JPS6243138A - Ic mounting structure of liquid crystal display apparatus - Google Patents

Ic mounting structure of liquid crystal display apparatus

Info

Publication number
JPS6243138A
JPS6243138A JP18351385A JP18351385A JPS6243138A JP S6243138 A JPS6243138 A JP S6243138A JP 18351385 A JP18351385 A JP 18351385A JP 18351385 A JP18351385 A JP 18351385A JP S6243138 A JPS6243138 A JP S6243138A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
anisotropic conductive
mounting structure
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18351385A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hirasawa
平沢 克彦
Hideaki Adachi
安立 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP18351385A priority Critical patent/JPS6243138A/en
Publication of JPS6243138A publication Critical patent/JPS6243138A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • H01L23/4828Conductive organic material or pastes, e.g. conductive adhesives, inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

PURPOSE:To increase yield of large-scale liquid crystal displays in which a number of ICs are mounted and a bad IC can be easily replaced, by joining the IC with metal bumps directly to the liquid crystal display member through an anisotropic conductive resin film. CONSTITUTION:A liquid crystal driving IC 3 is provided with metal bumps 4. An anisotropic conductive resin film 1 is put on electrode terminals of a liquid crystal display member before joining the IC 3, the IC 3 is positioned with face down, and then it is pressed and heated from the back side through the use of a tool, to be joined. The anisotropic conductive resin film 1 contains thermoplastic resin and melting resin as bases. Since the heat and pressure applied from the back side of the IC are concentrated on portions under the bumps, the resin under the bumps is pushed out and metal particles in the conductive film are pressed and are made conductive, while the fixing and pressing state at the junction is kept by the bonding ability of the conductive film even after the pressure is removed.

Description

【発明の詳細な説明】 〔産業上の利用分封〕 この発明は液晶表示装置の液晶表示板に液晶駆動用IC
を実装する横1宜に関する。
[Detailed Description of the Invention] [Industrial Application Separation] This invention provides a liquid crystal driving IC for a liquid crystal display panel of a liquid crystal display device.
It is related to horizontal one-way implementation.

〔発明のa要〕[A essential point of the invention]

この発明は、大型高密式の液晶表示装置に於いて多数使
用される液晶駆動用ICの実装構造罠於いて、液晶表示
板のカラスl&根上へ異方性導電樹脂膜を介して直接駆
動用ICを接続することにより、より高@度な実装がで
きるようにするとともに、ICの交換も可能とし、又I
Cを実装する為の基板も不要とするなど従来より低コス
トで実装できるようにしたものである。
This invention is a mounting structure for liquid crystal driving ICs that are used in large numbers in large-scale high-density liquid crystal display devices. By connecting the
It also eliminates the need for a board to mount C, making it possible to mount it at a lower cost than before.

〔従来の技内〕[Traditional technique]

