JPS6242741A - Production of catalyst for removing nitrogen oxide - Google Patents

Production of catalyst for removing nitrogen oxide

Info

Publication number
JPS6242741A
JPS6242741A JP60180439A JP18043985A JPS6242741A JP S6242741 A JPS6242741 A JP S6242741A JP 60180439 A JP60180439 A JP 60180439A JP 18043985 A JP18043985 A JP 18043985A JP S6242741 A JPS6242741 A JP S6242741A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
compd
nitrogen oxides
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60180439A
Other languages
Japanese (ja)
Inventor
Toshikuni Sera
世良 俊邦
Shigeaki Mitsuoka
光岡 薫明
Toru Seto
徹 瀬戸
Kozo Iida
耕三 飯田
Hiroshi Suzumura
洋 鈴村
Yoshiaki Obayashi
良昭 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60180439A priority Critical patent/JPS6242741A/en
Priority to EP86730123A priority patent/EP0214085B1/en
Priority to AT86730123T priority patent/ATE74533T1/en
Priority to DE8686730123T priority patent/DE3684739D1/en
Priority to US06/898,135 priority patent/US4725572A/en
Publication of JPS6242741A publication Critical patent/JPS6242741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled nitrogen oxide removing catalyst having large surface area and excellent mechanical strength and heat resistance by adding fine-particle silica and a tungsten compd. and/or molybdenum compd. to colloidal orthotitanic acid and baking the mixture. CONSTITUTION:Orthotitanic acid is brought into sol and 5-50wt%, based on the titanium oxide, fine-particle silica and a tungsten compd. and/or a molybdenum compd. are added to the sol. Then the mixture is baked at <=800 deg.C. The tungsten compd. and the molybdenum compd. are the oxides or the precursors forming oxides on baking, the baked product is the titanium oxide of an ungrown anatase type crystal and is preferably used as the carrier of catalysts. Besides, a metallic oxide having catalytic activity on removing nitrogen oxides can be deposited on the baked product and those catalysts maintain high activity for a long period. Furthermore, the catalysts are practically and industrially excellent since the oxidation degree of sulfur dioxide is extremely low.

Description

【発明の詳細な説明】 (座業上の利用分野) 本発明は窒素酸化物除去用触媒の製造方法に関し、詳し
くは、窒素酸化物除去の際に二酸化イオウを酸化させな
い上記触媒の製造方法に関する。
Detailed Description of the Invention (Field of Sedentary Application) The present invention relates to a method for producing a catalyst for removing nitrogen oxides, and more particularly, to a method for producing the above-mentioned catalyst that does not oxidize sulfur dioxide during nitrogen oxide removal. .

(従来の技術) 酸化チタン焼成品を担体又は触媒として用いることは既
に知らnているが、担体又は触媒機能に重要な影6?与
える表面積、結晶形、機械的強度、耐熱性等はその製造
方法や添加物質の有無、種類、量等によって異なる九め
、従来より洩々の製造方法が提案されている・ 例えば、オルソチタン酸を焼成すれば、他の要因もある
が、一般に担体や触媒として好ましい結晶形であるアナ
ターゼ型酸化チタンを与えることも既に知られている。
(Prior Art) It is already known that titanium oxide calcined products are used as carriers or catalysts, but are there any important implications for carrier or catalyst functions? The surface area, crystal shape, mechanical strength, heat resistance, etc. to be given vary depending on the manufacturing method and the presence, type, amount, etc. of additives. Many manufacturing methods have been proposed in the past. For example, orthotitanic acid. Although there are other factors involved, it is already known that anatase-type titanium oxide can be obtained by calcining titanium oxide, which is a crystalline form that is generally preferred as a carrier or catalyst.

(発明が解決しようとする問題点) しかしながら、オルソチタン酸にシリカ等の添加剤を添
加して焼成する方法によnば、組成の均一な混合物を得
ることが困難であり、特に添加剤をオルソチタン酸に添
加する場合には、オルソチタン酸がゲル状であるため、
添加剤上オルソチタン酸に均一に分散させることができ
ず、従って、高性能の担体や触媒全得ることができない
(Problems to be Solved by the Invention) However, according to the method of adding additives such as silica to orthotitanic acid and firing, it is difficult to obtain a mixture with a uniform composition. When adding to orthotitanic acid, since orthotitanic acid is in a gel form,
The additive cannot be uniformly dispersed in the orthotitanic acid, and therefore a high performance support or catalyst cannot be obtained.

本発明は、こnらの問題点全解決し、従来にない優nた
窒素酸化物除去用触媒を製造する方法を提案するもので
ある。
The present invention solves all of these problems and proposes a method for producing a catalyst for removing nitrogen oxides that is unprecedented and excellent.

(問題点を解決する念めの手段) 本発明者らは上記製造方法につき鋭意研究した結果、添
加剤として微粒子ケイ酸と共に、タングステン化合物及
び/又はモリブデン化合物を用い、且つ、これらをゾル
化したオルソチタン酸に存在させて焼成することにより
、オルソチタン酸の焼成時に酸化チタンの結晶成長を抑
えて、未成長のアナターゼ型結晶に留まらしめ、かくし
て、表面積が大きく、機械的強度及び耐熱性の改善さn
た焼成品を得ることができることを見出し、これをその
まま用いることにより、あるいはこれを担体としである
種の金属酸化物を担持させれば担体における各酸化物と
これら金属酸化物の相乗作用により、従来にない改善さ
れ次窒素酸化物除去用触媒を得ることができること全見
出して、本発明に至つ九ものである。
(A precautionary measure to solve the problem) As a result of intensive research on the above manufacturing method, the present inventors used a tungsten compound and/or a molybdenum compound as well as particulate silicic acid as additives, and turned them into a sol. By calcination in the presence of orthotitanic acid, the crystal growth of titanium oxide is suppressed during the calcination of orthotitanic acid, and the crystal growth of titanium oxide remains in the ungrown anatase type crystal. improved n
By using this product as it is, or by using it as a carrier and supporting a certain metal oxide, the synergistic effect of each oxide on the carrier and these metal oxides will result in a fired product. The present invention was based on the discovery that a catalyst for removing nitrogen oxides can be obtained with an improvement never seen before.

