JPS6242575A - Nonlinear resistance element and manufacture of same - Google Patents

Nonlinear resistance element and manufacture of same

Info

Publication number
JPS6242575A
JPS6242575A JP60182066A JP18206685A JPS6242575A JP S6242575 A JPS6242575 A JP S6242575A JP 60182066 A JP60182066 A JP 60182066A JP 18206685 A JP18206685 A JP 18206685A JP S6242575 A JPS6242575 A JP S6242575A
Authority
JP
Japan
Prior art keywords
thin film
resistance element
nonlinear resistance
electrode
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60182066A
Other languages
Japanese (ja)
Inventor
Kazuyuki Okano
和之 岡野
Hiroshi Hasegawa
洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60182066A priority Critical patent/JPS6242575A/en
Publication of JPS6242575A publication Critical patent/JPS6242575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a nonlinear resistance element which has a conductive switching function by attaching a lead electrode to a thin film of a mixture of manganese oxide and tin oxide. CONSTITUTION:2-Ethyl hexanates, which are easy to be formed into a film, are employed as compounds of Mn and Sn and these compounds are applied by spin-coating with methyl isobutyl keton as solvent to the surface of a glass substrate 1 on which an Au thin film electrode 4 is provided. The substrate is then baked in the atmosphere at 550 deg.C for 60min to form an active layer 2 and an Au thin film electrode 3 is formed. With this constitution, a nonlinear resistance element, which has switching characteristics with a threshold voltage Vth, threshold current Ith, a holding voltage Vh and a holding current Ih, can be obtained with high productivity and at a low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、導電性スイッチングのような機能を備えた非
線形抵抗素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to nonlinear resistive elements with functions such as conductive switching.

従来の技術 導電性スイッチングを行うような非線形抵抗素子はオボ
ニック(OVONIC)素子として知られ、主にカルコ
ゲン元素からなる非晶質半導体をその材料として用いる
。また、遷移金属の酸化物においてもこれと同様な電気
的性質の見られることが知られ、ヘマタイト、マグネタ
イト、ニッケルフェライト、ニッケル亜鉛フェライト、
酸化ニッケルなどが報告されている。これら従来の非線
形抵抗素子では、材料が薄膜や焼結体の形で利用されて
いるが、閾値電圧の低さなどの点から薄膜で構成するの
が有利であり、比較的安定な特性を示す非晶質半導体の
素子ではほとんどが薄膜型である。
BACKGROUND OF THE INVENTION A nonlinear resistance element that performs conductive switching is known as an OVONIC element, and uses an amorphous semiconductor mainly composed of chalcogen elements as its material. It is also known that similar electrical properties are found in transition metal oxides, such as hematite, magnetite, nickel ferrite, nickel zinc ferrite,
Nickel oxide etc. have been reported. These conventional nonlinear resistance elements use materials in the form of thin films or sintered bodies, but it is advantageous to construct them with thin films from the viewpoint of low threshold voltage, and they exhibit relatively stable characteristics. Most amorphous semiconductor devices are of the thin film type.

これの基本的な構造を第2図と第3図に示す。The basic structure of this is shown in FIGS. 2 and 3.

なお、図において1は基体、2はアクティブ層、3.4
は電極である。
In the figure, 1 is the base, 2 is the active layer, and 3.4
is an electrode.

このように、形成した膜を膜厚の方向で使用するサンド
インチ型(第2図)と膜をその表面方向で使用するプレ
ーナ型(第3図)に分けることができる。いずれの場合
も、アクティブ層は真空蒸着やスパッタで形成されるの
が普通である。
As described above, it can be divided into a sandwich type (FIG. 2) in which the formed film is used in the direction of its thickness, and a planar type (FIG. 3) in which the film is used in the surface direction. In either case, the active layer is usually formed by vacuum evaporation or sputtering.

発明が解決しようとする問題点 前述のように、従来のスイッチング特性を示す非線形抵
抗素子ではそのアクティブ層を真空法で形成するだめ、
製造上の歩留や生産性において不利であるばかりでなく
、例えば非常に大きな基体上に素子を構成する必要のあ
るような用途に対してはコストが高くなるなどの理由で
これに対応することができない。
Problems to be Solved by the Invention As mentioned above, in conventional nonlinear resistance elements exhibiting switching characteristics, the active layer cannot be formed using a vacuum method.
This is not only disadvantageous in terms of manufacturing yield and productivity, but also increases costs for applications that require devices to be constructed on very large substrates. I can't.