従来、第2図に示すようにフレーFノプル基根12上に
異方性導[樹脂膜14を載置して、Mパット9を待つI
C’5’jiフェースダウンで位1合わせしてカロ圧加
熱接合する考え方があった。この際、接合に余分な樹脂
は′M箔配線11(厚き18μ鶴位)の隙間に入り、樹
脂に含1れる金属粒子14はMハツト下方のものは銅箔
ハターンとの間で圧接導通がなされその他の部分では導
通に寄与しない。父、−也加圧加熱接合したICの浮き
上りを防止する為ICとIC周辺部のフレキ/プル基板
とをおおうようにエポキシ等の硬1ヒ后の硬度の高い樹
脂で封止することが必要である。
Conventionally, as shown in FIG.
There was a concept of aligning C'5'ji face down and performing Calorie pressure heat bonding. At this time, excess resin for bonding enters the gap between the M foil wiring 11 (about 18 μm thick), and the metal particles 14 contained in the resin are press-conducted with the copper foil pattern below the M wire. The other parts do not contribute to conduction. In order to prevent the IC that has been pressure-heated and bonded from lifting up, it is necessary to seal the IC and the flexible/pull board around the IC with a hard resin such as epoxy. is necessary.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし従来の異方性導送樹脂膜を用いたIC接続法では
標単的なMパット付きのICを使用し、異方性導を楕脂
の逃げ場金鋼箔パターンの厚み段差(18μrT%)に
求めていたため液晶表示体を嘴52するガラス基板上に
直接この方法でICを接続することは雌しかった。なん
となればガラス基板上の配線はネサ偵(透明1!噌)又
はスパッタ等による金属膜であり厚さは1μm程度であ
る為、加圧時に樹脂が十分に逃げずMパット部への1這
抵抗が不安定となる。父、第2図の如くフレキシブル基
板上にこの方法でICを接続したとしても接合の信頼性
という点で非常に不満足なことが判明した。つまり、湛
湿匿サイクルテストとか熱衝堪テストという通常α品表
示装(を等の携帯機器が使用させる環境に近い偏度範囲
(−20℃〜8 QC)の加速テストでも従来のワイヤ
ーボンド、 T A B。
However, in the conventional IC connection method using an anisotropic conductive resin film, an IC with a standard M pad is used. Therefore, it was desirable to connect the IC directly to the glass substrate on which the liquid crystal display is mounted in this manner. The reason for this is that the wiring on the glass substrate is made of a metal film made by Nessa (transparent 1!) or sputtering, and the thickness is about 1 μm, so the resin does not escape sufficiently when pressurized, and the first line to the M pad part does not flow. Resistance becomes unstable. It turned out that even if an IC was connected using this method on a flexible substrate as shown in FIG. 2, the reliability of the bonding was extremely unsatisfactory. In other words, even in accelerated tests such as immersion cycle tests and thermal shock resistance tests in the polarity range (-20°C to 8 QC) that is close to the environment in which mobile devices such as α-product display devices are used, conventional wire bond, T A B.

FOFといつ次接合法に比べて信頼度が一段低い。Reliability is lower than FOF and continuous bonding methods.

この理由はICを加圧補強する為の封止樹脂とフレキノ
プル基板の樹力旨分がIC(シリコンチップ〕と熱膨張
係数が!4なる為周囲温度の変化により引張り圧縮応力
を発生させMパット部の異方性導電樹脂の接合力をゆる
壕せる為と推定される。次にこれからの液晶表示体への
駆初工Cの実装として要求される特性として、パネルが
大型rヒすることで比例的に増す駆動用ICを取り換え
可能な実装1遺とすることがあげられる。この点で異方
性導電樹脂@を介して接続する方法はもしICが不良と
iつた鳴合封1E前り段l!fならば有機溶剤で溶かし
て、4鳩にTC’i除去でき良い方法である。しかしな
がら、大型パネルでは駆動用ICが項数1固表示体端に
並ぶので、谷々J) ICに必景な電源及びは気的信号
はフェースダウン接合したICの下をクロス配線・7)
々口くに通したいが、図2のμ口〈異方性導送樹脂膜漠
14がIC羊ツブ3によって十分1c基板’tlll配
線に圧層されているとその下を、市した電源等のクロス
配@はたとえIC側にAIパット1極がなくとも周辺の
基板配線やIC面上の配線への漏れvLj北、漏れ1号
の、”ぬれが出て来る。この為図2の方法ではICを取
り付けた外側の部分でvL隙、信号線を別途多1−配線
するしかなく液晶表示体のコスト丁ツブになふという欠
点がある。
The reason for this is that the sealing resin used to pressurize and reinforce the IC and the flexible board have a thermal expansion coefficient of !4 compared to the IC (silicon chip), which generates tensile and compressive stress due to changes in ambient temperature. It is presumed that this is to loosen the bonding force of the anisotropic conductive resin in the part.Next, as the characteristics required for the implementation of the initial construction C in future liquid crystal display bodies, as the panel becomes larger One way to do this is to replace the proportionally increasing number of drive ICs with a replaceable package.In this respect, the method of connecting via anisotropic conductive resin is a method that can be used in the event that the IC is defective. In the case of stage l!f, it is a good method to dissolve it with an organic solvent and remove TC'i in four parts.However, in large panels, the driving IC is lined up at the edge of the solid display, so it is difficult to remove the TC'i. The power supply and electrical signals that are essential to the process are cross-wired under the face-down bonded IC.7)
I would like to explain this to you in detail, but if the anisotropic conductive resin membrane 14 in Figure 2 is fully layered on the 1C board's wiring by the IC tube 3, then the power supply etc. Even if there is no AI pad 1 pole on the IC side, cross wiring will cause leakage to the surrounding board wiring and the wiring on the IC surface, and leakage No. 1 will occur.For this reason, the method in Figure 2 There is a drawback that the cost of the liquid crystal display is reduced because the VL gap and signal lines must be separately wired in the outer part where the IC is mounted.