すなわち本発明は、 (1)  (a)微粒子ケイ酸と、(b)タングステン
化合物及びモリブデン化付物から選ばれる少なくとも1
種の化合物を含有するゾル化したオルソチタンl!It
:焼成することを特徴とする窒素酸化物除去用触媒の製
造方法 (2)  (a)微粒子ケイ酸と、(1+1タングステ
ン化合物及びモリブデン化合物から選ばnる少なくとも
181の化合物全含有するゾル化したオルソチタン酸全
焼成し、得られた焼成品に窒素酸化物除去用触媒活性成
分を担持させることを特徴とする窒素酸化物除去用触媒
の製造方法に関するものである。
That is, the present invention provides at least one compound selected from (1) (a) fine-particle silicic acid, and (b) a tungsten compound and a molybdenized adduct.
Solized orthotitanium containing species compounds! It
: Manufacturing method of a catalyst for removing nitrogen oxides (2) (a) A sol-formed ortho-containing compound containing at least 181 compounds selected from 1+1 tungsten compounds and molybdenum compounds. The present invention relates to a method for producing a catalyst for removing nitrogen oxides, which comprises completely firing titanic acid and supporting an active component of the catalyst for removing nitrogen oxides on the fired product obtained.

本発明において用いる微粒子ケイ酸とは、ホワイトカー
ボンの別名でも知らnでおり、比表面積が非常に大きい
点に一つの特徴t−有する。
The fine particle silicic acid used in the present invention is also known as white carbon, and has one characteristic of having a very large specific surface area.

これら微粒子ケイ酸は湿式法、乾式法いずれの方法によ
って製造されたものでもよく、本発明においては通常の
市販品上用いることができる。
These fine particles of silicic acid may be produced by either a wet method or a dry method, and in the present invention, ordinary commercially available products can be used.

本発明において好適に用いることができる微粒子ケイ酸
の市販品としては、例えば、商品名、ファインシール(
徳山曹達(株)製)、ハイシル、バルカシル、カープレ
ックス(j4野義製薬(株)製)、ニップシール、トク
シール(徳山M R■製)、ビタシール、シロイド、ア
エロジル(日本アエロジル(株)製)等全学げることか
できるが、こnらの中でも特に平均粒径が10〜50m
μ、比表面積が200〜300 m”/ S’であるも
のが好ましく用いらnる。
Commercially available fine particle silicic acid that can be suitably used in the present invention includes, for example, the trade name Fine Seal (
(manufactured by Tokuyama Soda Co., Ltd.), Hisil, Vulcasil, Carplex (manufactured by J4 Nogi Pharmaceutical Co., Ltd.), Nip Seal, Toxil (manufactured by Tokuyama M R ■), Vita Seal, Siloid, Aerosil (manufactured by Nippon Aerosil Co., Ltd.), etc. You can learn all about it, but among these, especially those with an average particle size of 10 to 50 m
μ and a specific surface area of 200 to 300 m”/S′ are preferably used.

また、本発明において用いるタングステン化合物は、酸
化タングステン及び焼成によって酸化タングステンを形
成する前駆体であり、この前駆体として、例えば、パラ
タングステン酸アンモニウム等を挙げることができる。
Further, the tungsten compound used in the present invention is tungsten oxide and a precursor that forms tungsten oxide by firing, and examples of this precursor include ammonium paratungstate.

また−同様に、本発明において用いるモリブデン化合物
は、酸化モリブデン及び焼成によって酸化モリブデンを
与える前駆体であって、その前駆体として、例えば、モ
リブデン酸アンモニウム等全挙げることができる。
Similarly, the molybdenum compound used in the present invention is molybdenum oxide and a precursor that gives molybdenum oxide by calcination, and examples of the precursor include ammonium molybdate.

本発明において、微粒子ケイ酸、タングステン化合物及
び又はモリブデン化合物の添加量は、その合計量が酸化
チタンに基づいて5〜50重量%であり、5重量%よす
も少ないときは、オルソチタン酸の焼成時においてその
結晶成長上押える効果が乏しく、焼成品におけるこれら
添加物の添加による窒素酸化物除去用触媒又は担体の性
能の改善の効果が小さく、−万、50重量Sを越えると
きは、ゾル化したオルソチタン酸との混合物がゲル化す
るため、均一な混合が困難となると共に、得られる焼成
品において、相対的に酸化チタンの含有量か少なくなっ
て、こnをそのまま窒素酸化物除去用触媒あるいは担体
として用いるとき、酸化チタンに基づく触媒及び担体の
性能が低下するので好ましくない。
In the present invention, the amount of fine particle silicic acid, tungsten compound, and/or molybdenum compound added is 5 to 50% by weight based on titanium oxide, and if it is less than 5% by weight, the amount of orthotitanic acid added is 5% to 50% by weight based on titanium oxide. The effect of suppressing the crystal growth during firing is poor, and the addition of these additives in the fired product has little effect on improving the performance of the catalyst or support for removing nitrogen oxides. Because the mixture with oxidized orthotitanic acid gels, it becomes difficult to mix uniformly, and the resulting fired product has a relatively low content of titanium oxide, which is then used for nitrogen oxide removal. When used as a catalyst or carrier, the performance of the catalyst and carrier based on titanium oxide is degraded, which is not preferred.

