JPS6242583A - Nonlinear resistance element and manufacture of same - Google Patents

Nonlinear resistance element and manufacture of same

Info

Publication number
JPS6242583A
JPS6242583A JP60182074A JP18207485A JPS6242583A JP S6242583 A JPS6242583 A JP S6242583A JP 60182074 A JP60182074 A JP 60182074A JP 18207485 A JP18207485 A JP 18207485A JP S6242583 A JPS6242583 A JP S6242583A
Authority
JP
Japan
Prior art keywords
thin film
resistance element
nonlinear resistance
electrode
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60182074A
Other languages
Japanese (ja)
Inventor
Kazuyuki Okano
和之 岡野
Hiroshi Hasegawa
洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60182074A priority Critical patent/JPS6242583A/en
Publication of JPS6242583A publication Critical patent/JPS6242583A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To obtain a nonlinear resistance element which has a conductive switching function by attaching a lead electrode to a thin film of a mixture of manganese oxide and iron oxide. CONSTITUTION:2-Ethyl hexanates, which are easy to be formed into a film, are employed as compounds of Mn and Fe and these compounds are applied by spin-coating with methyl isobutyl keton as solvent to the surface of a glass substrate 1 on which an Au thin film electrode 4 is provided. The substrate is then baked in the atmosphere at 550 deg.C for 60min to form an active layer 2 and an Au thin film electrode 3 is formed. With this constitution, a nonlinear resistance element, which has switching characteristics with a threshold voltage Vth, a threshold current Ith, a holding voltage Vh and a holding current Ih, can be otained with high productivity and at a low cost.

Description

【発明の詳細な説明】 産業上の利用分野 である。[Detailed description of the invention] Industrial applications It is.

従来の従術 導電性スイッチングを行うような非線形抵抗素子は、オ
ボニツク(○VON I C)素子として知られ、主に
カルコゲン元素からなる非晶質半導体をその材料として
用いる。また、遷移金属の酸化物においてもこれと同様
な電気的性質の見られることが知られ、ヘマタイト、マ
グネタイト、ニッケルフェライト、ニッケル亜鉛フェラ
イト、酸化二ソケルなどが報告されている。これら従来
の非線形抵抗素子では、材料が薄膜や焼結体の形で利用
されているが、閾値電圧の低さなどの点から薄膜で構成
するのが有利であり、比較的安全な特性を示す非晶質半
導体の素子ではほとんどが薄膜型である。
A conventional nonlinear resistance element that performs conductive switching is known as an OVONIC element, and uses an amorphous semiconductor mainly composed of chalcogen elements as its material. It is also known that similar electrical properties are found in transition metal oxides, such as hematite, magnetite, nickel ferrite, nickel zinc ferrite, and disokel oxide. These conventional nonlinear resistance elements use materials in the form of thin films or sintered bodies, but it is advantageous to construct them with thin films from the viewpoint of low threshold voltage, and they exhibit relatively safe characteristics. Most amorphous semiconductor devices are of the thin film type.

これの基本的な構造を第2図と第3図に示す。The basic structure of this is shown in FIGS. 2 and 3.

図において、1は基体、2はアクティブ層、3゜4は電
極である。
In the figure, 1 is a base, 2 is an active layer, and 3° and 4 are electrodes.

このように、形成した膜を膜厚の方向で使用するサンド
イッチ型(第2図)と、膜をその表面方向で使用するプ
レーナ型(第3図)に分けることができる。いずれの場
合も、アクティブ層2は真空蒸着やスパッタで形成され
るのが普通である。
As described above, it can be divided into a sandwich type (FIG. 2) in which the formed film is used in the direction of its thickness, and a planar type (FIG. 3) in which the film is used in the direction of its surface. In either case, the active layer 2 is usually formed by vacuum deposition or sputtering.

発明が解決しようとする問題点 前述のように、従来のスイッチング特性を示す非線形抵
抗素子ではそのアクティブ層を真空法で形成するため、
製造上の歩留りや生産性において不利であるばかりでな
く、例えば非常に大きな基体上に素子を構成する必要の
あるような用途に対してはコストが高くなるなどの理由
でこれに対応することができない。
Problems to be Solved by the Invention As mentioned above, in conventional nonlinear resistance elements exhibiting switching characteristics, the active layer is formed by a vacuum method.
Not only is this disadvantageous in terms of manufacturing yield and productivity, but it is also difficult to accommodate this for other reasons, such as higher costs for applications that require devices to be constructed on very large substrates. Can not.

