JPS62242314A - Nonlinear resistance element and manufacture of the same - Google Patents

Nonlinear resistance element and manufacture of the same

Info

Publication number
JPS62242314A
JPS62242314A JP61085367A JP8536786A JPS62242314A JP S62242314 A JPS62242314 A JP S62242314A JP 61085367 A JP61085367 A JP 61085367A JP 8536786 A JP8536786 A JP 8536786A JP S62242314 A JPS62242314 A JP S62242314A
Authority
JP
Japan
Prior art keywords
oxide
thin film
nonlinear resistance
resistance element
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61085367A
Other languages
Japanese (ja)
Inventor
和之 岡野
洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61085367A priority Critical patent/JPS62242314A/en
Publication of JPS62242314A publication Critical patent/JPS62242314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、導電性スイッチングのような機能を備えた非
線形抵抗素子およびその製造方法に関するものであり、
エレクトロニクス産業において利用できる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nonlinear resistance element having a function such as conductive switching and a method for manufacturing the same.
Can be used in the electronics industry.

従来の技術 導電性スイッチングを行うような非線形抵抗素子は0V
ONIC素子として知られ、主にカルコゲン元素からな
る非晶質半導体をその材料として用いている。また、遷
移金属の酸化物においてもこれと同様な電気的性質の兄
られることか知られ、ヘマタイト、マグネタイト、ニッ
ケルフェライト、ニッケル亜鉛フェライト、酸化ニッケ
ルなどが報告されている。これら従来の非線形抵抗素子
では、材料が薄膜や焼結体の形で利用されているが、N
値電圧の低さなどの点から薄膜で構成するのが有利であ
り、比較的安定な特性を示す非晶質半導体の素子ではほ
とんどが薄膜型である。
Conventional technology Non-linear resistance elements such as conductive switching are 0V
It is known as an ONIC element and uses an amorphous semiconductor mainly composed of chalcogen elements as its material. It is also known that transition metal oxides have similar electrical properties, such as hematite, magnetite, nickel ferrite, nickel zinc ferrite, and nickel oxide. In these conventional nonlinear resistance elements, materials are used in the form of thin films or sintered bodies, but N
It is advantageous to use a thin film from the viewpoint of low voltage value, and most amorphous semiconductor devices exhibiting relatively stable characteristics are of the thin film type.

これの基本的な構造を第2図と第3図に示す。The basic structure of this is shown in FIGS. 2 and 3.

このように、形成した膜を膜厚の方向で使用するサンド
イッチ型(第2図)と膜をその表面方向で使用するブレ
ーナ型(第3図)に分けることができる。いずれの場合
も、アクティブ層は真空蒸着やスパッタで形成されるの
が普通である。
As described above, it can be divided into a sandwich type (FIG. 2) in which the formed film is used in the direction of the film thickness and a Brenna type (FIG. 3) in which the film is used in the direction of its surface. In either case, the active layer is usually formed by vacuum evaporation or sputtering.

第2図1でおいて、1および3は電極、2はアクティブ
層、4は基体である。また、第3図において、5はアク
ティブ層、6および7は電極、8は基体である。
In FIG. 2, 1 and 3 are electrodes, 2 is an active layer, and 4 is a substrate. Further, in FIG. 3, 5 is an active layer, 6 and 7 are electrodes, and 8 is a base.

発明が解決しようとする問題点 前述のように、従来のスイッチング特性を示す非線形抵
抗素子ではそのアクティブ層を真空法で形成するため、
製造上の歩留りや生産性において不利であるばかりでな
く、例えば非常に大きな基体上に素子を構成する必要の
あるような用途に対しては、コストが高く々るなどの理
由でこれに対応することができない。本発明の目的は、
このような問題点を解決したスイッチング特性を持つ非
線形抵抗素子とその製造方法を提供し、これらの素子を
生産性良く安価に製造できるようにすることである。
Problems to be Solved by the Invention As mentioned above, in conventional nonlinear resistance elements exhibiting switching characteristics, the active layer is formed by a vacuum method.
Not only is this disadvantageous in terms of manufacturing yield and productivity, but it is also expensive for applications that require devices to be constructed on very large substrates. I can't. The purpose of the present invention is to
It is an object of the present invention to provide a nonlinear resistance element having switching characteristics that solves these problems, and a method for manufacturing the same, so that these elements can be manufactured with high productivity and at low cost.