そこでこの発明は従来○このような欠点を解決子るため
、ガラス面上の配)線の如き段差の少ない配線にも異方
性Am膜を介して接続でき、しかもICTをクロス配線
として1吏用でき、又温度変化に対しても十分なイ言頓
性を持つ液晶表示体へのIC実装嘴債2得ること金目的
としている。
Therefore, this invention solves the above-mentioned drawbacks of the conventional technology.In order to solve these problems, it is possible to connect wiring with few steps such as wiring on a glass surface through an anisotropic Am film, and to connect ICT to cross wiring. The object of the present invention is to obtain an IC mounting beak 2 for a liquid crystal display that can be used for various applications and has sufficient insensitivity to temperature changes.

〔問題点全解決するための手段〕[Means to solve all problems]

上記間4点を嘆決するためにこの発明は、液晶駆C中I
Cに金属バンプを設け、微小な金属粒子を含む異方性導
電樹脂膜を介して咳ICを液晶表示板のIC用4子に接
続するようにするとともに封止用の51¥盾として光填
削等で熱膨張係数を低く押えたエポキシ系イ刃脂を用い
、又該液晶駆動用ICを復rり個ルベて谷々のIC及び
異方性導′ci樹脂膜の下に1!源、信号gtをクロス
配線状に通した。
In order to resolve the above four points, the present invention provides
A metal bump is provided on C, and the cough IC is connected to the four IC chips on the liquid crystal display board via an anisotropic conductive resin film containing minute metal particles, and a light filler is used as a 51 yen shield for sealing. Using epoxy resin with a low coefficient of thermal expansion by grinding, etc., the liquid crystal driving IC was placed under the IC and the anisotropic conductive resin film. The source and signal gt were passed through in a cross wiring pattern.

〔作用〕[Effect]

上記のように1成された1仮晶表示体へ2) I C実
装構造は、異方性導電樹脂膜より厚い金属・・ンブ?I
C上に設けている為、フェースダウンボンディング時の
刀口圧加;^が有効に接合部のみに作用して信頼性の、
シロい接合が得られるばかりでなく、IC面と異方性導
(樹脂膜との間は少し隙間ができる位の非常に弱い接触
状昨となる為、異方性導電力式の原理よりし7ても工C
及び異方性導を樹脂膜の下のクロス配線からの漏れ!!
!流、漏れ信号等の心配はない。又、温度変ずヒに対す
る接合部の信頼性も、基板側が硬質のガラスであり、封
止樹脂として充填剤で熱膨張係数を押えたエボ:Pノ樹
脂を用いている為向上させる事ができるのである。
2) The IC mounting structure is made of metal that is thicker than the anisotropic conductive resin film. I
Since it is provided on C, the knife edge pressure applied during face-down bonding effectively acts only on the joint, increasing reliability.
Not only can a tight bond be obtained, but there is also a very weak contact between the IC surface and the anisotropic conductive (resin film) with a slight gap, which is better than the principle of the anisotropic conductive force method. 7 but also C
And the anisotropic conductor leaks from the cross wiring under the resin film! !
! There is no need to worry about leakage or leakage signals. In addition, the reliability of the joint against temperature fluctuations can be improved because the substrate side is made of hard glass and the sealing resin is EVO:P resin whose coefficient of thermal expansion is suppressed with a filler. It is.