本発明の目的は、このような問題点を解決したスイッチ
ング特性を特つ非線形抵抗素子とその製造方法を提供し
、これらの素子を生産性良く安価に製造できるようにす
ることである。
An object of the present invention is to provide a nonlinear resistance element with special switching characteristics that solves the above-mentioned problems, and a method for manufacturing the same, so that these elements can be manufactured with high productivity and at low cost.

問題点を解決するための手段 上記目的を達成するため本発明では、アクティブ層を形
成するために金属化合物の溶液の塗布、熱分解という手
法を取入れた。金属化合物としては、適当な溶媒に溶け
、溶液を塗布乾燥した時に膜状になるものであればよく
、例えば硝酸塩などの無機酸塩、酢酸塩などの有機酸塩
、錯体および金属°にアルキル基の付いた有機金属など
を用いることができる。このような方法で薄膜を形成で
きる化合物は多いが、発明者らはこのなかからスイッチ
ング特性を呈する化合物として、酸化マンガンと酸化鉄
の混合物を見出し、これをアクティブ層に用いた。
Means for Solving the Problems In order to achieve the above object, the present invention adopts a method of applying a solution of a metal compound and thermally decomposing it to form an active layer. The metal compound may be one that dissolves in a suitable solvent and forms a film when the solution is applied and dried, such as inorganic acid salts such as nitrates, organic acid salts such as acetates, complexes, and metals with alkyl groups. It is possible to use organic metals with . There are many compounds that can be used to form thin films using this method, but the inventors found a mixture of manganese oxide and iron oxide as a compound that exhibits switching properties, and used this for the active layer.

作  用 酸化マンガンと酸化鉄の混合物薄膜は、マンガンと鉄の
化合物を溶媒に混合溶解して基体上に塗布、熱分解させ
ることにより容易に得られる。この際、化合物と溶媒の
組合せを考慮することにより非常に安定な溶液とするこ
とができ、インキとして長期間の保存が可能である。こ
のような形成法の導入により、ディップ、スプレー、印
刷などの工法を用いることができるため、大面積にわた
って均一な膜を生産性良く安価に製造することができる
。また、熱分解によって得られた薄膜は、その膜厚、電
極間距離、組成などに依存して閾値電圧や維持電流が変
化するスイッチング特性を示し、この特性の安定性は非
常に良好である。
Function A thin film of a mixture of manganese oxide and iron oxide can be easily obtained by dissolving a compound of manganese and iron in a solvent, coating the mixture on a substrate, and thermally decomposing the mixture. At this time, by considering the combination of the compound and the solvent, a very stable solution can be obtained and can be stored as an ink for a long period of time. By introducing such a formation method, methods such as dipping, spraying, and printing can be used, so that a uniform film can be manufactured over a large area with high productivity and at low cost. In addition, the thin film obtained by pyrolysis exhibits switching characteristics in which the threshold voltage and sustaining current change depending on the film thickness, distance between electrodes, composition, etc., and the stability of these characteristics is very good.

実施例 以下に実施例をあげて本発明を説明する。Example The present invention will be explained below with reference to Examples.

