JPS62242313A - Nonlinear resistance element and manufacture of the same - Google Patents

Nonlinear resistance element and manufacture of the same

Info

Publication number
JPS62242313A
JPS62242313A JP61085366A JP8536686A JPS62242313A JP S62242313 A JPS62242313 A JP S62242313A JP 61085366 A JP61085366 A JP 61085366A JP 8536686 A JP8536686 A JP 8536686A JP S62242313 A JPS62242313 A JP S62242313A
Authority
JP
Japan
Prior art keywords
oxide
thin film
nonlinear resistance
resistance element
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61085366A
Other languages
Japanese (ja)
Inventor
和之 岡野
洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61085366A priority Critical patent/JPS62242313A/en
Publication of JPS62242313A publication Critical patent/JPS62242313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、導電性スイッチングのような機能を備えた非
線形抵抗素子およびその製造方法に関するものであり、
エレクトロニクス産業において利用できる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonlinear resistance element having a function such as conductive switching and a method for manufacturing the same.
Can be used in the electronics industry.

従来の技術 導電性スイッチングを行うような非線形抵抗素子は0V
ONIC素子として知られ、主にカルコゲン元素からな
る非晶質半導体をその材料として用いている。また、遷
移金属の酸化物においてもこれと同様な電気的性質の見
られることが知られ、ヘマタイト、マグネタイト、ニッ
ケルフェライト。
Conventional technology Non-linear resistance elements such as conductive switching are 0V
It is known as an ONIC element and uses an amorphous semiconductor mainly composed of chalcogen elements as its material. Similar electrical properties are also known to be observed in transition metal oxides, such as hematite, magnetite, and nickel ferrite.

ニッケル亜鉛フェライト、酸化ニッケルなどが報告され
ている。これら従来の非線形抵抗素子では、材料が薄膜
や焼結体の形で利用されているが、閾値電圧の低さなど
の点から薄膜で構成するのが有利であり、比較的安定な
特性を示す非晶質半導体の素子ではほとんどが薄膜型で
ある。
Nickel zinc ferrite, nickel oxide, etc. have been reported. These conventional nonlinear resistance elements use materials in the form of thin films or sintered bodies, but it is advantageous to construct them with thin films from the viewpoint of low threshold voltage, and they exhibit relatively stable characteristics. Most amorphous semiconductor devices are of the thin film type.

これの基本的な構造を第2図と第3図に示す。The basic structure of this is shown in FIGS. 2 and 3.

このように、形成した膜を膜厚の方向で使用するサンド
イッチ型(第2図)と膜をその表面方向で使用するプレ
ーナ型(第3図)に分けることができる。いずれの場合
も、アクティブ層は真空蒸着やスパッタで形成されるの
が普通である。
As described above, it can be divided into a sandwich type (FIG. 2) in which the formed film is used in the direction of its thickness and a planar type (FIG. 3) in which the film is used in the direction of its surface. In either case, the active layer is usually formed by vacuum evaporation or sputtering.

第2図において、1および3は電極、2はアク3 ・=
ン ティプ層、4は基体である。また、第3図において、5
はアクティブ層、6および7は電極、8は基体である。
In Fig. 2, 1 and 3 are electrodes, 2 is electrode 3 ・=
4 is a substrate. Also, in Figure 3, 5
is an active layer, 6 and 7 are electrodes, and 8 is a substrate.

発明が解決しようとする問題点 前述のように、従来のスイッチング特性を示す非線形抵
抗素子ではそのアクティブ層を真空法で形成するため、
製造上の歩留りや生産性において不利であるばかりでな
く、例えば非常に大きな基体上に素子を構成する必要の
あるような用途に対しては、コストが高くなるなどの理
由でこれに対応することができ々い。本発明の目的は、
このような問題点を解決したスイッチング特性を持つ非
線形抵抗素子とその製造方法を提供し、これらの素子を
生産性良く安価に製造できるようにすることである。
Problems to be Solved by the Invention As mentioned above, in conventional nonlinear resistance elements exhibiting switching characteristics, the active layer is formed by a vacuum method.
This is not only disadvantageous in terms of manufacturing yield and productivity, but also increases costs for applications that require devices to be constructed on very large substrates. I can do it. The purpose of the present invention is to
It is an object of the present invention to provide a nonlinear resistance element having switching characteristics that solves these problems, and a method for manufacturing the same, so that these elements can be manufactured with high productivity and at low cost.