本発明の目的は、このような問題点を解決したスイッチ
ング特性を持つ非線形抵抗素子とその製造方法を提供し
、これらの素子を生産性良く安価に製造できるようにす
ることである。
An object of the present invention is to provide a nonlinear resistance element having switching characteristics that solves these problems and a method for manufacturing the same, and to enable these elements to be manufactured with high productivity and at low cost.

問題点を解決するだめの手段 上記目的を達成するため本発明では、アクティブ層を形
成するのに金属化合物の溶液の塗布、熱分解という手法
を取入れた。金属化合物としては、適当な溶媒に溶け、
溶液を塗布乾燥した時に膜状になるものであればよく、
例えば硝酸塩などの無機酸塩、酢酸塩などの有機酸塩、
錯体および金属にアルキル基の付いた有機金属などを用
いることができる。このような方法で薄膜を形成できる
化合物は多いが、発明者らはこのなかからスイッチング
特性を呈する化合物として酸化マンガンと酸化スズの混
合物を見出し、これをアクティブ層に用いた。
Means for Solving the Problems In order to achieve the above object, the present invention adopts a method of applying a solution of a metal compound and thermal decomposition to form an active layer. As a metal compound, it dissolves in an appropriate solvent,
It only needs to form a film when the solution is applied and dries.
For example, inorganic acid salts such as nitrates, organic acid salts such as acetates,
Complexes and organic metals with an alkyl group attached to the metal can be used. Although there are many compounds that can be used to form thin films using this method, the inventors found a mixture of manganese oxide and tin oxide as a compound that exhibits switching properties, and used this for the active layer.

作用 酸化マンガンと酸化スズの混合物薄膜は、マンガンとス
ズの化合物を溶媒に混合溶解して基体上に塗布、熱分解
させることにより容易に得られる。
A thin film of a mixture of functional manganese oxide and tin oxide can be easily obtained by mixing and dissolving a compound of manganese and tin in a solvent, coating the mixture on a substrate, and thermally decomposing the mixture.

この際、化合物と溶媒の組合せを考慮することにより非
常に安定な溶液とすることができ、インキとして長期間
の保存が可能である。このような形成法の導入により、
ディップ、スプレー、印刷などの工法を用いることがで
きるため、大面積にわたって均一な膜を生産性良く安価
に製造することができる。また、熱分解によって得られ
た薄膜は、その膜厚、電極間距離、組成などに依存して
閾値電圧や維持電流が変化するスイッチング特性を示し
、この特性の安定性は非常に良好である。
At this time, by considering the combination of the compound and the solvent, a very stable solution can be obtained and can be stored as an ink for a long period of time. By introducing such a formation method,
Since methods such as dipping, spraying, and printing can be used, a uniform film can be manufactured over a large area with high productivity and at low cost. In addition, the thin film obtained by pyrolysis exhibits switching characteristics in which the threshold voltage and sustaining current change depending on the film thickness, distance between electrodes, composition, etc., and the stability of these characteristics is very good.

実施例 以下に実施例をあげて本発明を説明する。Example The present invention will be explained below with reference to Examples.

(実施例1) 第2図に示したサンドイッチ型の素子を作るため、第1
表に示すような組成で酸化マンガンと酸化スズの混合物
薄膜形成用塗布液を調製した。マンガンとスズの化合物
として、成膜の非常に容易な2−エチルヘキサン酸塩を
使用し、溶媒はメチルインブチルケトンを使用した。電
極として金の薄膜を形成したガラス基板上に、これら塗
布液をスピンコードしたのち常温で乾燥し、大気中65
0°Cで60分間加熱焼成してアクティブ層を形成し、
さらにこの薄膜上に金の薄膜を形成した。これらの素子
の電圧印加時のI−4特性をカーブトレーサーで測定す
ると、第1図に示したよりなI −4曲線が得られる。
(Example 1) In order to make the sandwich type element shown in FIG.
A coating solution for forming a thin film of a mixture of manganese oxide and tin oxide was prepared with the composition shown in the table. As the compound of manganese and tin, 2-ethylhexanoate, which is very easy to form into a film, was used, and as the solvent, methyl in butyl ketone was used. These coating solutions were spin-coded onto a glass substrate on which a thin gold film was formed as an electrode, dried at room temperature, and exposed to air for 65 minutes.
The active layer is formed by heating and baking at 0°C for 60 minutes,
Furthermore, a gold thin film was formed on this thin film. When the I-4 characteristics of these elements when a voltage is applied are measured with a curve tracer, a sharp I-4 curve shown in FIG. 1 is obtained.