また、本発明において、微粒子ケイ酸と、タングステン
化合物及び/又はモリブデン化合物との混合割合は、微
粒子ケイ酸1に対し、重量比でタングステン化合物及び
/又はモリブデン化合物2〜5とすることが好ましい。
Further, in the present invention, the mixing ratio of the fine particle silicic acid and the tungsten compound and/or molybdenum compound is preferably 2 to 5 by weight of the fine particle silicic acid to 1 particulate silicic acid.

この割合からすると、担体改質効果としてのケイ酸は酸
化チタンに対して1〜25重量%の含有量となる。1重
量%以下だとケイ酸添加の効果が薄くなるし、25重量
−以上になると、強度低下や活性阻害を招くこととなり
、好ましくない。
Based on this ratio, the content of silicic acid as a carrier-modifying effect is 1 to 25% by weight based on titanium oxide. If it is less than 1% by weight, the effect of adding silicic acid will be weakened, and if it is more than 25% by weight, it will lead to a decrease in strength and inhibition of activity, which is not preferable.

本発明においては、好ましくは、オルソチタン酸全ゾル
化し、これに微粒子ケイ酸と、上記タングステン化合物
及びモリブデン化合物から選ばれる少なくと%1種の化
合物を添加し、混合した後、焼成する。また、オルソチ
タン酸に微粒子ケイ酸と、上記タングステン化合物及び
モリブデン化合物から選ばれる少なくとも1種の化合物
を添加した後、オルソチタン酸をゾル化し、混合しても
よい。いずれにしても、一部又は全部をゾル化したオル
ソチタン酸中に微粒子ケイ酸と、上記化合物全存在させ
ることが必要であり、これによって、これら添加剤tオ
ルソチタン酸と均一に混合することができる@ゾル化の
方法は特に制限されず、例えば、オルソチタン酸を水洗
して、硫酸根全大部分除去し念後、塩酸又は硝rI1.
を加えて一部又は全部をゾル化する。又は、特に水洗に
より(ii!醒根を除かない場合は、オルソチタン酸に
塩化バリr’)ム、塩化ストロンチウム、塩化カルシウ
ム等のアルカリ土類金属の塩化物、若しくは硝酸バリウ
ム、硝酸ストロンチウム、硝酸カルシウム等のアルカリ
土類金属の硝酸基金添加し、硫酸根を水不溶性のバリウ
ム塩として固定しつつ、反応混合物全一部又は全8全ゾ
ル化する。これらのゾル化剤の添加量しよ反応混合物t
どの程度ゾル化するかによって、適宜に選ばれる。尚、
オルソチタン酸ゾルは、pH1〜2以上でゲル化、する
ため、こnにタングステン化合物及び/又はモリブデン
化合物を十分均一に混合し念後であれば、必要に応じて
ゲル化しても差支えない。
In the present invention, preferably, the entire orthotitanic acid is made into a sol, and after adding fine particles of silicic acid and at least one compound selected from the above-mentioned tungsten compounds and molybdenum compounds and mixing, the sol is fired. Alternatively, after adding fine particles of silicic acid and at least one compound selected from the above-mentioned tungsten compounds and molybdenum compounds to orthotitanic acid, the orthotitanic acid may be sol-formed and mixed. In any case, it is necessary to have the fine particles of silicic acid and all of the above compounds present in the orthotitanic acid that has been partially or completely solified, so that these additives can be uniformly mixed with the orthotitanic acid. There are no particular restrictions on the method of sol formation, for example, washing orthotitanic acid with water to remove most of all sulfate groups, and then washing with hydrochloric acid or nitric acid.
is added to make part or all of it into a sol. Or, especially by washing with water (ii! If the radish root is not removed, use barium chloride in orthotitanic acid), alkaline earth metal chlorides such as mum, strontium chloride, calcium chloride, or barium nitrate, strontium nitrate, nitric acid. A nitric acid group containing an alkaline earth metal such as calcium is added to fix the sulfate group as a water-insoluble barium salt, and the reaction mixture is partially or completely solified. The amount of these sol-forming agents added to the reaction mixture
It is selected appropriately depending on the degree of solization. still,
Since the orthotitanic acid sol gels at a pH of 1 to 2 or more, it may be gelled if necessary, as long as the tungsten compound and/or molybdenum compound is sufficiently uniformly mixed therewith.

このようにして得らnたオルソチタン酸と、微粒子ケイ
散と、上記タングステン化合物及び/又はモリブデン化
合物との混合物は、乾燥し、次いで、800℃以下、好
ましくは、700〜200℃の温度で焼成し、粉砕子n
ば、粉状の焼成品を得る。この場合、本発明によれば、
オルソチタン酸を用いるため、焼gVCおいて触媒や担
体として好ましいアナターゼ型醗化チタンになる。
The mixture of the orthotitanic acid thus obtained, the fine silica powder, and the tungsten compound and/or molybdenum compound is dried and then heated at a temperature of 800°C or less, preferably 700 to 200°C. Baked and crushed
In this case, a powdered baked product is obtained. In this case, according to the invention:
Since orthotitanic acid is used, it becomes anatase type titanium fluoride, which is preferable as a catalyst or carrier in baked gVC.

尚、焼成品をハニカム状等の所定の形状として触媒又は
担体に用いる場合、上記混合物を乾燥して得られる乾燥
品を従来より知られている任意の方法、例えば、押出成
形、転動造粒等の方法により成形した後に焼成してもよ
い。また、上記の粉末状焼成品を所要形状に成形した後
、再び焼成することもできる。この場合は、所要形状に
成形した後、再び800℃以下、好ましくは700〜2
00℃の温度で焼成すればよい。
In addition, when the fired product is used as a catalyst or a carrier in a predetermined shape such as a honeycomb shape, the dried product obtained by drying the above mixture may be processed by any conventionally known method, such as extrusion molding or rolling granulation. It may be baked after being molded by a method such as the above. Further, the powdered fired product described above can be molded into a desired shape and then fired again. In this case, after molding into the desired shape, the temperature is again lower than 800°C, preferably 700-200°C.
It may be fired at a temperature of 00°C.