問題点を解決するだめの手段 上記目的を達成するため、本発明ではアクティブ層を形
成するのに金属化合物の溶液の塗布、熱分解という手法
を取入れた。また、金属化合物としては、適当な溶媒に
溶け、溶液を塗布乾燥した時に膜状になるものであれば
何を用いてもよい。
Means for Solving the Problems In order to achieve the above object, the present invention adopts a method of applying a solution of a metal compound and thermal decomposition to form an active layer. Furthermore, any metal compound may be used as long as it dissolves in a suitable solvent and forms a film when the solution is applied and dried.

例えば、硝酸塩などの無機酸塩、酢酸塩などの有機酸塩
、錯体および金属にアルキル基の付いた有機金属々どを
用いることができる。このような方法で薄膜を形成でき
る化合物は多いが、発明者らはこのなかからスイッチン
グ特性を呈する化合物として酸化マンガン、酸化ビスマ
スおよび酸化スズの混合物を見出し、これをアクティブ
層に用いた。
For example, inorganic acid salts such as nitrates, organic acid salts such as acetates, complexes, and organic metals having an alkyl group attached to the metal can be used. There are many compounds that can be used to form thin films using this method, but the inventors found a mixture of manganese oxide, bismuth oxide, and tin oxide as a compound that exhibits switching properties, and used this for the active layer.

作用 本発明によれば、酸化マンガン、酸化ビスマスおよび酸
化スズの混合物薄膜は、マンガン、ビスマスおよびスズ
の化合物を溶媒に混合溶解して基体上に塗布、熱分解さ
せることにより容易に得ることができる。この際、化合
物と溶媒の組合せを適当に考慮することにより非常に安
定′fr、溶液とすることができ、インキとして長期間
の保存が可能である。このよう々形成法の導入により、
ディップ、スプレー、印刷などの工法を用いることがで
きるため、大面積にわたり均一な膜を生産性良く5 + 安価に製造することができる。また、熱分解によって得
られた薄膜は、その膜厚、電極間距離、組成などに依存
して閾値電圧や維持電流が変化するスイッチング特性を
示し、この特性の安定性は非常に良好である。
According to the present invention, a thin film of a mixture of manganese oxide, bismuth oxide, and tin oxide can be easily obtained by dissolving a mixture of manganese, bismuth, and tin compounds in a solvent, coating the mixture on a substrate, and thermally decomposing the mixture. . At this time, by appropriately considering the combination of compound and solvent, a very stable solution can be obtained and can be stored as an ink for a long period of time. With the introduction of this formation method,
Since methods such as dipping, spraying, and printing can be used, a uniform film can be produced over a large area with good productivity and at low cost. In addition, the thin film obtained by pyrolysis exhibits switching characteristics in which the threshold voltage and sustaining current change depending on the film thickness, distance between electrodes, composition, etc., and the stability of these characteristics is very good.

実施例 以下に実施例をあげて本発明の詳細な説明する。Example The present invention will be described in detail below with reference to Examples.

〈実施例1〉 第2図に示したサンドイッチ型の素子を作るため、下記
の第1表に示すような組成で酸化マンガン、酸化ビスマ
スおよび酸化スズの混合物薄膜形成用塗布液を調製した
。ここで、マンガン、ビスマスおよびスズの化合物とし
て、成膜の非常に容易な2−エチルヘキサン酸塩を使用
し、溶媒はメチルイソブチルケトンを使用した。そして
、電極として金の薄膜を形成したガラス基板上にこれら
塗布液をスピンコードしたのち常温で乾燥し、大気中5
50’Cで60分間加熱焼成してアクティブ層を形成し
、さらにこの薄膜上に金の薄膜を形成した。これらの素
子の電圧印加時のI−V特性をカーブトレーサーで測定
すると、第1図に示したよう々ニー■曲線が得られる。
<Example 1> In order to make the sandwich type element shown in FIG. 2, a coating solution for forming a thin film of a mixture of manganese oxide, bismuth oxide and tin oxide was prepared with the composition shown in Table 1 below. Here, 2-ethylhexanoate, which is very easy to form into a film, was used as the compound of manganese, bismuth, and tin, and methyl isobutyl ketone was used as the solvent. These coating solutions were spin-coded onto a glass substrate on which a thin gold film was formed as an electrode, dried at room temperature, and exposed to air for 50 minutes.
An active layer was formed by heating and baking at 50'C for 60 minutes, and a gold thin film was further formed on this thin film. When the IV characteristics of these elements are measured with a curve tracer when a voltage is applied, a knee curve as shown in FIG. 1 is obtained.