測定結果を第1表中に示すが、この表では第1図におけ
るvth(閾値電圧)と工th(閾値電流)及びVh 
(維持電圧)と工h(維持電流)を数値として示した。
The measurement results are shown in Table 1. In this table, vth (threshold voltage), th (threshold current) and Vh in FIG.
(maintenance voltage) and h (maintenance current) are shown as numerical values.

これらの値はすべて50t4zの周波数で掃引した時の
数値である。
These values are all values when swept at a frequency of 50t4z.

また、アクティブ層の厚みは、この薄膜の一部をエツチ
ングして段差を形成し、接触式の表面粗さ計で測定した
ものである。
The thickness of the active layer was measured by etching a part of this thin film to form a step and using a contact type surface roughness meter.

さらに、これら素子に対し、5田で±157の鋸波を印
加し特性の安定性を調べたところ、いずれにおいても連
続で10日間(400万回以上のスイッチングに相当す
る)の動作を行わせた後でも、第1表に示した数値に±
5チ以上の変動は認められず、その特性の安定性は実用
上充分であると考えられた。
Furthermore, when we applied a sawtooth wave of ±157 at 5°C to examine the stability of the characteristics, we found that all of these devices were operated continuously for 10 days (equivalent to over 4 million switching times). Even after
No fluctuation of more than 5 degrees was observed, and the stability of the properties was considered to be sufficient for practical use.

(以下余白) (実施例2) 実施例1と同様な組成の塗布液を用い、電極をスズをド
ープした酸化インジウム薄膜に置換えてサンドインチ型
の素子を構成した。電極以外の作成方法は、実施例1と
なったく同様である。これらのI−y特性をカーブトレ
ーサで測定すると、同様に第1図のようなI−V曲線が
得られ、この結果を第2表に示す。表中のサンプル磁は
第1表のそれに対応し、同一の隘のものは同じ塗布液で
アクティブ層を形成したことを示す。掃引周波数はcs
o)4zである。この表から、若干の変動はあるがほぼ
実施例1と同じ結果の得られることが分る。
(The following is a blank space) (Example 2) A sandwich-type element was constructed using a coating solution having the same composition as in Example 1, and replacing the electrode with a tin-doped indium oxide thin film. The manufacturing method other than the electrodes is the same as in Example 1. When these I-y characteristics were measured with a curve tracer, an IV curve as shown in FIG. 1 was similarly obtained, and the results are shown in Table 2. The sample magnets in the table correspond to those in Table 1, and the same ones indicate that the active layer was formed using the same coating solution. The sweep frequency is cs
o) 4z. From this table, it can be seen that almost the same results as in Example 1 were obtained, although there were some variations.

また、実施例1と同様な安定性の試験を行い、これらに
おいても約400万回以上のスイッチングの後でも特性
は安定していることを確認した。
Further, stability tests similar to those in Example 1 were conducted, and it was confirmed that the characteristics were stable even after switching approximately 4 million times or more.

(実施例3) ガラス基板上に金の薄膜を形成し、この薄膜を一部エッ
チングして幅が数十μの間隙を設け、これによって隔て
られた金薄膜を電極とし、この上に実施例1と同様の塗
布液を用いてアクティブ層を形成した。その形成条件は
実施例1と同様である。このようにして第3図に示した
ブレーナ型の素子を作成した。これらに直流電圧を印加
し、I−V特性を測定すると実施例1や2と同様に第1
図に示したようなI−4曲線が得られた。この結果を第
3表に示す。同様にサンプル座は実施例1の隘に対応す
る。サンドインチ型素子に比べ電極間間隔が大きいこと
に対応して閾値電圧が増大していることが分る。これら
においても特性の安定性は実用上充分であることを確認
した。
(Example 3) A thin gold film was formed on a glass substrate, a part of this thin film was etched to create a gap of several tens of microns in width, the gold thin film separated by this was used as an electrode, and the example was applied on top of this. An active layer was formed using the same coating solution as in Example 1. The formation conditions are the same as in Example 1. In this way, the Brehner type element shown in FIG. 3 was produced. When DC voltage was applied to these and the IV characteristics were measured, the first
An I-4 curve as shown in the figure was obtained. The results are shown in Table 3. Similarly, the sample locus corresponds to that of Example 1. It can be seen that the threshold voltage increases in response to the larger inter-electrode spacing compared to the sandwich type element. It was confirmed that the stability of the properties in these cases was sufficient for practical use.