(実施例1) 第2図に示したサンドイッチ型の素子を作るため、第1
表に示すような組成で酸化マンガンと酸化鉄の混合物薄
膜形成用塗布液を調製した。マンガンと鉄の化合物とし
て、成膜の非常に容易な2−エチルへキサン酸塩を使用
し、溶媒はメチルインブチルケトンを使用した。電極と
して金の薄膜を形成したガラス基板上に、これら塗布液
をスピンコードしたのち常温で乾燥し、大気中sso’
Cで6o分間加熱焼成してアクティブ層を形成し、さら
にこの薄膜上に金の薄膜を形成した。これらの素子の電
圧印加時のI−V%性をカーブトレーサーで測定すると
、第1図に示したようなI−V曲線が得られる。測定結
果を第1表中に示すが、この表では第1図におけるvt
h (閾値電圧)と”th(閾値電流)及びvh(維持
電圧)とIh(維持電流)を数値として示した。これら
の値はすべて60比の周波数で掃引した時の数値である
。また、アクティブ層の厚みは、この薄膜の一部をエツ
チングして段差を形成し、接触式の表面粗さ計で測定し
だものである。
(Example 1) In order to make the sandwich type element shown in FIG.
A coating solution for forming a thin film of a mixture of manganese oxide and iron oxide was prepared with the composition shown in the table. 2-ethylhexanoate, which is very easy to form into a film, was used as the compound of manganese and iron, and methyl in butyl ketone was used as the solvent. These coating solutions were spin-coded onto a glass substrate on which a thin gold film was formed as an electrode, dried at room temperature, and exposed to sso' in the air.
An active layer was formed by heating and baking with C for 60 minutes, and a gold thin film was further formed on this thin film. When the IV percentage characteristics of these elements upon voltage application are measured using a curve tracer, an IV curve as shown in FIG. 1 is obtained. The measurement results are shown in Table 1. In this table, vt
h (threshold voltage), th (threshold current), vh (sustaining voltage), and Ih (maintaining current) are shown as numerical values. These values are all values when swept at a frequency of 60 ratio. The thickness of the active layer is measured by etching a portion of this thin film to form a step and using a contact type surface roughness meter.

さらに、これら素子に対し、6田で±16vの調波を印
加し特性の安定性を調べたところ、いずれにおいても連
続で10日間(4QO万回以上のスイッチングに相当す
る)の動作を行わせた後でも、第1表に示した数値に±
5チ以上の変動は認められず、その特性の安定性は実用
上充分であると考えられた。
Furthermore, when harmonics of ±16V were applied to these devices at 6 voltages to examine the stability of their characteristics, they were operated continuously for 10 days (corresponding to more than 4Q0 million switching times). Even after
No fluctuation of more than 5 degrees was observed, and the stability of the properties was considered to be sufficient for practical use.

(実施例2) 実施例1と同様な組成の塗布液を用い、電極をスズをド
ープした酸化インジウム薄膜に置換えてサンドイッチ型
の素子を構成した。電極以外の作成方法は、実施例1と
まったく同様である。これらのI−V特性をカーブトレ
ーサで測定すると、同様に第1図のようなI−V曲線が
得られ、この結果を第2表に示す。表中のサンプル墓は
第1表のそれに対応し、同一のムのものは同じ塗布液で
アクティブ層を形成したことを示す。掃引周波数は50
Hzである。この表から、若干の変動はあるがほぼ実施
例1と同じ結果の得られることが分ろうまた、実施例1
と同様な安定性の試験を行い、これらにおいても約40
0万回以上のスイッチングの後でも特性は安定している
ことを確認した。
(Example 2) A sandwich-type element was constructed using a coating solution having the same composition as in Example 1, and replacing the electrode with an indium oxide thin film doped with tin. The manufacturing method except for the electrodes is exactly the same as in Example 1. When these IV characteristics were measured with a curve tracer, IV curves as shown in FIG. 1 were similarly obtained, and the results are shown in Table 2. The sample shapes in the table correspond to those in Table 1, and the same samples indicate that the active layer was formed using the same coating solution. Sweep frequency is 50
It is Hz. From this table, it can be seen that almost the same results as in Example 1 can be obtained, although there are some variations.
A stability test similar to that of
It was confirmed that the characteristics were stable even after switching over 00,000 times.