問題点を解決するだめの手段 上記目的を達成するため、本発明ではアクティブ層を形
成するのに金属化合物の溶液の塗布、熱分解という手法
を取入れた。また、金属化合物としては、適当な溶媒に
溶け、溶液を塗布乾燥した時に膜状になるものであれば
何を用いてもよい。
Means for Solving the Problems In order to achieve the above object, the present invention adopts a method of applying a solution of a metal compound and thermal decomposition to form an active layer. Furthermore, any metal compound may be used as long as it dissolves in a suitable solvent and forms a film when the solution is applied and dried.

例えば、硝酸塩などの無機酸塩、酢酸塩などの有機酸塩
、錯体および金属にアルキル基の付いた有機金属などを
用いることができる。このような方法で薄膜を形成でき
る化合物は多いが、発明者らはこのなかからスイッチン
グ特性を呈する化合物として酸化マンガン、酸化ニッケ
ルおよび酸化ビスマスの混合物を見出し、これをアクテ
ィブ層に用いた。
For example, inorganic acid salts such as nitrates, organic acid salts such as acetates, complexes, and organic metals with an alkyl group attached to the metal can be used. There are many compounds that can be used to form thin films using this method, but the inventors discovered a mixture of manganese oxide, nickel oxide, and bismuth oxide as a compound that exhibits switching properties, and used this for the active layer.

作用 本発明によれば、酸化マンガン、酸化ニッケルおよび酸
化ビスマスの混合物薄膜は、マンガン、ニッケルおよび
ビスマスの化合物を溶媒に混合溶解して基体上に塗布、
熱分解させることにより容易に得られる。この際、化合
物と溶媒の組合せを考慮することにより非常に安定な溶
液とすることができ、インキと1−で長期間の保存が可
能である。
According to the present invention, a thin film of a mixture of manganese oxide, nickel oxide and bismuth oxide is prepared by mixing and dissolving compounds of manganese, nickel and bismuth in a solvent and coating the mixture on a substrate.
It is easily obtained by thermal decomposition. At this time, by considering the combination of the compound and the solvent, a very stable solution can be obtained, and the ink and 1- can be stored for a long period of time.

このような形成法の導入にエリ、ディップ、スプレー、
印刷などの工法を用いることができるため、5 ・、−
7 大面積にわたって均一な膜を生産性良く安価に製造する
ことができる。また、熱分解によって得られた薄膜は、
その膜厚、電極間距離、組成などに依存して閾値電圧や
維持電流が変化するスイッチング特性を示し、この特性
の安定性は非常に良好である。
In order to introduce such formation methods, dip, dip, spray,
Since construction methods such as printing can be used, 5 ・, −
7. A uniform film can be manufactured over a large area with high productivity and at low cost. In addition, the thin film obtained by pyrolysis is
It exhibits switching characteristics in which the threshold voltage and sustaining current change depending on the film thickness, distance between electrodes, composition, etc., and the stability of these characteristics is very good.

実施例 以下に実施例をあげて本発明の詳細な説明する。Example The present invention will be described in detail below with reference to Examples.

〈実施例1〉 第2図に示したサンドイッチ型の素子を作るため、下記
の第1表に示すような組成で酸化マンガン、酸化ニッケ
ルおよび酸化ビスマスの混合物薄膜形成用塗布液を調製
した。ここで、マンガン、ニッケルおよびビスマスの化
合物として、成膜の非常に容易な2−エチルヘキサン酸
塩を使用し、溶媒はメチルイソブチルケトンを使用した
。そして、電極として金の薄膜を形成したガラス基板上
にこれら塗布液をスピンコードしたのち常温で乾燥し、
大気中550″Cで60分間加熱焼成してアクティブ層
を形成し、さらにこの薄膜上に金の薄膜を形成した。こ
れらの素子の電圧印加時のI−v特性をカーブトレーサ
ーで測定すると、第1図に示したようなニー■曲線が得
られる。測定結果を同じく下記の第1表中に示すが、こ
の表では第1図におけるvth (閾値電圧)と工th
(閾値電流)およびvh(維持電圧)と工h(維持電流
)を数値として示した。これらの値はすべて5012の
周波数で掃引した時の数値である。また、アクティブ層
の厚みは、この薄膜の一部をエツチングして段差を形成
し、接触式の表面粗さ計で測定したものである。
<Example 1> In order to make the sandwich type element shown in FIG. 2, a coating solution for forming a thin film of a mixture of manganese oxide, nickel oxide and bismuth oxide was prepared with the composition shown in Table 1 below. Here, 2-ethylhexanoate, which is very easy to form into a film, was used as the compound of manganese, nickel, and bismuth, and methyl isobutyl ketone was used as the solvent. Then, these coating solutions were spin-coded onto a glass substrate on which a thin gold film was formed as an electrode, and then dried at room temperature.
An active layer was formed by heating and baking at 550"C for 60 minutes in the air, and a thin gold film was further formed on this thin film. When the I-v characteristics of these devices were measured with a curve tracer when voltage was applied, A knee curve as shown in Figure 1 is obtained.The measurement results are also shown in Table 1 below, but in this table, vth (threshold voltage) and
(threshold current), vh (sustaining voltage), and h (maintaining current) are shown as numerical values. These values are all obtained when swept at a frequency of 5012. The thickness of the active layer was measured by etching a part of this thin film to form a step and using a contact type surface roughness meter.

