JPS62242311A - Nonlinear resistance element and manufacture of the same - Google Patents

Nonlinear resistance element and manufacture of the same

Info

Publication number
JPS62242311A
JPS62242311A JP61085319A JP8531986A JPS62242311A JP S62242311 A JPS62242311 A JP S62242311A JP 61085319 A JP61085319 A JP 61085319A JP 8531986 A JP8531986 A JP 8531986A JP S62242311 A JPS62242311 A JP S62242311A
Authority
JP
Japan
Prior art keywords
oxide
thin film
nonlinear resistance
resistance element
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61085319A
Other languages
Japanese (ja)
Inventor
和之 岡野
洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61085319A priority Critical patent/JPS62242311A/en
Publication of JPS62242311A publication Critical patent/JPS62242311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、導電性スイッチングのような機能を備えた非
線形抵抗素子およびその製造方法に関するものであり、
エレクトロニクス産業において利用できる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonlinear resistance element having a function such as conductive switching and a method for manufacturing the same.
Can be used in the electronics industry.

従来の技術 導電性スイッチングを行うような非線形抵抗素子は0V
ONI(3素子として知られ、主にカルコゲン元素から
なる非晶質半導体をその材料として用いている。また、
遷移金属の酸化物においてもこれと同様な電気的性質の
見られることが知られ、ヘマタイト、マグネタイト、ニ
ッケルフェライト。
Conventional technology Non-linear resistance elements such as conductive switching are 0V
ONI (known as 3 elements, which uses an amorphous semiconductor mainly composed of chalcogen elements as its material.
Similar electrical properties are known to be found in transition metal oxides, such as hematite, magnetite, and nickel ferrite.

ニッケル亜鉛フェライト、酸化ニッケルなどが報告され
ている。これら従来の非線形抵抗素子では、材料が薄膜
や焼結体の形で利用されているが、閾値電圧の低さなど
の点から薄膜で構成するのが有利であり、比較的安定な
特性を示す非晶質半導体の素子ではほとんどが薄膜型で
ある。
Nickel zinc ferrite, nickel oxide, etc. have been reported. These conventional nonlinear resistance elements use materials in the form of thin films or sintered bodies, but it is advantageous to construct them with thin films from the viewpoint of low threshold voltage, and they exhibit relatively stable characteristics. Most amorphous semiconductor devices are of the thin film type.

これの基本的な構造を第2図と第3図に示す。The basic structure of this is shown in FIGS. 2 and 3.

このように、形成した膜を膜厚の方向で使用するサンド
イッチ型(第2図)と膜をその表面方向で使用するプレ
ーナ型(第3図)に分けることができる。いずれの場合
も、アクティブ層は真空蒸着やスパッタで形成されるの
が普通である。
As described above, it can be divided into a sandwich type (FIG. 2) in which the formed film is used in the direction of its thickness and a planar type (FIG. 3) in which the film is used in the direction of its surface. In either case, the active layer is usually formed by vacuum evaporation or sputtering.

第2図において、1および3は電極、2はアクティブ層
、4は基体である。また、第3図において、6はアクテ
ィブ層、6および7は電極、8は基体である。
In FIG. 2, 1 and 3 are electrodes, 2 is an active layer, and 4 is a substrate. Further, in FIG. 3, 6 is an active layer, 6 and 7 are electrodes, and 8 is a base.

発明が解決しようとする問題点 前述のように、従来のスイッチング特性を示す非線形抵
抗素子では、そのアクティブ層を真空法で形成するため
、製造上の歩留りや生産性において不利であるばかりで
なく、例えば非常に大きな基体上に素子を構成する必要
のあるような用途に対しては、コストが高くなるなどの
理由でこれに対応することができない。本発明の目的は
、このような問題点を解決したスイッチング特性を持つ
非線形抵抗素子とその製造方法を提供し、これらの素子
を生産性良く安価に製造できるようにすることである。
Problems to be Solved by the Invention As mentioned above, in conventional nonlinear resistance elements exhibiting switching characteristics, the active layer is formed by a vacuum method, which is not only disadvantageous in manufacturing yield and productivity. For example, it cannot be used for applications where it is necessary to construct an element on a very large substrate because of high costs and other reasons. An object of the present invention is to provide a nonlinear resistance element having switching characteristics that solves these problems and a method for manufacturing the same, and to enable these elements to be manufactured with high productivity and at low cost.