〔実施例〕〔Example〕

以下にこの発明の実施例を図面にもとづいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図において、液晶表示体のガラス基板5にメタル配
線6及び6′が形成されている。メタル配豐は例λば下
地がクロム(12μ蟻程度で上層が金(15μ惰又はニ
ッケル1μ鴨といった構成である。液晶駆動用IC3に
は金バンプ4が設かられており鳩さば50μS〜40μ
mである。又、バンプとしてはニッケル又は銅でも良い
。但し異方性導電樹脂膜1の中に含まれる金属粒子2が
半田の場合には金・・ンプが接合導通性に優れる。異方
性4!樹脂膜2は厚ざが〕くンプより低い20μ鴨であ
り、IC接合に先立ち液晶表示体のVt極熾子上に4H
1LIC’+”?フェースダウンで位If&わせして後
ツールで丁C裏面よりカロ圧(約数kg/チップ〕、加
P(150℃前后)して接合する。異方性導電樹脂膜2
は熱可塑性樹脂と@)壺性樹脂がベースになっており、
TC裏面から伝λられた縞と加圧力がバンプの下に集中
する為バンプ下の樹脂は押し出され導電膜中の金践粒子
がカロ圧され導通がとれると同時に導WlIの接着性に
より加圧を収り除いた後も接合部の固定710圧状態は
保持される。
In FIG. 1, metal wirings 6 and 6' are formed on a glass substrate 5 of a liquid crystal display. For example, the metal arrangement is such that the base layer is chromium (about 12 μm) and the upper layer is gold (15 μm or 1 μm of nickel).The LCD driving IC 3 is provided with gold bumps 4, and the thickness is about 50 μS to 40 μS.
It is m. Further, the bumps may be made of nickel or copper. However, when the metal particles 2 contained in the anisotropic conductive resin film 1 are solder, gold bumps have excellent bonding conductivity. Anisotropy 4! The resin film 2 has a thickness of 20 μm, which is lower than the thickness of the bump, and is coated with 4H on the Vt electrode of the liquid crystal display prior to IC bonding.
1 LIC'+"? Align it face down and then use a tool to apply Calorhe pressure (approximately several kg/chip) from the back side of the chip (approximately several kg/chip) and P (before and after 150°C) to join. Anisotropic conductive resin film 2
is based on thermoplastic resin and pot resin.
Since the stripes and pressure transmitted from the back side of the TC are concentrated under the bumps, the resin under the bumps is pushed out, and the metal particles in the conductive film are pressurized and conduction is established. At the same time, pressure is applied due to the adhesive properties of the conductive WlI. Even after the pressure has subsided, the fixed 710 pressure state of the joint is maintained.

特に金バンプに対して該樹脂膜中の金m粒子が半田であ
り、ガラス基板上のメタル配線が全文ぽニッケルの如く
半田接合性が良好な場合にはICのボンディングgL度
は金属間結合の強度に近づく。
In particular, when the gold particles in the resin film are solder to the gold bump, and the metal wiring on the glass substrate is made of nickel and has good solder bonding properties, the bonding degree of the IC is Approaching intensity.

父、前述した通り金にバンプ4は異方性導電樹脂膜1よ
りもjソ、い為ICの能動面とガラス基板5の間にある
異方性4!樹脂膜はほとんど加圧されず、従ってIC面
下を通る電源、信号等のクロス配線61同志あるいはク
ロス配り6′とIC能動面とは互いに良好な絶縁性が保
たれる。次に本実装構遺をより信頼性あるものとするた
めにシリカ専の無機質充填剤を従来比1.5〜2.0倍
混合したエポキシ系樹脂7によりIC千ツブ全体をおお
うように封止する。この封止は熱#張係数が低く、硬化
後のばばが硬い樹力旨を使用することと封止のペース基
板がWe張係砿の低いガラスであることが相俟って異方
性導!膜がICを固層する力を保持し、偏度変化による
芯力発生にも十分対抗できる。次に第5図によって大型
液晶表示体に多数個の液晶駆動用ICを実装する場合を
説明すると、液晶表示体のガラス基板22上にメタル配
線24 、25 。
Father, as mentioned above, the bumps 4 on the gold are more sensitive than the anisotropic conductive resin film 1, so there is anisotropy 4 between the active surface of the IC and the glass substrate 5! The resin film is hardly pressurized, so that good insulation is maintained between the cross wires 61 for power supply, signals, etc. passing under the IC surface, or between the cross wires 6' and the IC active surface. Next, in order to make this mounting structure more reliable, the entire IC tube was sealed with epoxy resin 7 containing 1.5 to 2.0 times more silica-specific inorganic filler than the conventional one. do. This sealing has a low thermal tensile coefficient, and the use of hard wood after curing and the fact that the sealing substrate is glass with a low We tension bonding property combine to provide anisotropic conductivity. ! The film maintains the force to solidify the IC, and can sufficiently resist core force generated by changes in eccentricity. Next, referring to FIG. 5, a case will be explained in which a large number of liquid crystal driving ICs are mounted on a large liquid crystal display.Metal wirings 24 and 25 are mounted on a glass substrate 22 of the liquid crystal display.