(以下余白) 71、−1 9.、、−。(Margin below) 71, -1 9. ,,-.

さらに、これら素子に対し、S[Zで±15vの鋸波を
印加し特性の安定性を調べたところ、いずれにおいても
連続で10日間(400万回以上のスイッチングに相当
する)の動作を行わせた後でも、第1表に示した数値に
±6%以上の変動は認められず、その特性の安定性は実
用上充分であると考えられた。
Furthermore, we applied a sawtooth wave of ±15 V at S[Z to these devices to examine the stability of their characteristics. Even after adjusting the temperature, no fluctuation of more than ±6% was observed in the values shown in Table 1, and the stability of the properties was considered to be sufficient for practical use.

〈実施例2〉 実施例1と同様な組成の塗布液を用い、電極をスズをド
ープした酸化インジウム薄膜に置換えてサンドインチ型
の素子を構成した。電極以外の作成方法は、実施例1と
まったく同様である。これらのニーv特性をカーブトレ
ーサで測定すると、同様に第1図のようなI−V曲線が
得られ、この結果を下記の第2表に示す。表中のサンプ
ル陽は第1表のそれに対応し、同一の陽のものは同じ塗
布液でアクティブ層を形成したことを示す。また、掃引
周波数は50flzである。
<Example 2> Using a coating liquid having the same composition as in Example 1, a sandwich-type element was constructed by replacing the electrode with an indium oxide thin film doped with tin. The manufacturing method except for the electrodes is exactly the same as in Example 1. When these knee v characteristics were measured with a curve tracer, an IV curve as shown in FIG. 1 was similarly obtained, and the results are shown in Table 2 below. Sample numbers in the table correspond to those in Table 1, and the same numbers indicate that the active layer was formed using the same coating solution. Further, the sweep frequency is 50flz.

〈第2表〉 11 、(−5 この表から、若干の変動はあるがほぼ実施例1と同じ結
果の得られることが分る。また、実施例1と同様な安定
性の試験を行い、これらにおいても約400万回以上の
スイッチングの後でも特性は安定していることを確認し
た。
<Table 2> 11, (-5) From this table, it can be seen that although there are some variations, almost the same results as in Example 1 are obtained. In addition, the same stability test as in Example 1 was conducted, It was confirmed that the characteristics of these devices remained stable even after switching over approximately 4 million times.

〈実施例3〉 ガラス基板上に金の薄膜を形成し、この薄膜を一部エッ
チングして幅が数十μの間隙を設け、これによって隔て
られた金薄膜を電極とし、この上に実施例1と同様の塗
布液を用いてアクティブ層を形成した。その形成条件は
実施例1と同様である。このようにして第3図に示した
プレーナ型の素子を作成した。これらに直流電圧を印加
し、I−V特性を測定すると実施例1や2と同様に第1
図に示したよりなニー7曲線が得られた。この結果を下
記の第3表に示す。この第3表でも同様にサンプルNo
は実施例1のNo、に対応する。
<Example 3> A thin gold film was formed on a glass substrate, a part of this thin film was etched to create a gap of several tens of microns in width, the gold thin film separated by this was used as an electrode, and the Example was placed on top of this. An active layer was formed using the same coating solution as in Example 1. The formation conditions are the same as in Example 1. In this way, the planar type element shown in FIG. 3 was produced. When DC voltage was applied to these and the IV characteristics were measured, the first
A sharp knee 7 curve shown in the figure was obtained. The results are shown in Table 3 below. Similarly in this third table, sample No.
corresponds to No in the first embodiment.