問題点を解決するだめの手段 上記目的を達成するため、本発明ではアクティブ層を形
成するのに金属化合物の溶液の塗布、熱分解という手法
を取入れた。また、金属化合物としては、適当な溶媒に
溶け、溶液を塗布乾燥した時に膜状になるものであれば
何を用いてもよい。
Means for Solving the Problems In order to achieve the above object, the present invention adopts a method of applying a solution of a metal compound and thermal decomposition to form an active layer. Furthermore, any metal compound may be used as long as it dissolves in a suitable solvent and forms a film when the solution is applied and dried.

例えば、硝酸塩などの無機酸塩、酢酸塩などの有機酸塩
、錯体および金属にアルキル基の付いた有機金属などを
用いることができる。このような方法で薄膜を形成でき
る化合物は多いが、発明者らはこのなかからスイッチン
グ特性を呈する化合物として酸化マンガン、酸化コバル
トおよび酸化ビスマスの混合物を見出し、これをアクテ
ィブ層に用いた。
For example, inorganic acid salts such as nitrates, organic acid salts such as acetates, complexes, and organic metals with an alkyl group attached to the metal can be used. There are many compounds that can be used to form thin films using this method, but the inventors discovered a mixture of manganese oxide, cobalt oxide, and bismuth oxide as a compound that exhibits switching properties, and used this for the active layer.

作用 本発明によれば、酸fヒマンガン、酸化コバルトおよび
酸化ビスマスの混合物薄膜は、マンガン。
OPERATION According to the invention, the thin film is a mixture of manganese, cobalt oxide and bismuth oxide.

コバルトおよびビスマスの化合物を溶媒に混合溶解して
基体上に塗布、熱分解させることにより容易に得られる
。この際、化合物と溶媒の組合せを考慮することにより
非常に安定な溶液とすることができ、インキとして長期
間の保存が可能である。
It can be easily obtained by mixing and dissolving cobalt and bismuth compounds in a solvent, coating the mixture on a substrate, and thermally decomposing the mixture. At this time, by considering the combination of the compound and the solvent, a very stable solution can be obtained and can be stored as an ink for a long period of time.

このような形成法の導入により、ディ・ンプ、スプレー
、印刷などの工法を用いることができるため、大面積に
わたって均一な膜を生産性良く安価に製造することがで
きる。また、熱分解によって得られた薄膜は、その膜厚
、電極間距離1組成などに依存して閾値電圧や維持電流
が変化するスイッチング特性を示し、この特性の安定性
は非常に良好である。
By introducing such a formation method, methods such as dipping, spraying, and printing can be used, so that a uniform film can be manufactured over a large area with high productivity and at low cost. Furthermore, the thin film obtained by thermal decomposition exhibits switching characteristics in which the threshold voltage and sustaining current vary depending on the film thickness, interelectrode distance, composition, etc., and the stability of these characteristics is very good.

実施例 以下に実施例をあげて本発明の詳細な説明する。Example The present invention will be described in detail below with reference to Examples.

〈実施例1〉 第2図に示したサンドインチ型の素子を作るため、下記
の第1表に示すよう々組成で酸化マンガン、酸化コバル
トおよび酸化ビスマスの混合物薄膜形成用塗布液を調製
した。ここで、マンガン。
<Example 1> In order to make the sandwich-type element shown in FIG. 2, a coating solution for forming a thin film of a mixture of manganese oxide, cobalt oxide and bismuth oxide was prepared with the composition shown in Table 1 below. Here, manganese.