(以下金 白) (実施例4) 直径I Illのステンレス線を実施例1の繊4の塗布
液中に浸漬し、約s myt / s、a cの速度で
引きあげたのち乾燥し、500’Cで9o分間加熱焼成
して、ステンレス線表面に酸化マンガンと酸化スズの混
合物薄膜を形成し、さらにこの膜表面に銀電極を形成し
て素子を構成した。このものでは掃引周波数s o H
zにおいてvthが12.8 v 、 IIhが0.3
mム、vhカ8. I V 、  Xhカ4.7 mA
 ノ、実施例1〜3と同様なスイッチング特性が見られ
た。
(hereinafter referred to as "gold white") (Example 4) A stainless steel wire with a diameter of I Ill was immersed in the coating solution of fiber 4 of Example 1, pulled up at a speed of about s myt/s, a c, and then dried for 500'. A thin film of a mixture of manganese oxide and tin oxide was formed on the surface of the stainless steel wire by heating at C for 90 minutes, and a silver electrode was further formed on the surface of this film to form an element. In this one, the sweep frequency s o H
At z, vth is 12.8 v, IIh is 0.3
Mmu, vhka8. IV, Xh power 4.7 mA
Switching characteristics similar to Examples 1 to 3 were observed.

なお、本実施例1〜4では用いた基体と電極材料の耐熱
性の点から焼成温度は600〜550’Cで行ったが、
例えばアルミナなどの耐熱性のある基体を用いる際には
この温度を基体の耐熱温度まで上げることができる。用
いる化合物についても、硝酸塩、硫酸塩などの無機酸塩
、酢酸塩などの有機酸塩、錯塩、金属アルコキシドなど
で適当な溶媒に溶解するものであれば、支障なく使用す
ることができる。また、電極材料としては本実施例以外
の銅、アルミニウム、亜鉛などの金属や、スズ酸カドミ
ウム、アンチモンをドープした酸化スズなどの導電性酸
化物、あるいはカーボンなども使用することができる。
In Examples 1 to 4, the firing temperature was 600 to 550'C in view of the heat resistance of the substrate and electrode materials used.
For example, when using a heat-resistant substrate such as alumina, this temperature can be raised to the heat-resistant temperature of the substrate. Regarding the compounds to be used, any inorganic acid salts such as nitrates and sulfates, organic acid salts such as acetates, complex salts, metal alkoxides, etc., which can be dissolved in an appropriate solvent, can be used without any problem. Further, as the electrode material, metals other than those used in this embodiment such as copper, aluminum, and zinc, conductive oxides such as cadmium stannate and antimony-doped tin oxide, or carbon can also be used.

発明の効果 以上のように本発明の非線形抵抗素子は、酸化マンガン
と酸化スズの混合物薄膜とこれから電気的リードを取る
ための電極とからなり、酸化マンガンと酸化スズの混合
物薄膜をマンガン化合物とスズ化合物を溶媒に溶解した
溶液を基体上に塗布し、乾燥後、大気中で加熱焼成する
ことによって形成するという方法で製造されることによ
り、スイッチング特性を有する非線形抵抗素子を生産性
良く安価に提供することができ、大面積にわたっても製
造が容易であるという点においてその実用的な有用性は
大きい。
Effects of the Invention As described above, the nonlinear resistance element of the present invention consists of a thin film of a mixture of manganese oxide and tin oxide and an electrode for taking electrical leads from the thin film of a mixture of manganese oxide and tin oxide. By applying a solution of a compound dissolved in a solvent onto a substrate, drying it, and then baking it in the atmosphere, it is possible to provide a nonlinear resistance element with switching characteristics at a high productivity and at a low cost. Its practical usefulness is great in that it can be easily manufactured even over a large area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の非線形抵抗素子の電流−電圧特性図、
第2図はサンドインチ型非線形抵抗素子の構造を示す断
面図、第3図はプレーナ型非線形抵抗素子の構造を示す
断面図である。 第1図 ■電光
FIG. 1 is a current-voltage characteristic diagram of the nonlinear resistance element of the present invention,
FIG. 2 is a sectional view showing the structure of a Sandinch type nonlinear resistance element, and FIG. 3 is a sectional view showing the structure of a planar type nonlinear resistance element. Figure 1 ■Lightning