測定結果を同じく下記の第1表中に示すが、この表では
第1図におけるvth(閾値電圧)と工th(閾値電流
)およびvh(維持電圧)とIh(維持電流)を数値と
して示した。これらの値はすべて60)lzの周波数で
掃引した時の数値である。また、アクティブ層の厚みは
、この薄膜の一部をエツチングして段差を形成し、接触
式の表面粗さ計で測定したものである。
The measurement results are also shown in Table 1 below, which shows vth (threshold voltage), Eth (threshold current), vh (sustaining voltage), and Ih (maintaining current) in Figure 1 as numerical values. . All these values are values when swept at a frequency of 60) lz. The thickness of the active layer was measured by etching a part of this thin film to form a step and using a contact type surface roughness meter.

(以下余白) 7・ −7 9・・−1 さらに、これら素子に対し、sHzで±15vの鋸波を
印加し特性の安定性を調べたところ、いずれにおいても
連続で1Q日間(400万回以上のスイッチングに相当
する)の動作を行わせた後でも、第1表に示した数値に
±5%以上の変動は認められず、その特性の安定性は実
用上充分であると考えられた。
(Left below) 7. -7 9..-1 Furthermore, we applied a sawtooth wave of ±15V at sHz to these devices to examine the stability of their characteristics. Even after performing the above-mentioned switching operations, no fluctuations of more than ±5% were observed in the values shown in Table 1, and the stability of the characteristics was considered to be sufficient for practical use. .

〈実施例2〉 実施例1と同様な組成の塗布液を用い、電極をスズをド
ープした酸化インジウム薄膜に置換えてサンドインチ型
の素子を構成した。電極以外の作成方法は、実施例1と
まったく同様である。これらのI−V特性をカーブトレ
ーサで測定すると、同様に第1図のようなI −V曲線
が得られ、この結果を下記の第2表に示す。表中のサン
プル蔦は第1表のそれに対応し、同一の届のものは同じ
塗布液でアクティブ層を形成したことを示す。寸だ、掃
引周波数は6oHzである。
<Example 2> Using a coating liquid having the same composition as in Example 1, a sandwich-type element was constructed by replacing the electrode with an indium oxide thin film doped with tin. The manufacturing method except for the electrodes is exactly the same as in Example 1. When these IV characteristics were measured with a curve tracer, IV curves as shown in FIG. 1 were similarly obtained, and the results are shown in Table 2 below. The samples in the table correspond to those in Table 1, and the same samples indicate that the active layer was formed using the same coating solution. The sweep frequency is 6oHz.

く第2表〉 11 ・ −1 この表から、若干の変動はあるがほぼ実施例1と同じ結
果の得られることが分る。また、実施例1と同様な安定
性の試験を行い、これらにおいても約400万回以上の
スイッチングの後でも特性は安定していることを確認し
た。
Table 2 11.-1 From this table, it can be seen that almost the same results as in Example 1 were obtained, although there were some variations. Further, stability tests similar to those in Example 1 were conducted, and it was confirmed that the characteristics were stable even after switching approximately 4 million times or more.

〈実施例3〉 ガラス基板上に金の薄膜を形成し、この薄膜を一部エッ
チングして幅が数十μの間隙を設け、これによって隔て
られた金薄膜を電極とし、この上に実施例1と同様の塗
布液を用いてアクティブ層を形成した。その形成条件は
実施例1と同様である。このようにして第3図に示した
プレーナ型の素子を作成した。これらに直流電圧を印加
し、ニー■特性を測定すると実施例1や2と同様に第1
図に示したまうなI−V曲線が得られた。この結果を下
記の第3表に示す。この第3表でも同様にサンプル屋は
実施例1の煮に対応する。
<Example 3> A thin gold film was formed on a glass substrate, a part of this thin film was etched to create a gap of several tens of microns in width, the gold thin film separated by this was used as an electrode, and the Example was placed on top of this. An active layer was formed using the same coating solution as in Example 1. The formation conditions are the same as in Example 1. In this way, the planar type element shown in FIG. 3 was produced. When applying a DC voltage to these and measuring the knee characteristics, the first
A beautiful IV curve shown in the figure was obtained. The results are shown in Table 3 below. Similarly, in this third table, the sample shop corresponds to the boil in Example 1.