コバルトおよびビスマスの化合物として、成膜の非常に
容易な2−エチルヘキサン酸塩を使用し、溶媒はメチル
イソブチルケトンを庚用した。そして、電極として金の
薄膜を形成したガラス基板上にこれら塗布液をスピンコ
ードしたのち常温で乾燥し、大気中650°Cで60分
間加熱焼成してアクティブ層を形成し、さらにこの薄膜
上に金の薄膜を形成した。これらの素子の電圧印加時の
ニー■特性をカーブトレーサーで測定すると、第1図に
示したよう々I−V曲線が得られる。測定結果を同じく
下記の第1表中に示すが、この表では第1図におけるV
th (闇値電圧)とIth(閾値電流)およびVh 
(維持電圧)とIh (維持電流)を数値として示した
。これらの値はすべて5011zの周波数で掃引した時
の数値である。また、アクティブ層の厚みは、この薄膜
の一部をエツチングして段差を形成し、接触式の表面粗
さ計で測定したものである。
As the cobalt and bismuth compound, 2-ethylhexanoate, which is very easy to form into a film, was used, and methyl isobutyl ketone was used as the solvent. These coating solutions were spin-coded onto a glass substrate on which a thin gold film was formed as an electrode, dried at room temperature, and fired in the air at 650°C for 60 minutes to form an active layer. A thin film of gold was formed. When the knee characteristics of these elements are measured with a curve tracer when a voltage is applied, an IV curve as shown in FIG. 1 is obtained. The measurement results are also shown in Table 1 below, but in this table V
th (dark value voltage), Ith (threshold current) and Vh
(sustaining voltage) and Ih (maintaining current) are shown as numerical values. These values are all obtained when swept at a frequency of 5011z. The thickness of the active layer was measured by etching a part of this thin film to form a step and using a contact type surface roughness meter.

(以下余 白) さらに、これら素子に対し、60Zで±16Vの鋸波を
印加し特性の安定性を調べたところ、いずれにおいても
連続で10日間(4oO万回以上のスイッチングに相当
する)の動作を行わせた後でも、第1表に示した数値に
±6%以上の変動は認められず、その特性の安定性は実
用上充分であると考えられた。
(Left below) Furthermore, when we applied a sawtooth wave of ±16V at 60Z to these elements to examine the stability of their characteristics, we found that the stability of the characteristics remained constant for 10 consecutive days (equivalent to over 40,000 switching times). Even after the operation, the values shown in Table 1 did not vary by more than ±6%, and the stability of the characteristics was considered to be sufficient for practical use.

〈実施例2〉 実施例1と同様な組成の塗布液を用い、電極をスズをド
ープした酸化インジウム薄膜に置換えてザンドイッチ型
の素子を構成した。電極以外の作成方法は、実施例1と
1つたく同様である。これらのI−V特性をカーブトレ
ーサで測定すると、同様に第1図のようなI−V曲線が
得られ、この結果を下記の第2表に示す。表中のサンプ
ル煮は第1表のそれに対応し、同一の届のものは同じ塗
布液でアクティブ層を形成したことを示す。また、掃引
周波数は5011zである。
<Example 2> Using a coating solution having the same composition as in Example 1, a Zandwich type element was constructed by replacing the electrode with a tin-doped indium oxide thin film. The manufacturing method except for the electrodes was the same as in Example 1. When these IV characteristics were measured with a curve tracer, IV curves as shown in FIG. 1 were similarly obtained, and the results are shown in Table 2 below. The samples in the table correspond to those in Table 1, and the same samples indicate that the active layer was formed using the same coating solution. Further, the sweep frequency is 5011z.

く第2表〉 11、、−7 この表から、若干の変動はあるがほぼ実施例1と同じ結
果の得られることが分る。また、実施例1と同様な安定
性の試験を行い、これら′においても約400万回以上
のスイッチングの後でも特性は安定していることを確認
した。
Table 2> 11,,-7 From this table, it can be seen that almost the same results as in Example 1 were obtained, although there were some variations. In addition, a stability test similar to that in Example 1 was conducted, and it was confirmed that the characteristics of these devices were stable even after approximately 4 million times or more of switching.

〈実施例3〉 ガラス基板上に金の薄膜を形成し、この薄膜を一部エッ
チングして幅が数十μの間隙を設け、これによって隔て
られた金薄膜を電極とし、この上に実施例1と同様の塗
布液を用いてアクティブ層を形成した。その形成条件は
実施例1と同様である。このようにして第3図に示した
ブレーナ型の素子を作成した。これらに直流電圧を印加
し、ニーV特性を測定すると実施例1や2と同様に第1
図に示したよりなI−V曲線が得られた。この結果を下
記の第3表に示す。この第3表でも同様にサンプル煮は
実施例1の煮に対応する。
<Example 3> A thin gold film was formed on a glass substrate, a part of this thin film was etched to create a gap of several tens of microns in width, the gold thin film separated by this was used as an electrode, and the Example was placed on top of this. An active layer was formed using the same coating solution as in Example 1. The formation conditions are the same as in Example 1. In this way, the Brehner type element shown in FIG. 3 was produced. When a DC voltage is applied to these and the knee V characteristics are measured, the first
A clear IV curve shown in the figure was obtained. The results are shown in Table 3 below. Similarly, in this Table 3, the sample boils correspond to the boils in Example 1.