26.27等が形成さnており、異方性導シ樹脂142
5 、25’を配設して後工021 、21’を各々フ
ェースダウンで接合する。するとψJえば、各ICへの
電韓供f@線24、あるいは信号線25゜26はあたか
もクロス配線のような効果を発揮し、本発明を用いてI
Cの下を通すことができなければ樹脂絶縁層を付加した
多層配線としなけ几ばならないところを非′Kに安い基
板で町とするものである。又、IC下を利用している為
配線スペース的にも有利である。
26, 27 etc. are formed, and the anisotropic conductive resin 142
5 and 25' are arranged, and the post-processed parts 021 and 21' are respectively joined face down. Then, if ψJ is used, the electric wire f@ wire 24 or the signal line 25゜26 to each IC exhibits an effect similar to cross wiring, and using the present invention, the I
If it is not possible to pass the wire under C, a multi-layer wiring with a resin insulating layer added would be required, but instead it is made up of an extremely cheap board. Also, since it uses the area under the IC, it is advantageous in terms of wiring space.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、金1バンプ付きのIC
を8方性導電樹脂膜を介して直接液晶表示体に接合する
ようにしているので、 1)不良IC金谷易に交換することができ多数のICを
実装する大型版晶衣示装喧の歩哨りを向上することが可
能。
As explained above, this invention is an IC with one gold bump.
Since it is directly bonded to the liquid crystal display via an octagonal conductive resin film, 1) It is possible to replace a defective IC with a large-sized crystal display sentinel that mounts a large number of ICs. It is possible to improve the

2)各ICへのt #i、信号ラインをIC下?通すク
ロス配線とすることができるので余分な配線基板や、多
1−配線が下髪でコストダウンがはかれる。
2) t #i to each IC, signal line under IC? Since it is possible to use cross wiring to pass through, costs can be reduced by eliminating unnecessary wiring boards and multi-layer wiring.

肩 液晶表示装置梶の小型1ヒ、綜合実装費の低下、信
頼性の向上がはかれる。
The size of the liquid crystal display device will be smaller, the overall mounting cost will be reduced, and the reliability will be improved.

号の顕4な効果がある。There are four significant effects of this issue.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる液晶表示装【iのfc実実装
逍の断面図、第2図は従来のIC実装構造の断面図、第
3図はこの発明にかかる液晶表示製置のIC実装構造の
実施例金示す平面図である。 1.15.23・・・異方性導電樹脂膜!樹脂膜5 、
21 ・・・・・・・・・・・・ IC4・・・・・・
・・・・・・・・・・・・・・・金4ハ7プ5.22・
・・・・・・・・・・・ガラス基板7.8・・・・・・
・・・・・・・・・封止樹脂壜   上
Fig. 1 is a sectional view of an actual FC mounting structure of a liquid crystal display device [i] according to the present invention, Fig. 2 is a sectional view of a conventional IC mounting structure, and Fig. 3 is an IC mounting of a liquid crystal display device according to the present invention. FIG. 3 is a plan view showing an example of the structure. 1.15.23...Anisotropic conductive resin film! resin film 5,
21 ・・・・・・・・・・・・ IC4・・・・・・
・・・・・・・・・・・・・・・Friday 4ha 7p 5.22・
......Glass substrate 7.8...
・・・・・・・・・Sealing resin bottle top

Claims (4)