このようにして、本発明によnば、粉末状又は成形品と
して酸化チタン焼成品を得ることができる。
In this manner, according to the present invention, a fired titanium oxide product can be obtained in the form of a powder or a molded product.

尚、本発明においては、上記いずnの場合においても、
粉末状の乾燥品又は焼成品に新たにオルソチタン酸ゾル
又はゲル全存在させて所要形状に成形し、こrtt焼成
すれば、機械的強度、気孔率、比表面積、細孔分布等の
諸物性全向上させることができると共に、焼成時の収縮
″4全抑えることかできる。かかる場合のオルソチタン
酸ゾル又はゲルの添加量は酸化チタン換算で成形品重量
の5〜50重量%が適当である。
In addition, in the present invention, in any of the above n cases,
If a powdered dried product or fired product is fully present with orthotitanic acid sol or gel, molded into the desired shape, and fired, various physical properties such as mechanical strength, porosity, specific surface area, and pore distribution can be improved. In addition, it is possible to completely reduce shrinkage during firing by ``4''. In such a case, the appropriate amount of orthotitanic acid sol or gel added is 5 to 50% by weight of the weight of the molded product in terms of titanium oxide. .

ま九、成形に際して、従来より知られているANの成形
助剤、例えば、アビセル、メチルセルロース等を使用し
てもよいのは勿論である。
Of course, during molding, conventionally known molding aids for AN, such as Avicel and methyl cellulose, may also be used.

尚、本発明において焼成の雰囲気は何ら制限されず、空
気、燃焼ガス、不活性気体等のいずれであってもよい。
In the present invention, the firing atmosphere is not limited at all, and may be air, combustion gas, inert gas, or the like.

以上のようにして、本発明により得らnる酸化チタン焼
成品は、理論により何ら限定されるものではないが、微
粒子ケイ酸と、タングステン化合物及び/又はモリブデ
ン化合物の存在により、オルソチタン酸の焼成時に酸化
チタンの結晶成長が抑制され、未成長のアナターゼ型結
晶で留まっているため、得らnる焼成品は表面積が大き
く、且つ、機械的強度及び耐熱性にもすぐれており、そ
のまま触媒として、あるいは触媒担体として好適に用い
ることができる。
As described above, the fired titanium oxide product obtained according to the present invention is not limited by any theory, but due to the presence of fine particles of silicic acid and a tungsten compound and/or a molybdenum compound, the titanium oxide fired product is made of orthotitanic acid. Since the crystal growth of titanium oxide is suppressed during firing and remains as an ungrown anatase crystal, the resulting fired product has a large surface area, excellent mechanical strength and heat resistance, and can be used as a catalyst as it is. It can be suitably used as a catalyst carrier or as a catalyst carrier.

本発明により得られる焼成品が未成長のアナターゼで留
まっていることは、第1図に示し友ように、そのX線ス
ペクトルが低く、且つ、幅広いピーク上水すことによっ
てvigされ、−万、顔料用のアナターゼ型酸化チタン
の場合は、そのX線スペクトル全第2図に示すように、
結晶が極めてよく成長じているため、そのピークが高く
、且つ鋭い。
The fact that the calcined product obtained according to the present invention remains ungrown anatase is shown by the fact that its X-ray spectrum has low and broad peaks, as shown in Figure 1. In the case of anatase titanium oxide for pigments, its complete X-ray spectrum is as shown in Figure 2.
Because the crystals have grown extremely well, the peak is high and sharp.

以上のようにして得られる酸化チタン焼成品を担体とし
て用いる場合は、この押体に従来よジ窒素散化物除去の
触媒活性を有することが知らnている酸化物上担持させ
れば、焼成凸金構成する酸化物との予期しない相乗作用
により、アンモニアを還元剤とする窒X酸化物の選択的
接触還元活性にすぐれた窒素酸化物除去用触媒を得るこ
とかできる。
When using the fired titanium oxide product obtained as described above as a carrier, if the pressed body is supported on an oxide that is known to have catalytic activity for removing dinitrogen dispersions, the fired product can be fired. Due to the unexpected synergistic effect with the gold-containing oxide, it is possible to obtain a catalyst for removing nitrogen oxides with excellent selective catalytic reduction activity of nitrogen x oxides using ammonia as a reducing agent.

本発明においては、窒素酸化物除去用触媒活性成分とし
てバナジウム、タングステン、モリブデン、銅、鉄、ク
ロム、マンガン及びセリウムから選ばれる少なくとも1
種の元素の酸化物を担持させる。酸化チタン焼戊品に上
記酸化物を担持させる方法は、従来より触媒の調製に用
いられている任意の方法によることができ、例えば、所
定形状に成形した焼成品に前記酸化物又はその前駆体を
含有する溶液又は分散液全含浸若しくはコーティングし
た後、必要に応じて所定温度に焼成すnばよい。ま九、
勿論、粉末状焼成品と前記溶液又は分散液と混練し、所
要形状に成形り、7’?:、後、必要に応じて所定温度
に焼成することによっても、本発明の窒素酸化物除去用
触媒1得ることができる。
In the present invention, at least one catalyst active component for nitrogen oxide removal is selected from vanadium, tungsten, molybdenum, copper, iron, chromium, manganese, and cerium.
Support oxides of certain elements. The method for supporting the above-mentioned oxide on the fired titanium oxide product can be any method conventionally used for the preparation of catalysts. After being completely impregnated with or coated with a solution or dispersion containing , it may be fired to a predetermined temperature as necessary. Maku,
Of course, the powdered fired product is kneaded with the solution or dispersion, molded into a desired shape, and then 7'? After that, the catalyst 1 for removing nitrogen oxides of the present invention can also be obtained by calcining at a predetermined temperature as necessary.