(以下余 白) 〈第3表〉 13、、− このブレーナ型の実施例3では、サンドイッチ型素子に
比べ電極間間隔が大きいことに対応して閾値電圧が増大
していることが分る。これらにおいても特性の安定性は
実用上光分であることを確認した。
(The following is a margin) <Table 3> 13. It can be seen that in this Brehner-type Example 3, the threshold voltage increases in response to the larger inter-electrode spacing compared to the sandwich-type element. It was confirmed that the stability of the characteristics in these cases is practically equivalent to that of light.

〈実施例4〉 直径1聰のステンレス線を実施例1の111o8の塗布
液中に浸漬し、約5 mx / secの速度で引きあ
げたのち乾燥し、500’Cで90分間加熱焼成して、
ステンレス線表面に酸化マンガン、酸化ニッケルおよび
酸化ビスマスの混合物薄膜を形成し、さらにこの膜表面
に銀電極を形成して素子を構成した。
<Example 4> A stainless steel wire with a diameter of 1 thick was immersed in the 111o8 coating solution of Example 1, pulled up at a speed of about 5 mx/sec, dried, and fired at 500'C for 90 minutes.
A thin film of a mixture of manganese oxide, nickel oxide, and bismuth oxide was formed on the surface of a stainless steel wire, and a silver electrode was further formed on the surface of this film to construct an element.

このものでは掃引周波数50Hzにおいてvthが6.
9V、 Ithが1.1 mA 、 vhカ5.5 V
 、 Ihカ1.4mAの、実施例1〜3と同様なスイ
ッチング特性が見られた。
In this case, vth is 6.0 at a sweep frequency of 50 Hz.
9V, Ith is 1.1 mA, VH is 5.5 V
, Ih power of 1.4 mA, switching characteristics similar to Examples 1 to 3 were observed.

なお、本実施例1〜4では、用いた基体と電極材料の耐
熱性の点から焼成温度は500〜550°Cで行ったが
、例えばアルミナなどの耐熱性のある草体を用いる際に
はこの温度を基体の耐熱温度まで上げることができる。
In Examples 1 to 4, the firing temperature was 500 to 550°C in view of the heat resistance of the substrate and electrode materials used. However, when using a heat-resistant material such as alumina, The temperature can be raised up to the heat-resistant temperature of the substrate.

寸だ、用いる化合物についても、硝酸塩、硫酸塩などの
無機酸塩、酢酸塩などの有機酸塩、錯塩、金属アルコキ
シド々どで適当な溶媒に溶解するものであれば、支障な
く使用することができる。さらに、電極材料としては本
実施例以外の銅、アルミニウム、亜鉛などの金属や、ス
ズ酸カドミウム、アンチモンをドープした酸化スズなど
の導電性酸化物、あるいはカー酸化マンガン、酸化ニッ
ケルおよび酸化ビスマスの混合物薄膜とこれから電気的
リードを取るだめの電極とからなり、酸化マンガン、酸
化ニッケルおよび酸化ビスマスの混合物薄膜をマンガン
化合物、ニッケル化合物およびビスマス化合物を溶媒に
混合溶解した溶液を基体上に塗布し、乾燥後、大気中で
加熱焼成することによって形成するという方法で製造さ
れることにより、スイッチング特性を有する非線形抵抗
素子を、生産性良く安価に補供することができ、大面積
にわたっても製造が15、、。
As for the compounds used, as long as they are soluble in an appropriate solvent, such as inorganic acid salts such as nitrates and sulfates, organic acid salts such as acetates, complex salts, and metal alkoxides, they can be used without any problems. can. Furthermore, electrode materials may include metals other than those used in this example, such as copper, aluminum, and zinc, conductive oxides such as cadmium stannate, and tin oxide doped with antimony, or mixtures of manganese oxide, nickel oxide, and bismuth oxide. Consisting of a thin film and an electrode from which to take electrical leads, a thin film of a mixture of manganese oxide, nickel oxide, and bismuth oxide is coated onto a substrate with a solution of a manganese compound, a nickel compound, and a bismuth compound mixed and dissolved in a solvent, and then dried. Then, by manufacturing by heating and firing in the atmosphere, a nonlinear resistance element with switching characteristics can be provided at low cost with good productivity, and can be manufactured over a large area. .