(実施例3) ガラス基板上に金の薄膜を形成し、この薄膜を一部エッ
チングして幅が数十μの間隙を設け、これによって隔て
られた金薄膜を電極とし、この上に実施例1と同様の塗
布液を用いてアクティブ層を形成した。その形成条件は
実施例1と同様である。このようにして第3図に示した
プレーナ型の素子を作成した。これらに直流電圧を印加
し、I−■特性を測定すると実施例1や2と同様に第1
図に示したようなI−V曲線が得られた。この結果を第
3表に示す。同様にサンプル墓は実施例1の扁に対応す
る。サンドイッチ型素子に比べ電極間間隔が大きいこと
に対応して閾値電圧が増大していることが分る。これら
においても特性の安定性は実用上充分であることを確認
した。
(Example 3) A thin gold film was formed on a glass substrate, a part of this thin film was etched to create a gap of several tens of microns in width, the gold thin film separated by this was used as an electrode, and the example was applied on top of this. An active layer was formed using the same coating solution as in Example 1. The formation conditions are the same as in Example 1. In this way, the planar type element shown in FIG. 3 was produced. When a DC voltage is applied to these and the I-■ characteristics are measured, the first
An IV curve as shown in the figure was obtained. The results are shown in Table 3. Similarly, the sample grave corresponds to the plate of Example 1. It can be seen that the threshold voltage increases in response to the larger inter-electrode spacing compared to the sandwich type element. It was confirmed that the stability of the properties in these cases was sufficient for practical use.

第2表 第3表 (実施例4) 直径1fflfl+のステンレス線を実施例1の&4の
塗布液中に浸漬し、約5 rlIn/CB:、の速度で
引きあげた後乾燥し、6oo℃で90分間加熱焼成して
、ステンレス線表面に酸化マンガンと酸化鉄の混合物薄
膜を形成し、さらにこの膜表面に銀電極を形成して素子
を構成した。このものでは掃引周波数60HzKオイテ
V1hカa、3V 、 Ith カ0.5 mA 、V
hがs、ev 、 Ihが2.5mAの、実施例1〜3
と同様なスイッチング特性が見られた。
Table 2 Table 3 (Example 4) A stainless steel wire with a diameter of 1ffflfl+ was immersed in the &4 coating solution of Example 1, pulled up at a rate of about 5 rlIn/CB:, and dried at 60°C at 90°C. A thin film of a mixture of manganese oxide and iron oxide was formed on the surface of the stainless steel wire by heating and baking for a minute, and a silver electrode was further formed on the surface of this film to construct an element. In this one, the sweep frequency is 60Hz, the voltage is 1h, 3V, and the voltage is 0.5 mA, V.
Examples 1 to 3 where h is s, ev and Ih is 2.5 mA
Similar switching characteristics were observed.

なお、本実施例1〜4では用いた基体と電極材料の耐熱
性の点から焼成温度は500〜560℃で行ったが、例
えばアルミナなどの耐熱性のある基体を用いる際にはこ
の温度を基体の耐熱温度まで上げることができる。用い
る化合物についても、硝酸塩、硫酸塩などの無機酸塩、
酢酸塩などの有機酸塩、錯塩、金属アルコキシドなどで
適当な溶媒に溶解するものであれば、支障なく使用する
ことができる。また、電極材料としては本実施例以外の
銅、アルミニウム、亜鉛などの金属や、スズ酸カドミウ
ム、アンチモンをドープした酸化スズなどの導電性酸化
物、あるいはカーボンなども使用することができる。
In Examples 1 to 4, the firing temperature was 500 to 560°C in view of the heat resistance of the substrate and electrode materials used. However, when using a heat-resistant substrate such as alumina, this temperature may be changed. It can be raised up to the heat-resistant temperature of the substrate. Regarding the compounds used, inorganic acid salts such as nitrates and sulfates,
Any organic acid salt such as acetate, complex salt, metal alkoxide, etc. that can be dissolved in an appropriate solvent can be used without any problem. Further, as the electrode material, metals other than those used in this embodiment such as copper, aluminum, and zinc, conductive oxides such as cadmium stannate and antimony-doped tin oxide, or carbon can also be used.