(以下余白) 〈第3表〉 13、+−。(Margin below) <Table 3> 13, +-.

このプレーナ型の実施例3では、サンドイッチ型素子に
比べ電極間間隔が大きいことに対応して閾値電圧が増大
していることが分る。これらにおいても特性の安定性は
実用上充分であることを確認した。
It can be seen that in this planar type Example 3, the threshold voltage increases in response to the larger inter-electrode spacing compared to the sandwich type element. It was confirmed that the stability of the properties in these cases was sufficient for practical use.

〈実施例4〉 直径1mのステンレス線を実施例1の/I6.8の塗布
液中に浸漬し、約5g/secの速度で引きあげたのち
乾燥し、5oo℃で90分間加熱焼成して。
<Example 4> A stainless steel wire with a diameter of 1 m was immersed in the /I6.8 coating solution of Example 1, pulled up at a rate of about 5 g/sec, dried, and fired at 50° C. for 90 minutes.

ステンレス線表面に酸化マンガン、酸化ビスマスおよび
酸化スズの混合物薄膜を形成し、さらにこの膜表面に銀
電極を形成して素子を構成した。このものでは掃引周波
数50Hzにおいてvthが7.5v1工thが0.5
 mA 、  Vhが2.3 V 、 Ihが2.0m
Aの、実施例1〜3と同様なスイッチング特性が見られ
た。
A thin film of a mixture of manganese oxide, bismuth oxide, and tin oxide was formed on the surface of a stainless steel wire, and a silver electrode was further formed on the surface of this film to construct a device. In this case, at a sweep frequency of 50Hz, vth is 7.5v1 th is 0.5
mA, Vh is 2.3 V, Ih is 2.0 m
A switching characteristic similar to that of Examples 1 to 3 was observed.

なお、本実施例1〜4では、用いた基体と電極材料の耐
熱性の点から焼成温度は500〜550℃で行ったが、
例えばアルミナなどの耐熱性のあJ簾体を用いる際には
この温度を基体の耐熱温度まで上げることができる。寸
だ、用いる化合物についても、硝酸塩、硫酸塩々どの無
機酸塩、酢酸塩などの有機酸塩、錯塩、金属アルコキシ
ドなどで適当な溶媒に溶解するものであれば、支障なく
使用することができる。さらに、電極材料としては本実
施例以外の銅、アルミニウム、亜鉛などの金属や、スズ
酸カドミウム、アンチモンをドープした酸化スズなどの
導電性酸化物、あるいはカー酸化マンガン、酸化ビスマ
スおよび酸化スズの混合物薄膜とこれから電気的リード
を取るための電極とからなり、酸化マンガン、酸化ビス
マスおよび酸化スズの混合物薄膜をマンガン化合物、ビ
スマス化合物およびスズ化合物を溶媒に混合溶解した溶
液を基体上に塗布し、乾燥後、大気中で加熱焼成するこ
とによって形成するという方法で製造されることにより
、スイッチング特性を有する非線形抵抗素子を、生産性
良く安価に提供することができ、大面積にわたっても製
造が容易であると15、、−7 いう点においてその実用的な有用性は大きい。
In Examples 1 to 4, the firing temperature was 500 to 550°C from the viewpoint of the heat resistance of the substrate and electrode materials used.
For example, when using a heat-resistant glass such as alumina, this temperature can be raised to the heat-resistant temperature of the base. As for the compounds used, as long as they are soluble in an appropriate solvent, such as inorganic acid salts such as nitrates and sulfates, organic acid salts such as acetates, complex salts, and metal alkoxides, they can be used without any problems. . Furthermore, electrode materials may include metals other than those used in this example, such as copper, aluminum, and zinc, conductive oxides such as tin oxide doped with cadmium stannate, and antimony, or mixtures of manganese oxide, bismuth oxide, and tin oxide. Consisting of a thin film and an electrode for taking electrical leads from it, a thin film of a mixture of manganese oxide, bismuth oxide, and tin oxide is coated on a substrate with a solution of a manganese compound, a bismuth compound, and a tin compound mixed and dissolved in a solvent, and then dried. After that, by heating and firing in the atmosphere, a nonlinear resistance element with switching characteristics can be provided at low cost with high productivity, and it is easy to manufacture even over a large area. 15,,-7, its practical usefulness is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の非線形抵抗素子の電流−電圧特性を示
す図、第2図はサンドイッチ型素子の構造を示す断面図
、第3図はプレーナ型素子の構造を示す断面図である。 2. 、!; 、11.了27−17・層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 工電武
FIG. 1 is a diagram showing the current-voltage characteristics of the nonlinear resistance element of the present invention, FIG. 2 is a sectional view showing the structure of a sandwich type element, and FIG. 3 is a sectional view showing the structure of a planar type element. 2. ,! ; , 11. 27-17 layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Zuko Denbu