容易であるという点においてその実用的な有用性は大き
い。
Its practical utility is great in that it is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の非線形抵抗素子の電流−電圧特性を示
す図、第2図はサンドインチ型素子の構造を示す断面図
、第3図はブレーナ型素子の構造を示す断面図゛である
。、;?、、1......了271グ・層代理人の氏
名 弁理士 中 尾 敏 男 ほか1名第1図 り電流
Fig. 1 is a diagram showing the current-voltage characteristics of the nonlinear resistance element of the present invention, Fig. 2 is a sectional view showing the structure of a Sandinch type element, and Fig. 3 is a sectional view showing the structure of a Brehner type element. . , ;? ,,1. .. .. .. .. .. Name of agent for the 271st class: Patent attorney Toshio Nakao and one other person 1st trial current

Claims (2)

【特許請求の範囲】[Claims] (1)酸化マンガン、酸化ニッケルおよび酸化ビスマス
の混合物薄膜と、これから電気的リードを取るための電
極とからなり、導電性スイッチング特性を有することを
特徴とする非線形抵抗素子。
(1) A nonlinear resistance element comprising a thin film of a mixture of manganese oxide, nickel oxide, and bismuth oxide and an electrode for taking electrical leads therefrom, and having conductive switching characteristics.
(2)マンガン化合物、ニッケル化合物およびビスマス
化合物を溶媒に混合溶解した溶液を基体上に塗布し、乾
燥した後、加熱、焼成することによって酸化マンガン、
酸化ニッケルおよび酸化ビスマスの混合物薄膜を形成す
ることを特徴とする非線形抵抗素子の製造方法。
(2) A solution of a manganese compound, a nickel compound, and a bismuth compound mixed and dissolved in a solvent is applied onto the substrate, dried, and then heated and fired to produce manganese oxide,
A method for manufacturing a nonlinear resistance element, comprising forming a thin film of a mixture of nickel oxide and bismuth oxide.
JP61085367A 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same Pending JPS62242314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61085367A JPS62242314A (en) 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61085367A JPS62242314A (en) 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS62242314A true JPS62242314A (en) 1987-10-22

Family

ID=13856744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61085367A Pending JPS62242314A (en) 1986-04-14 1986-04-14 Nonlinear resistance element and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS62242314A (en)

Similar Documents

Publication Publication Date Title
US4294520A (en) Electrochromic display device
KR840007609A (en) Electrolytic electrode and its manufacturing method
KR850006552A (en) Electrolytic electrode and manufacturing process
Jung et al. Electrochromic mechanism of IrO2 prepared by pulsed anodic electrodeposition
Sahu et al. Bipolar resistive switching in HoCrO3 thin films
JPS6242582A (en) Nonlinear resistance element and manufacture of same
JPS6242584A (en) Nonlinear resistance element and manufacture of same
JPS62242314A (en) Nonlinear resistance element and manufacture of the same
JPS62242313A (en) Nonlinear resistance element and manufacture of the same
JPS6242579A (en) Nonlinear resistance element and manufacture of same
CN109273169A (en) A kind of gallium base transparent conducting film and preparation method thereof, electronic device
JPS62242311A (en) Nonlinear resistance element and manufacture of the same
JPS6242578A (en) Nonlinear resistance element and manufacture of same
JPS6242577A (en) Nonlinear resistance element and manufacture of same
JPS62242312A (en) Nonlinear resistance element and manufacture of the same
JPS6242574A (en) Nonlinear resistance element and manufacture of the same
JPS6242581A (en) Nonlinear resistance element and manufacture of same
JPS6242583A (en) Nonlinear resistance element and manufacture of same
JPS6242575A (en) Nonlinear resistance element and manufacture of same
JPS6242580A (en) Nonlinear resistance element and manufacture of same
JPS6242576A (en) Nonlinear resistance element and manufacture of same
JPS60220505A (en) Transparent conductive film and method of forming same
Mirzapour et al. Dependence of structural, electrical and optical properties of undoped indium oxide films on thickness
Pulvari et al. A new graded electrode for forming intimate contact with ferroelectrics
CN107170884A (en) A kind of semiconductor devices and preparation method thereof