(以下余 白) く第3表〉 このブレーナ型の実施例3では、サンドインチ型素子に
比べ電極間間隔が大きいことに対応して閾値電圧が増大
していることが分る。これらにおいても特性の安定性は
実用上充分であることを確認した。
(The following is a blank space) Table 3 It can be seen that in this Brehner-type Example 3, the threshold voltage increases in response to the larger inter-electrode spacing compared to the Sand-Inch type element. It was confirmed that the stability of the properties in these cases was sufficient for practical use.

〈実施例4〉 直径1 mmのステンレス線を実施例1の扁8の塗布液
中に浸漬し、約5 mm / 36Cの速度で引きあげ
たのち乾燥し、500’Cで90分間加熱焼成して、ス
テンレス線表面に酸化マンガン、酸化コバルトおよび酸
化ビスマスの混合物薄膜を形成し、さらにこの膜表面に
釧電極を形成して素子を構成した。
<Example 4> A stainless steel wire with a diameter of 1 mm was immersed in the coating solution of Flat 8 of Example 1, pulled up at a speed of about 5 mm/36C, dried, and baked at 500'C for 90 minutes. A device was constructed by forming a thin film of a mixture of manganese oxide, cobalt oxide, and bismuth oxide on the surface of a stainless steel wire, and then forming a chime electrode on the surface of this film.

このものでは掃引周波数50tTzにおいてvthが6
.3V% IthカO,esmA、 Vhカ2.I V
、 Ihカ1−9mAの、実施例1〜3と同様なスイッ
チング特性が見られた。
In this case, vth is 6 at a sweep frequency of 50tTz.
.. 3V% IthkaO, esmA, Vhka2. IV
, Ih power of 1-9 mA, switching characteristics similar to Examples 1 to 3 were observed.

なお、本実施例1〜4では、用いた基体と電極材料の耐
熱性の点から焼成湿度は500〜660°Cで行ったが
、例えばアルミナ々どの耐熱性のある基体を用いる際に
は、この湿度を基体の耐熱温度まで上げることができる
。また、用いる化合物についても、硝酸塩、硫酸塩など
の無機酸塩、酢酸塩などの有機酸塩、錯塩、金挑アルコ
キシドなどで適当な溶媒に溶解するものであれば、支障
なく匣用することができる。さらに、電極材料としては
本実施例以外の銅、アルミニウム、亜鉛ガどの金Mや、
スズ酸カドミウム、アンチモンをドープした酸化スズな
どの導電性酸化物、あるいは力酸化マンガン、酸化コバ
ルトおよび酸化ビスマスの混合物薄膜とこれから電気的
リードを取るための電極とからなり、酸化マンガン、酸
化コバルトおよび酸化ビスマスの混合物薄膜をマンガン
化合物、コバルト化合物およびビ2マス化合物を溶媒に
混合溶解した溶液を基体上に塗布し、乾燥後、大気中で
加熱焼成することによって形成するという方法で製造さ
れることにより、スイッチング特性を有する非線形抵抗
素子を、生産性良く安価に提供することができ、大面積
にわたっても製造が15、。
In Examples 1 to 4, the firing humidity was 500 to 660°C in view of the heat resistance of the substrate and electrode materials used. However, when using a heat resistant substrate such as alumina, This humidity can be raised to the heat-resistant temperature of the substrate. In addition, as for the compounds used, as long as they are soluble in an appropriate solvent, such as inorganic acid salts such as nitrates and sulfates, organic acid salts such as acetates, complex salts, and gold alkoxides, they can be used without any problem. can. Further, as the electrode material, copper, aluminum, zinc, gold M, etc. other than those in this example may be used.
It consists of a conductive oxide such as tin oxide doped with cadmium stannate or antimony, or a mixture thin film of manganese oxide, cobalt oxide and bismuth oxide, and an electrode for taking electrical leads from the thin film. A thin film of a mixture of bismuth oxide is formed by applying a solution of a manganese compound, a cobalt compound, and a bi2muth compound mixed and dissolved in a solvent onto a substrate, drying it, and then heating and baking it in the atmosphere. As a result, a nonlinear resistance element having switching characteristics can be provided at low cost with good productivity, and can be manufactured over a large area.