本発明の触媒により窒素酸化物を含有する温合ガスから
窒素酸化物を除去するには、その混合ガスが含有する窒
素酸化物のα5〜5倍モル、好マレ<は1〜2倍モルの
アンモニアを加え、これを触媒全充填した反応層全通過
させる。反応層は移動層、流動層、固定層等、いずれも
使用できる。本発明の触媒は微粒子ケイ酸を含有して耐
熱性にすぐれる九め、反応温度は200〜600℃の範
囲にわtつてよいが、好ましくは500〜500℃の範
囲である。また、ガスの空間速度は1.[100〜10
0.OOOhr−’ 、好ましくはAo 00〜5 Q
、000hr−1の範囲である。
In order to remove nitrogen oxides from a hot gas containing nitrogen oxides using the catalyst of the present invention, α is 5 to 5 times the mole of nitrogen oxides contained in the mixed gas, and α is 1 to 2 times the mole of nitrogen oxides contained in the mixed gas. Ammonia is added and passed through the reaction bed completely filled with the catalyst. Any of a moving bed, a fluidized bed, a fixed bed, etc. can be used as the reaction bed. The catalyst of the present invention contains fine particles of silicic acid and has excellent heat resistance.The reaction temperature may range from 200 to 600°C, but is preferably from 500 to 500°C. Also, the space velocity of the gas is 1. [100-10
0. OOOhr-', preferably Ao 00-5 Q
, 000hr-1.

本発明による触媒は窒素酸化物を含有する任意のガス処
理に用いることができるか、特に、ボイラ排ガス、即ち
、100〜1000 ppmの窒素酸化物、主として一
酸化窒素の他に、200〜2000 ppmのイオウ酸
化物、主として二酸化イオウ、1〜10容t%の酸素、
5〜20容暢チの炭酸ガス、5〜20容量チの水蒸気が
含有されている排ガス中の窒素酸化物金除去するのに好
適に用いることができる。
The catalyst according to the invention can be used for the treatment of any gas containing nitrogen oxides, in particular boiler exhaust gases, i.e. 100-1000 ppm nitrogen oxides, mainly nitrogen monoxide, as well as 200-2000 ppm. sulfur oxides, mainly sulfur dioxide, 1 to 10 volume t% oxygen,
It can be suitably used to remove nitrogen oxides and gold from exhaust gas containing 5 to 20 volumes of carbon dioxide gas and 5 to 20 volumes of water vapor.

(作用) 本発明の方法は、以上のように、ゾル化し九オルソチタ
ン酸に微粒子ケイ酸と、タングステン化合物及びモリブ
デン化合物から選ばれる少なくとも1種金存在させるの
で、得らnる混合物において、これら化合物が均一に分
散されており、しかも、これ全焼成するとき、酸化チタ
ンが上記化合物の作用により未成長のアナターゼ型結晶
に留まっているため、得られる焼成品は表面積が大きく
、且つ、その機械的強度及び耐熱性が顕著に改善されて
いる。従って、かかる焼成品自体からなる窒素酸化物除
去用触媒、あるいはこれに窒素酸化物除去の触媒活性1
!−有する金属散化物全担持させて得らnる窒素酸化物
除去用触媒においては、発達の抑制さ′n之アナターゼ
型酸化チタンと微粒子ケイ酸と酸化タングステン及び/
又は酸化モリブデンとの相乗作用により、あるいはこれ
らと上記金属酸化物との相乗作用により、厳しい使用条
件の下においても長期間にわたって高い窒素酸化物金去
活性を保持するのみならず、二酸化イオウの三酸化イオ
ウへの酸化率が極めて低いので、実用的、工業的な窒素
酸化物除去用触媒としてすぐnでいる。
(Function) As described above, in the method of the present invention, fine particle silicic acid and at least one metal selected from a tungsten compound and a molybdenum compound are present in the sol-formed nine-orthotitanic acid. The compound is uniformly dispersed, and when it is completely fired, the titanium oxide remains as an ungrown anatase crystal due to the action of the compound, so the fired product has a large surface area and is easy to use with the machine. The mechanical strength and heat resistance are significantly improved. Therefore, a catalyst for removing nitrogen oxides consisting of such a fired product itself, or a catalyst with a catalytic activity of 1 for removing nitrogen oxides.
! - In the catalyst for removing nitrogen oxides obtained by fully supporting metal dispersions, the growth of anatase-type titanium oxide, particulate silicic acid, tungsten oxide and
Due to the synergistic action with molybdenum oxide or molybdenum oxide, or the synergistic action between these and the above metal oxides, it not only maintains high nitrogen oxide removal activity for a long period of time even under severe usage conditions, but also has a high nitrogen oxide removing activity. Since the oxidation rate to sulfur oxide is extremely low, it is suitable as a practical and industrial catalyst for removing nitrogen oxides.

(実施例) 以下に実施例を挙げて本発明全説明するが、本発明はこ
nら実施例により何ら制限さnるものではない。
(Examples) The present invention will be fully explained below with reference to Examples, but the present invention is not limited in any way by these Examples.