【特許請求の範囲】[Claims] (1)液晶表示板と該液晶の駆動用ICとからなる液晶
表示装置に於いて、該ICの接続用電極部に金属バンプ
を設け、該液晶表示板と該ICとを該液晶表示板のIC
接続端子部に配設した微小な金属粒子を含む異方性導電
樹脂膜を介して、該ICをフェースダウンボンディング
することによりICの固着と電気的接続を行なうことを
特徴とする液晶表示装置のIC実装構造。
(1) In a liquid crystal display device consisting of a liquid crystal display plate and an IC for driving the liquid crystal, metal bumps are provided on the connection electrodes of the IC, and the liquid crystal display plate and the IC are connected to each other on the liquid crystal display plate. IC
A liquid crystal display device characterized in that the IC is fixed and electrically connected by face-down bonding the IC through an anisotropic conductive resin film containing minute metal particles disposed in the connection terminal portion. IC mounting structure.
(2)ICの金属バンプは金又はニッケルで構成されて
おり、該異方性導電樹脂膜に含まれる金属粒子が半田で
あることを特徴とする特許請求の範囲第1項記載の液晶
表示装置のIC実装構造。
(2) The liquid crystal display device according to claim 1, wherein the metal bumps of the IC are made of gold or nickel, and the metal particles contained in the anisotropic conductive resin film are solder. IC mounting structure.
(3)ICをフェースダウンボンディングして後、樹脂
でおおいICの固着を補完することを特徴とする特許請
求の範囲第1項記載の液晶表示装置のIC実装構造。
(3) The IC mounting structure for a liquid crystal display device according to claim 1, wherein after face-down bonding the IC, the IC is covered with a resin to supplement the adhesion of the IC.
(4)液晶駆動用ICを複数個液晶表示板端に、それぞ
れ異方性導電膜を介してフェースダウンボンディングし
、各々のICに必要な電源及び信号線等については各々
のIC及び異方性導電膜の下を通過させて電源、信号の
供給及び連結を行なうことを特徴とする特許請求の範囲
第1項記載の液晶表示装置のIC実装構造。
(4) Multiple liquid crystal drive ICs are bonded face-down to the edge of the liquid crystal display board through anisotropic conductive films, and the power supply and signal lines necessary for each IC are bonded to each IC and anisotropic conductive film. The IC mounting structure of a liquid crystal display device according to claim 1, wherein the IC mounting structure of a liquid crystal display device according to claim 1, is passed under a conductive film to supply and connect power and signals.
JP18351385A 1985-08-21 1985-08-21 Ic mounting structure of liquid crystal display apparatus Pending JPS6243138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18351385A JPS6243138A (en) 1985-08-21 1985-08-21 Ic mounting structure of liquid crystal display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18351385A JPS6243138A (en) 1985-08-21 1985-08-21 Ic mounting structure of liquid crystal display apparatus

Publications (1)

Publication Number Publication Date
JPS6243138A true JPS6243138A (en) 1987-02-25

Family

ID=16137154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18351385A Pending JPS6243138A (en) 1985-08-21 1985-08-21 Ic mounting structure of liquid crystal display apparatus

Country Status (1)