Claims (2)

【特許請求の範囲】[Claims] (1)酸化マンガン、酸化ビスマスおよび酸化スズの混
合物薄膜と、これから電気的リードを取るための電極と
からなり、導電性スイッチング特性を有することを特徴
とする非線形抵抗素子。
(1) A nonlinear resistance element comprising a thin film of a mixture of manganese oxide, bismuth oxide, and tin oxide and an electrode for taking electrical leads therefrom, and having conductive switching characteristics.
(2)マンガン化合物、ビスマス化合物およびスズ化合
物を溶媒に混合溶解した溶液を基体上に塗布し、乾燥し
た後、加熱、焼成することによって酸化マンガン、酸化
ビスマスおよび酸化スズの混合物薄膜を形成することを
特徴とする非線形抵抗素子の製造方法。
(2) Forming a thin film of a mixture of manganese oxide, bismuth oxide, and tin oxide by applying a solution of a manganese compound, bismuth compound, and tin compound mixed and dissolved in a solvent onto a substrate, drying, heating, and baking. A method of manufacturing a nonlinear resistance element characterized by:
JP61085366A 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same Pending JPS62242313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61085366A JPS62242313A (en) 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61085366A JPS62242313A (en) 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS62242313A true JPS62242313A (en) 1987-10-22

Family

ID=13856717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61085366A Pending JPS62242313A (en) 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS62242313A (en)

Similar Documents

Publication Publication Date Title
KR840007609A (en) Electrolytic electrode and its manufacturing method
KR850006552A (en) Electrolytic electrode and manufacturing process
US3397446A (en) Thin film capacitors employing semiconductive oxide electrolytes
JPS6242582A (en) Nonlinear resistance element and manufacture of same
JPS6242584A (en) Nonlinear resistance element and manufacture of same
JPS62242313A (en) Nonlinear resistance element and manufacture of the same
JPS62242314A (en) Nonlinear resistance element and manufacture of the same
JPS62242311A (en) Nonlinear resistance element and manufacture of the same
JPS6242579A (en) Nonlinear resistance element and manufacture of same
JPS62242312A (en) Nonlinear resistance element and manufacture of the same
JPS6242583A (en) Nonlinear resistance element and manufacture of same
JPS6242578A (en) Nonlinear resistance element and manufacture of same
JPS6242577A (en) Nonlinear resistance element and manufacture of same
JPS6242574A (en) Nonlinear resistance element and manufacture of the same
JPS6242581A (en) Nonlinear resistance element and manufacture of same
GB1593898A (en) Photovoltaic device
JPS6242580A (en) Nonlinear resistance element and manufacture of same
JPS6242575A (en) Nonlinear resistance element and manufacture of same
JPS6242576A (en) Nonlinear resistance element and manufacture of same
Taketa et al. Switching and oscillation phenomena in SnO2‐VOx‐PdO ceramics
JPS60220505A (en) Transparent conductive film and method of forming same
Mirzapour et al. Dependence of structural, electrical and optical properties of undoped indium oxide films on thickness
Pulvari et al. A new graded electrode for forming intimate contact with ferroelectrics
Gogoi et al. Sol-Gel Derived Dip Coated ZnO–La2O3 Thin Film Transistors
JPS639327B2 (en)