実施例1 硫酸法による酸化チタンの製造工程より得られる硫酸チ
タン溶液tアンモニア水で中和加水分解してオルソチタ
ン酸を得、こnt−酸化チタンとして1曙取り出し、こ
nに塩化バリウムロ水和物) 80 ff加えてゾル化
し、十分に攪拌、混合した。次いで、微粒子ケイ酸ファ
インシール(徳山曹達(株)製)2009と、パラタン
グステン酸アンモニウム110f全含有する10チメチ
ル7ミン溶液250I7!/全添加し、十分に撹拌、混
合し念後、100℃で12時間乾燥し、更に500℃の
温度で3時間焼成した。この焼成品全サンプルミルによ
り粉砕し、粒度を調整した。こnに適量の水に加え、混
練し九後、押出機により格子状成形物に押出成形し、常
温から100℃に加熱して乾燥し、次いで、500℃で
3時間焼成して、焼成品t゛得た。この焼成品全そのま
ま窒素酸化物除去用触媒として使用し念。
Example 1 A titanium sulfate solution obtained from the titanium oxide production process using the sulfuric acid method was neutralized and hydrolyzed with aqueous ammonia to obtain orthotitanic acid, which was extracted as nt-titanium oxide and then barium chloride hydrated. 80 ff was added to form a sol, and thoroughly stirred and mixed. Next, fine particle silicic acid Fine Seal (manufactured by Tokuyama Soda Co., Ltd.) 2009 and 10-thimethyl-7mine solution 250I7! containing all ammonium paratungstate 110f! / all added, thoroughly stirred and mixed, dried at 100°C for 12 hours, and further calcined at 500°C for 3 hours. All samples of this fired product were ground using a mill to adjust the particle size. Add an appropriate amount of water to this mixture, knead it, extrude it into a lattice-shaped molded product using an extruder, heat it from room temperature to 100°C to dry it, and then bake it at 500°C for 3 hours to obtain a baked product. I got it. This calcined product should be used in its entirety as a catalyst for removing nitrogen oxides.

このようにして得られた焼成品のX線スペクトル全第1
図に示す。ピークが低く、且つ、幅広いのでアナターゼ
型結晶が未成長のままで留まっていることが明らかであ
る。
The entire X-ray spectrum of the fired product thus obtained is
As shown in the figure. Since the peak is low and wide, it is clear that the anatase crystal remains ungrown.

尚、X線スペクトルは理学電機(株)製X線回折装置R
AD−It At用いて測定し、その測定条件は次のと
おりである。
The X-ray spectrum was obtained using an X-ray diffractometer R manufactured by Rigaku Denki Co., Ltd.
The measurement was performed using AD-It At, and the measurement conditions were as follows.

走査速尻      1°/4分 フルスケール    1000 cps時定数    
   1秒 チャート速度    101111/分ターゲハ   
  銅 管電圧        50 Kv 管電流       101!IA 尚、比較のために、市販の顔料アナターゼ酸化チタンの
X線スペクトル全第2図に示す。測定条件は上記におい
て、フルスケールが4000cpsである以外は上記と
同じである。
Scanning speed tail 1°/4 minutes full scale 1000 cps time constant
1 second chart speed 101111/min targetha
Copper tube voltage 50 Kv Tube current 101! IA For comparison, the complete X-ray spectrum of the commercially available pigment anatase titanium oxide is shown in Figure 2. The measurement conditions are the same as above except that the full scale is 4000 cps.

実施例2 実施例1において、パラタングステン酸アンモニウムに
代えて、モリブデン酸アンモニウム120 ff含有す
るメチルアミン溶液50〇−を用いた以外は実施例1と
全く同様にして焼成品を得念。これをそのままで窒素酸
化物除去用触媒として使用した。
Example 2 A baked product was prepared in the same manner as in Example 1, except that in place of ammonium paratungstate, 500 ml of methylamine solution containing 120 ff of ammonium molybdate was used. This was used as it was as a catalyst for removing nitrogen oxides.

実施例3 実施例1で得た粉末状焼成品1確に、パラタングステン
酸アンモニウム1102及びメタバナジン酸アンモニウ
ム10fi含有する10%メチルアミン溶液250mj
i添加し、混練した後、押出機により格子状成形物に押
出底形し、常温から100℃に加熱して乾燥し、次いで
、500℃で3時間焼成し、酸化タングステン及び酸化
バナジウム全担持させた窒素酸化物除去用触媒全行た。
Example 3 One part of the powdered calcined product obtained in Example 1 was mixed with 250mj of a 10% methylamine solution containing 1102m of ammonium paratungstate and 10f of ammonium metavanadate.
After adding i and kneading, it was extruded into a lattice-shaped molded product using an extruder, dried by heating from room temperature to 100°C, and then fired at 500°C for 3 hours to completely support tungsten oxide and vanadium oxide. All catalysts for removing nitrogen oxides were used.

実施例4 実施例2で得た粉末状焼成品を実施例3と同様に処理し
て、酸化タングステン及び酸化バナジウム全担持させた
窒素酸化物除去用触媒全行たO 実施例5 実施例1で得た粉末状焼成品1にgに、醒化マンガンe
57!量チ担持させた以外は実施例1と全く同様にして
、格子状成形物の焼成品を得た。
Example 4 The powdered calcined product obtained in Example 2 was treated in the same manner as in Example 3, and a nitrogen oxide removal catalyst fully supported on tungsten oxide and vanadium oxide was prepared. To the obtained powdered fired product 1g, aroused manganese e
57! A fired lattice-shaped product was obtained in exactly the same manner as in Example 1, except that the amount of lattice-shaped molded product was loaded.

これ?fflffl素線化物除去用触媒使用した。this? fffffl wire compound removal catalyst was used.

実施例6 実施例2で得た粉末状焼成品11C4jに、酸化マンガ
ンで5重量%全担持させ友以外、実施例2と全く同様な
方法にて格子状成形物の焼成品を・得九。
Example 6 A fired lattice shaped product was obtained in exactly the same manner as in Example 2 except that 5% by weight of manganese oxide was completely supported on the powdered fired product 11C4j obtained in Example 2.

