3085472B2 (en) Semiconductor integrated circuit device and method of forming the same
JPH0252428B2 (en)
JPS624344A (en) Master-slice-type semiconductor integrated circuit
JPH0258871A (en) Borderless masterslice semiconductor device
JP3075930B2 (en) Semiconductor memory device
JPH0562469B2 (en)
JPH04164371A (en) Semiconductor integrated circuit
JP2000223575A (en) Design of semiconductor device, semiconductor device and its manufacture
JPH0329187B2 (en)
JPS6271258A (en) Semiconductor integrated circuit device
JP2659970B2 (en) Semiconductor integrated circuit
JP3474266B2 (en) Single-port SRAM
JP3236745B2 (en) LSI chip layout method
JPS59150446A (en) Semiconductor integrated circuit device
JPH0828482B2 (en) Clip method in gate array master slice integrated circuit device
JPH05198680A (en) Semiconductor integrated circuit device
JPH0496370A (en) Cmos master slice
JPH0193144A (en) Cmos integrated circuit device