発明の効果 以上のように本発明の非線形抵抗素子は、酸化マンガン
と酸化鉄の混合物薄膜とこれから電気的溶液を基体上に
塗布し、乾燥後、大気中で加熱焼成することによって形
成するという方法で製造されることにより、スイッチン
グ特性を有する非線形抵抗素子を、生産性良く安価に提
供することができ、大面積であっても製造が容易である
という点においてその実用的な有用性は大きい。
Effects of the Invention As described above, the nonlinear resistance element of the present invention is formed by coating a thin film of a mixture of manganese oxide and iron oxide on a substrate with an electrical solution, drying it, and then baking it in the atmosphere. By manufacturing the nonlinear resistance element with switching characteristics, it is possible to provide a nonlinear resistance element having switching characteristics with good productivity at a low cost, and its practical usefulness is great in that it is easy to manufacture even if it has a large area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非線形抵抗素子の電流−電圧特性図、
第2図はサンドインチ型の非線形抵抗素子の構造を示す
断面図、第3図はブレーナ型の非線形抵抗素子の構造を
示す断面図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1電流 第2図
FIG. 1 is a current-voltage characteristic diagram of the nonlinear resistance element of the present invention,
FIG. 2 is a sectional view showing the structure of a Sandinch type nonlinear resistance element, and FIG. 3 is a sectional view showing the structure of a Brehner type nonlinear resistance element. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Current Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)酸化マンガンと酸化鉄の混合物薄膜と、この薄膜
から電気的リードを取るための電極とからなり、導電性
スイッチング特性を有することを特徴とする非線形抵抗
素子。
(1) A nonlinear resistance element comprising a thin film of a mixture of manganese oxide and iron oxide and an electrode for taking electrical leads from this thin film, and having conductive switching characteristics.
(2)マンガン化合物と鉄化合物を溶媒に溶解した溶液
を基体上に塗布し、乾燥した後、加熱、焼成することに
よって酸化マンガンと酸化鉄の混合物薄膜を形成するこ
とを特徴とする非線形抵抗素子の製造方法。
(2) A nonlinear resistance element characterized by forming a thin film of a mixture of manganese oxide and iron oxide by applying a solution of a manganese compound and an iron compound dissolved in a solvent onto a substrate, drying it, heating it, and baking it. manufacturing method.
JP60182074A 1985-08-20 1985-08-20 Nonlinear resistance element and manufacture of same Pending JPS6242583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182074A JPS6242583A (en) 1985-08-20 1985-08-20 Nonlinear resistance element and manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182074A JPS6242583A (en) 1985-08-20 1985-08-20 Nonlinear resistance element and manufacture of same

Publications (1)

Publication Number Publication Date
JPS6242583A true JPS6242583A (en) 1987-02-24

Family

ID=16111890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182074A Pending JPS6242583A (en) 1985-08-20 1985-08-20 Nonlinear resistance element and manufacture of same

Country Status (1)

Country Link
JP (1) JPS6242583A (en)

Similar Documents

Publication Publication Date Title
Hickmott Impurity conduction and negative resistance in thin oxide films
CN105655389B (en) Active layer, thin film transistor (TFT), array base palte, display device and preparation method
JPH04118901A (en) Positive temperature coefficient thermistor and its manufacture
KR850006552A (en) Electrolytic electrode and manufacturing process
US3397446A (en) Thin film capacitors employing semiconductive oxide electrolytes
JPS6242582A (en) Nonlinear resistance element and manufacture of same
JPS6242584A (en) Nonlinear resistance element and manufacture of same
JPS6242583A (en) Nonlinear resistance element and manufacture of same
JPS6242579A (en) Nonlinear resistance element and manufacture of same
US2916681A (en) Surface treatment of ferroelectric materials
JPS6242581A (en) Nonlinear resistance element and manufacture of same
US6358392B1 (en) Bismuth thin films structure and method of construction
JPS6242575A (en) Nonlinear resistance element and manufacture of same
JPS6242578A (en) Nonlinear resistance element and manufacture of same
JPS6242574A (en) Nonlinear resistance element and manufacture of the same
JPS62242312A (en) Nonlinear resistance element and manufacture of the same
JPS6242580A (en) Nonlinear resistance element and manufacture of same
JPS62242313A (en) Nonlinear resistance element and manufacture of the same
JPS6242576A (en) Nonlinear resistance element and manufacture of same
JPS6242577A (en) Nonlinear resistance element and manufacture of same
JPS62242314A (en) Nonlinear resistance element and manufacture of the same
JPS62242311A (en) Nonlinear resistance element and manufacture of the same
US3809627A (en) Anodized cermet film components and their manufacture
Katsuta et al. Dc and ac conduction in amorphous titanium dioxide thin films
US3644188A (en) Anodizable cermet film components and their manufacture