比較例1 実施例1において、塩化バリウムによるオルソチタン酸
のゾル化を行なわない以外は、実施例1と全く同様にし
て、焼成品を得た。これ全そのまま窒素酸化物除去用触
媒として用いた。
Comparative Example 1 A fired product was obtained in exactly the same manner as in Example 1, except that orthotitanic acid was not sol-formed using barium chloride. This whole product was used as it was as a catalyst for removing nitrogen oxides.

比較例2 実施例Iにおいて、塩化バリウムによるオルソチタン酸
のゾル化全行なわず、且つ、実施例1においてパラタン
グステン酸アンモニウムに代えて、モリブデン酸アンモ
ニウム120 ff含有するメチルアミン溶液300d
t−用い九以外は実施例1と全く同様にして焼成品1得
た。
Comparative Example 2 In Example I, no solization of orthotitanic acid with barium chloride was carried out, and in place of ammonium paratungstate in Example 1, 300 d of methylamine solution containing 120 ff of ammonium molybdate was used.
A baked product 1 was obtained in the same manner as in Example 1 except that t-9 was used.

これをそのままで窒素酸化物除去用触媒として使用した
This was used as it was as a catalyst for removing nitrogen oxides.

比較例5 比較例1において得た焼成品IKgに、メタバナジン酸
アンモニウム101F及びシュウ酸259を含有する水
溶液全顎え、十分に混線後、押出成形し、100℃で2
時間W、燥した後、500℃で6時間焼成して、窒素酸
化物除去用触媒を得九〇 比較例4 比較例2において得た焼成品1Kgに、メタバナジン酸
アンモニウム10f及びシュウ酸25ft−含有する水
溶液を加え、十分に混練後、押出成形し、100℃で2
時間乾燥した後、500℃で3時間焼成して、窒素酸化
物除去用触媒を得た。
Comparative Example 5 Ikg of the fired product obtained in Comparative Example 1 was thoroughly mixed with an aqueous solution containing 101F of ammonium metavanadate and 259 oxalic acid, extruded, and then heated at 100°C for 2 hours.
After drying for time W, it was calcined at 500°C for 6 hours to obtain a catalyst for removing nitrogen oxides.90 Comparative Example 4 1 kg of the calcined product obtained in Comparative Example 2 contained 10 f of ammonium metavanadate and 25 ft of oxalic acid. Add an aqueous solution of
After drying for an hour, it was calcined at 500° C. for 3 hours to obtain a catalyst for removing nitrogen oxides.

比較例5 実施例1と同じオルンチタン酸全酸化チタンとしてIK
9取り出し、塩化バリウム(二水和物)80fi添加し
、ゾル化し、十分に攪拌、混合し念後、100℃で12
時間乾燥し、更に500℃で3時間焼成した。これ全粉
砕し、粒度調整し友。これに微粒子ケイ酸ファインシー
ル(徳山曹−j!(株)製)200Fと、パラタングス
テン酸アンモニウム110f’i含有する10チメチル
アミン溶液250tjQ添加し、十分に攪拌、混合した
後、適量の水を加え、混練し、押出機により格子状成形
物に押出成形し、常温から100℃に加熱して乾燥し、
次いで、500℃で5時間焼成し、窒素酸化物除去用触
媒を得た。
Comparative Example 5 Same as Example 1, IK as orthotitanic acid total titanium oxide
9 Take out, add 80fi of barium chloride (dihydrate), make a sol, stir thoroughly, mix well, and heat at 100℃ for 12 hours.
It was dried for an hour and then fired at 500°C for 3 hours. All of this is crushed and the particle size is adjusted. To this were added 200F fine-particle silicic acid Fine Seal (manufactured by Tokuyamaso-j! Co., Ltd.) and 250tjQ of a 10-thimethylamine solution containing 110f'i of ammonium paratungstate, stirred and mixed thoroughly, and then added an appropriate amount of water. , kneaded, extruded into a lattice-shaped molded product using an extruder, heated from room temperature to 100°C and dried,
Next, it was calcined at 500° C. for 5 hours to obtain a catalyst for removing nitrogen oxides.

比較例6 比較例5において得た酸化チタン焼成品を用いた以外は
、比較例3と全く同様にして、窒素酸化物除去用触媒全
得た。
Comparative Example 6 A catalyst for removing nitrogen oxides was obtained in exactly the same manner as in Comparative Example 3, except that the fired titanium oxide product obtained in Comparative Example 5 was used.

比較例7 比較例1で得られ九焼成品に酸化マンガン全5重量%担
持させた以外、比較例5と全く同様にして、窒素酸化物
除去用触媒全得た。
Comparative Example 7 A catalyst for removing nitrogen oxides was obtained in exactly the same manner as in Comparative Example 5, except that the fired product obtained in Comparative Example 1 supported a total of 5% by weight of manganese oxide.

比較例8 比較例2で得られ九焼成品に酸化マンガンを5重量%担
持させた以外、比較例3と全く同様にして、窒素酸化物
除去用触媒を得た。
Comparative Example 8 A catalyst for removing nitrogen oxides was obtained in exactly the same manner as in Comparative Example 3, except that the fired product obtained in Comparative Example 2 supported 5% by weight of manganese oxide.

以上の実施例及び比較例で得た各窒素酸化物除去用触媒
に、窒素酸化物200 ppm、アンモニア200 p
pm、水蒸気10チ、二酸化炭素12チ、二酸化イオウ
800ppm、残部i*77為らなる紐取の混合ガスを
温度580℃、空間速度5000 hr””にて接触さ
せ、窒素酸化物(NOり除去率及び二酸化イオウ(S0
2)酸化i’を測定した。結果を第2表に示す。尚、窒
素酸化物除去率(%)及び二酸化イオウ酸化率(%)F
f、それぞn次式により求めた。
Each of the nitrogen oxide removal catalysts obtained in the above examples and comparative examples contained 200 ppm of nitrogen oxides and 200 p of ammonia.
pm, water vapor 10 cm, carbon dioxide 12 cm, sulfur dioxide 800 ppm, balance i * 77 was brought into contact at a temperature of 580°C and a space velocity of 5000 hr to remove nitrogen oxides (NO). rate and sulfur dioxide (S0
2) Oxidation i' was measured. The results are shown in Table 2. In addition, nitrogen oxide removal rate (%) and sulfur dioxide oxidation rate (%) F
f, each calculated using an n-th equation.