容易であるという点においてその実用的な有用性は大き
い。
Its practical utility is great in that it is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の非線形抵抗素子の電流−電圧特性を示
す図、第2図はサンドインチ型素子の構造を示す断面図
、第3図はプレーナ型素子の構造を示す断面図である。 Z、t・・・・・・J″22 ノ4代理人の氏名 弁理
士 中 尾 敏 男 ほか1名第1図 r電流 筬2図 試 し2 第3図 防 ×わ 4り 7         S)’り為2゛撞ンン
FIG. 1 is a diagram showing the current-voltage characteristics of the nonlinear resistance element of the present invention, FIG. 2 is a sectional view showing the structure of a sandwich type element, and FIG. 3 is a sectional view showing the structure of a planar type element. Z, t...J''22 No. 4 Name of agent Patent attorney Toshio Nakao and one other person Figure 1 r Current reed 2 Trial 2 Figure 3 Defense x Wa 4ri 7 S)'ri For two reasons

Claims (2)

【特許請求の範囲】[Claims] (1)酸化マンガン、酸化コバルトおよび酸化ビスマス
の混合物薄膜と、これから電気的リードを取るための電
極とからなり、導電性スイッチング特性を有することを
特徴とする非線形抵抗素子。
(1) A nonlinear resistance element comprising a thin film of a mixture of manganese oxide, cobalt oxide, and bismuth oxide and an electrode for taking electrical leads therefrom, and having conductive switching characteristics.
(2)マンガン化合物、コバルト化合物およびビスマス
化合物を溶媒に混合溶解した溶液を基体上に塗布し、乾
燥した後、加熱、焼成することによって酸化マンガン、
酸化コバルトおよび酸化ビスマスの混合物薄膜を形成す
ることを特徴とする非線形抵抗素子の製造方法。
(2) A solution of a manganese compound, a cobalt compound, and a bismuth compound mixed and dissolved in a solvent is applied onto the substrate, dried, and then heated and fired to produce manganese oxide,
A method for manufacturing a nonlinear resistance element, comprising forming a thin film of a mixture of cobalt oxide and bismuth oxide.
JP61085319A 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same Pending JPS62242311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61085319A JPS62242311A (en) 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61085319A JPS62242311A (en) 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS62242311A true JPS62242311A (en) 1987-10-22

Family

ID=13855293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61085319A Pending JPS62242311A (en) 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS62242311A (en)

Similar Documents

Publication Publication Date Title
US5720859A (en) Method of forming an electrode on a substrate
KR850006552A (en) Electrolytic electrode and manufacturing process
Sahu et al. Bipolar resistive switching in HoCrO3 thin films
JPS6242582A (en) Nonlinear resistance element and manufacture of same
JPS62242311A (en) Nonlinear resistance element and manufacture of the same
JPS6242584A (en) Nonlinear resistance element and manufacture of same
Zhang et al. Study on resistance switching properties of Na 0.5 Bi 0.5 TiO 3 thin films using impedance spectroscopy
JPS62242313A (en) Nonlinear resistance element and manufacture of the same
JPS62242314A (en) Nonlinear resistance element and manufacture of the same
JPS6242579A (en) Nonlinear resistance element and manufacture of same
JPS6242578A (en) Nonlinear resistance element and manufacture of same
US2916681A (en) Surface treatment of ferroelectric materials
JPS62242312A (en) Nonlinear resistance element and manufacture of the same
JPS6242575A (en) Nonlinear resistance element and manufacture of same
JPS6242583A (en) Nonlinear resistance element and manufacture of same
JPS6242577A (en) Nonlinear resistance element and manufacture of same
JPS6242580A (en) Nonlinear resistance element and manufacture of same
JPS6242574A (en) Nonlinear resistance element and manufacture of the same
JPS6242581A (en) Nonlinear resistance element and manufacture of same
JPS6242576A (en) Nonlinear resistance element and manufacture of same
Mirzapour et al. Dependence of structural, electrical and optical properties of undoped indium oxide films on thickness
JPS60220505A (en) Transparent conductive film and method of forming same
Hogarth et al. Further studies on thin film structures of metal-borosilicate glass-metal
Pulvari et al. A new graded electrode for forming intimate contact with ferroelectrics
Gogoi et al. Sol-Gel Derived Dip Coated ZnO–La2O3 Thin Film Transistors