Claims (2)

【特許請求の範囲】[Claims] (1)酸化マンガンと酸化スズの混合物薄膜と、この薄
膜から電気的リードを取るための電極とからなり、導電
性スイッチング特性を有することを特徴とする非線形抵
抗素子。
(1) A nonlinear resistance element comprising a thin film of a mixture of manganese oxide and tin oxide and an electrode for taking electrical leads from this thin film, and having conductive switching characteristics.
(2)マンガン化合物とスズ化合物を溶媒に溶解した溶
液を基体上に塗布し、乾燥した後、加熱、焼成すること
によって酸化マンガンと酸化スズの混合物薄膜を形成す
ることを特徴とする非線形抵抗素子の製造方法。
(2) A nonlinear resistance element characterized by forming a thin film of a mixture of manganese oxide and tin oxide by applying a solution of a manganese compound and a tin compound dissolved in a solvent onto a substrate, drying it, heating it, and baking it. manufacturing method.
JP60182066A 1985-08-20 1985-08-20 Nonlinear resistance element and manufacture of same Pending JPS6242575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182066A JPS6242575A (en) 1985-08-20 1985-08-20 Nonlinear resistance element and manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182066A JPS6242575A (en) 1985-08-20 1985-08-20 Nonlinear resistance element and manufacture of same

Publications (1)

Publication Number Publication Date
JPS6242575A true JPS6242575A (en) 1987-02-24

Family

ID=16111751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182066A Pending JPS6242575A (en) 1985-08-20 1985-08-20 Nonlinear resistance element and manufacture of same

Country Status (1)

Country Link
JP (1) JPS6242575A (en)

Similar Documents

Publication Publication Date Title
Kim et al. Layered (C6H5CH2NH3) 2CuBr4 perovskite for multilevel storage resistive switching memory
EP0272937B1 (en) Switching device
US4294520A (en) Electrochromic display device
CN109285640A (en) A kind of transparent conductive film and its preparation method and application
KR850006552A (en) Electrolytic electrode and manufacturing process
JPS6242582A (en) Nonlinear resistance element and manufacture of same
Singh et al. Performance analysis and read voltage optimization of E-beam evaporated amorphous SnO $ _ {\text {2}} $-based cross-cell resistive switching device
JPS6242575A (en) Nonlinear resistance element and manufacture of same
JPS6242584A (en) Nonlinear resistance element and manufacture of same
JPS6242579A (en) Nonlinear resistance element and manufacture of same
JPS6242576A (en) Nonlinear resistance element and manufacture of same
JPS6242574A (en) Nonlinear resistance element and manufacture of the same
JPS6242577A (en) Nonlinear resistance element and manufacture of same
JPS6242580A (en) Nonlinear resistance element and manufacture of same
JPS6242578A (en) Nonlinear resistance element and manufacture of same
JPS6242583A (en) Nonlinear resistance element and manufacture of same
JPS6242581A (en) Nonlinear resistance element and manufacture of same
JPS62242311A (en) Nonlinear resistance element and manufacture of the same
JPS62242314A (en) Nonlinear resistance element and manufacture of the same
US10309026B2 (en) Stabilization of metallic nanowire meshes via encapsulation
JPS62242313A (en) Nonlinear resistance element and manufacture of the same
CN108475729A (en) Solid maqting type photo-electric conversion element and its manufacturing method
JPS62242312A (en) Nonlinear resistance element and manufacture of the same
CN108232011B (en) Amorphous strontium titanate thin-film device and preparation method thereof
KR102233811B1 (en) Organic thin film transistor and method for manufacturing same