窒素酸化物除去率(チ)=(触媒屑入ロHox濃度−触
媒層出口NOx9匹)/′(触媒層入口NOx濃度)X
100 二酸化イオウ酸化ME (%) = (触媒層人口SO
2濃度−触媒層出口so2濃度)/(触媒層入口(So
、 +80. )濃度)X100(発明の効果) 以上の結果から明らかなように、本発明の触媒によnば
、窒素酸化物除去″4が高い一万、二酸化イオウ酸化率
は低く、ガス混合物中の窒素散化物を除去する際に三酸
化イオウの生成に基づく不利益を除くことができる。
Nitrogen oxide removal rate (CH) = (Catalyst debris inlet Hox concentration - catalyst layer outlet NOx 9)/' (catalyst layer inlet NOx concentration)
100 Sulfur dioxide oxidation ME (%) = (Catalyst layer population SO
2 concentration - catalyst layer outlet so2 concentration)/(catalyst layer inlet (So2 concentration)
, +80. ) Concentration) Disadvantages due to the formation of sulfur trioxide during dispersion removal can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により得られる酸化チタン焼成品
のX線スペクトル上水し、第2図は比較のための顔料酸
化チタンのX線スペクトル上水す。 復代理人  内 1)  明 復代理人  萩 卯 亮 − 復代理人  ′t 西 篤 夫 第1図 2θ
FIG. 1 shows an X-ray spectrum of a fired titanium oxide product obtained by the method of the present invention, and FIG. 2 shows an X-ray spectrum of a titanium oxide pigment for comparison. Sub-agent 1) Meifuku agent Ryo Hagi − Sub-agent ′t Atsuo Nishi Figure 1 2θ

Claims (2)

【特許請求の範囲】[Claims] (1)(a)微粒子ケイ酸と、(b)タングステン化合
物及びモリブデン化合物から選ばれる少なくとも1種の
化合物を含有するゾル化したオルソチタン酸を焼成する
ことを特徴とする窒素酸化物除去用触媒の製造方法。
(1) A nitrogen oxide removal catalyst characterized by firing a sol-formed orthotitanic acid containing (a) fine particle silicic acid and (b) at least one compound selected from a tungsten compound and a molybdenum compound. manufacturing method.
(2)(a)微粒子ケイ酸と、(b)タングステン化合
物及びモリブデン化合物から選ばれる少なくとも1種の
化合物を含有するゾル化したオルソチタン酸を焼成し、
得られた焼成品に窒素酸化物除去用触媒活性成分を担持
させることを特徴とする窒素酸化物除去用触媒の製造方
法。
(2) Calculating a sol-formed orthotitanic acid containing at least one compound selected from (a) fine-particle silicic acid and (b) a tungsten compound and a molybdenum compound;
A method for producing a catalyst for removing nitrogen oxides, which comprises making the obtained fired product support an active component of the catalyst for removing nitrogen oxides.
JP60180439A 1985-08-19 1985-08-19 Production of catalyst for removing nitrogen oxide Pending JPS6242741A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60180439A JPS6242741A (en) 1985-08-19 1985-08-19 Production of catalyst for removing nitrogen oxide
EP86730123A EP0214085B1 (en) 1985-08-19 1986-08-05 Process for preparing a catalyst for removing nitrogen oxides
AT86730123T ATE74533T1 (en) 1985-08-19 1986-08-05 PROCESS FOR RECYCLING A CATALYST FOR REMOVAL OF NITROGEN OXIDES.
DE8686730123T DE3684739D1 (en) 1985-08-19 1986-08-05 METHOD FOR TREATING A CATALYST FOR REMOVING NITROGEN OXIDES.
US06/898,135 US4725572A (en) 1985-08-19 1986-08-19 Process for preparing a catalyst for removing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60180439A JPS6242741A (en) 1985-08-19 1985-08-19 Production of catalyst for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPS6242741A true JPS6242741A (en) 1987-02-24

Family

ID=16083255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60180439A Pending JPS6242741A (en) 1985-08-19 1985-08-19 Production of catalyst for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPS6242741A (en)

Similar Documents

Publication Publication Date Title
US4916107A (en) Catalyst for the selective reduction of nitrogen oxides with ammonia
US4725572A (en) Process for preparing a catalyst for removing nitrogen oxides
JPS6123019B2 (en)
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
JPH0114808B2 (en)
JPH0114809B2 (en)
JPH0114810B2 (en)
JPH0114807B2 (en)
CN113908837B (en) MOFs derivative denitration catalyst, preparation method and application thereof
JPS6029288B2 (en) Catalyst manufacturing method and denitrification method
JPS6242741A (en) Production of catalyst for removing nitrogen oxide
JPS6242744A (en) Carrier of catalyst for removing nitrogen oxide and production of catalyst using said carrier
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
JPH0568401B2 (en)
JPH044251B2 (en)
JPS6242742A (en) Production of catalyst for removing nitrogen oxide
JPH01317545A (en) Preparation of denitrification catalyst
JPS63310767A (en) Production of titanium oxide calcined product
JPH0420663B2 (en)
JPH0442328B2 (en)
JP2000237588A (en) Production of catalyst carrier for purifying waste gas
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JP2743336B2 (en) Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas
JPH0559847B2 (en)