Country Link
JP (1) JPS6243138A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411235A (en) * 1987-07-03 1989-01-13 Matsushita Electric Ind Co Ltd Semiconductor element
EP0303256A2 (en) * 1987-08-13 1989-02-15 Shin-Etsu Polymer Co., Ltd. A method for electrically connecting IC chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby
JPH0210316A (en) * 1988-06-29 1990-01-16 Sumitomo Bakelite Co Ltd Liquid crystal display device
JPH0255336A (en) * 1988-08-22 1990-02-23 Matsushita Electric Ind Co Ltd Production of liquid crystal display panel
JPH0383019A (en) * 1989-08-28 1991-04-09 Matsushita Electric Ind Co Ltd Liquid crystal display device
EP0803906A2 (en) * 1996-04-26 1997-10-29 Sharp Kabushiki Kaisha Tape carrier package and liquid crystal display device
US5846853A (en) * 1991-12-11 1998-12-08 Mitsubishi Denki Kabushiki Kaisha Process for bonding circuit substrates using conductive particles and back side exposure
EP1026744A1 (en) * 1999-01-14 2000-08-09 Sony Corporation Video display and manufacturing method therefor
US6531323B1 (en) 1999-01-28 2003-03-11 Fuji Photo Film Co., Ltd. Agglutination assay method and element in a dry system
JP2013065031A (en) * 2012-11-13 2013-04-11 Mitsubishi Electric Corp Display device and ic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735051B2 (en) * 1973-08-16 1982-07-27
JPS60116157A (en) * 1983-11-29 1985-06-22 Matsushita Electric Ind Co Ltd Semiconductor device
JPS61161729A (en) * 1985-01-10 1986-07-22 Sony Chem Kk Integrated circuit device
JPS61279139A (en) * 1985-06-04 1986-12-09 Nec Corp Hybrid integrated circuit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735051B2 (en) * 1973-08-16 1982-07-27
JPS60116157A (en) * 1983-11-29 1985-06-22 Matsushita Electric Ind Co Ltd Semiconductor device
JPS61161729A (en) * 1985-01-10 1986-07-22 Sony Chem Kk Integrated circuit device
JPS61279139A (en) * 1985-06-04 1986-12-09 Nec Corp Hybrid integrated circuit device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411235A (en) * 1987-07-03 1989-01-13 Matsushita Electric Ind Co Ltd Semiconductor element
EP0303256A2 (en) * 1987-08-13 1989-02-15 Shin-Etsu Polymer Co., Ltd. A method for electrically connecting IC chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby
JPH0210316A (en) * 1988-06-29 1990-01-16 Sumitomo Bakelite Co Ltd Liquid crystal display device
JPH0255336A (en) * 1988-08-22 1990-02-23 Matsushita Electric Ind Co Ltd Production of liquid crystal display panel
JPH0383019A (en) * 1989-08-28 1991-04-09 Matsushita Electric Ind Co Ltd Liquid crystal display device
US5846853A (en) * 1991-12-11 1998-12-08 Mitsubishi Denki Kabushiki Kaisha Process for bonding circuit substrates using conductive particles and back side exposure
EP0803906A2 (en) * 1996-04-26 1997-10-29 Sharp Kabushiki Kaisha Tape carrier package and liquid crystal display device
EP0803906A3 (en) * 1996-04-26 1998-12-16 Sharp Kabushiki Kaisha Tape carrier package and liquid crystal display device
EP1026744A1 (en) * 1999-01-14 2000-08-09 Sony Corporation Video display and manufacturing method therefor
US6531323B1 (en) 1999-01-28 2003-03-11 Fuji Photo Film Co., Ltd. Agglutination assay method and element in a dry system
JP2013065031A (en) * 2012-11-13 2013-04-11 Mitsubishi Electric Corp Display device and ic

Similar Documents

Publication Publication Date Title
JPS63119552A (en) Lsi chip
JPS6243138A (en) Ic mounting structure of liquid crystal display apparatus
JPH0430542A (en) Electronic device
JPS60129729A (en) Liquid crystal display device
US6498636B1 (en) Apparatus and method for substantially stress-free electrical connection to a liquid crystal display
JP3340779B2 (en) Semiconductor device
JPH0990394A (en) Method for connecting external wiring of liquid crystal display panel
KR100614564B1 (en) A junction method of a chip bump and a substrate pad using underfill resin and supersonic
JPH10144727A (en) Mounting of semiconductor element and electronic device mounted with semiconductor element
JPH0775177B2 (en) Junction structure
TW476122B (en) Assembling method of non-transparent flat display panel
JPH079138Y2 (en) Structure of wiring pattern of LCD panel
JPH09127536A (en) Liquid crystal display device
JPS6347943A (en) Method for connecting electronic component
KR100877264B1 (en) Semiconductor device having electrode for low pressure bonding and Semiconductor package using the same
JPS60154234A (en) Manufacture of display device
JPS6360540A (en) Manufacture of connecting terminal
KR940004991B1 (en) Device and manufacturing method for tab semiconductor
TW546514B (en) Liquid crystal display module structure
JPH05100238A (en) Packaging structure for liquid crystal panel
JPH09191026A (en) Liquid crystal display
JP2001077154A (en) Mounting method and mounting structure of semiconductor chip, and chip-integrated liquid crystal display module
Liu et al. Reliability of thermo-setting anisotropically conductive adhesives in Chip on Glass application
JP3213117B2 (en) Liquid crystal device
JPH04147221A (en) Liquid crystal display device