JPS6241788A - Far infrared ray heater and manufacture - Google Patents

Far infrared ray heater and manufacture

Info

Publication number
JPS6241788A
JPS6241788A JP17936085A JP17936085A JPS6241788A JP S6241788 A JPS6241788 A JP S6241788A JP 17936085 A JP17936085 A JP 17936085A JP 17936085 A JP17936085 A JP 17936085A JP S6241788 A JPS6241788 A JP S6241788A
Authority
JP
Japan
Prior art keywords
far
solution
molded body
infrared heater
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17936085A
Other languages
Japanese (ja)
Other versions
JPH0238555B2 (en
Inventor
柿沢 勝利
裕 萩原
伊与田 哲司
佐次本 英行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Musical Instrument Manufacturing Co Ltd
Original Assignee
Kawai Musical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Musical Instrument Manufacturing Co Ltd filed Critical Kawai Musical Instrument Manufacturing Co Ltd
Priority to JP17936085A priority Critical patent/JPH0238555B2/en
Publication of JPS6241788A publication Critical patent/JPS6241788A/en
Publication of JPH0238555B2 publication Critical patent/JPH0238555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、遠赤外線ヒーター並にその製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a far-infrared heater and a method for manufacturing the same.

(従来の技術) 従来、酸化アルミニウムやガラスなどのシリカを主成分
とするものなどのセラミック材の成形体基体とし、その
表面に導電性膜や発熱抵抗体膜を生成した製品とするに
は、金属や金属酸化物を、真空蒸着法、スパッタリング
法、イオンブレーティング法、プラズマ溶射法、m式i
気メッキ法、導電塗料の塗布法などが採用されている。
(Prior art) Conventionally, in order to produce a product using a molded body of a ceramic material such as aluminum oxide or glass whose main component is silica, and forming a conductive film or a heat-generating resistor film on its surface, Metals and metal oxides can be deposited using vacuum evaporation, sputtering, ion blasting, plasma spraying,
Air plating methods, conductive paint coating methods, etc. are used.

又発熱線と放射板とを機械的に組み合わせた遠赤外線ヒ
ーターも公知である。
Further, a far-infrared heater that mechanically combines a heating wire and a radiation plate is also known.

(発明が解決しようとする問題点) 上記従来の製造法や装置は製造作業が面倒で且つ製造コ
ストが高くなり、又遠赤外線ヒーターとして必ずしも有
効でない。
(Problems to be Solved by the Invention) The conventional manufacturing methods and devices described above require troublesome manufacturing operations and high manufacturing costs, and are not necessarily effective as far-infrared heaters.

(問題点を解決するための手段〉 本発明は、上記の問題点を解決し、波長4μm〜100
μmの範囲、特に人体に有効な8μm〜15μmの遠赤
外線を放射し得る安定堅牢なセラミック遠赤外線ヒータ
ーを提供するものである。
(Means for solving the problems) The present invention solves the above problems and has a wavelength of 4 μm to 100 μm.
The present invention provides a stable and robust ceramic far-infrared heater capable of emitting far-infrared rays in the μm range, particularly 8 μm to 15 μm, which is effective for the human body.

即ち、本発明の遠赤外線ヒーターは、セラミック成形体
の表面にアセトナト酢酸インジウムIn (OAc)x
(ac ac)、−x (ここで、Acは酢酸基。
That is, the far-infrared heater of the present invention has acetonate indium acetate In (OAc)x on the surface of the ceramic molded body.
(ac ac), -x (where Ac is an acetic acid group.

Xは0〜3〕の酸化分解生成物から成る焼成薄膜を一体
に有して成る。
X integrally comprises a fired thin film made of an oxidative decomposition product of 0 to 3].

本発明は、更に上記の導電性ヒーターを容易且つ経済的
に得られるその製造法を提供するもので、セラミック成
形体を加熱した表面にアセトナト酢酸インジウムの溶液
または、これに少量のアルコキシハロゲン化スズSn 
Oly (OR)4−y(ここでRはアルキル基、yは
0〜3)を混入した溶液を均一に付着させると共に加熱
酸化分解反応を行い、スズ酸化物を主体とする焼成膜を
一体に生成せしめることを特徴とする。
The present invention further provides a method for producing the above-mentioned conductive heater easily and economically, in which a solution of indium acetonate acetate or a small amount of tin alkoxyhalide is added to the surface of the heated ceramic molded body. Sn
A solution containing Oly (OR)4-y (where R is an alkyl group and y is 0 to 3) is uniformly deposited and a heated oxidative decomposition reaction is performed to form a fired film mainly composed of tin oxide. It is characterized by causing generation.

(実施例) セラミック材としては、従来公知の各種のセラミック材
を使用できるが、好ましくは、酸化アルミニウムAl2
O,、酸化ジルコニウムZ r O@の単独又はこれを
主成分とする複合セラミック材を使用する。本発明によ
れば、か\るセラミック材の成形体、例えば、板状の成
形体を、電気炉などにより加熱し、その加熱した表面に
工n(OAc)x(ac aa)、 −z (ここでA
oは酢酸基、Xは0〜3)の組成のアセトナト酢酸イン
ジウム溶液または、これに5nOly(OR)4−7 
(ここでRはアルキル基、yは0〜3)の組成のアルコ
キシハロゲン化スズをドープした。溶tを噴gや塗布な
どでその全面に均一に付着させる。その溶剤としては、
水、アルコール系、エステル系、芳香族系などの有機系
溶剤の単独又はこれらの混合が使用できる。その成形体
の加熱温度は該溶液が加熱酸化分解反応をおこし、酸化
インジウムまたは酸化インジウムに酸化スズの複合酸化
物を主体とした数100/口以上の導電性の焼成膜とな
るに足る300℃以上好ましくは、450”(:程度以
上を要する。かくして一般に数10Ω/ロ以上数100
Ω/ロ以下の発語抵抗体膜を得る。その焼成膜の厚さは
数μ〜数百オングストロームの薄膜が一般に得られ、そ
の成形体表面に強固に密着した安定堅牢な製品が得られ
、従来の真空蒸着法等による如き高価な設備や面倒な作
業を要せず、製造コストの低減した発熱体膜が得られ、
又その焼成膜は透明で外観上体裁がよい。尚、溶液の成
形体表面への付着は、噴霧による場合には、その吹付量
の調整が容易で直ちに焼成膜を均一に得られ、且つ導電
度の調製が容易で所定の各種の導電性をもつセラミック
成形体を得ることができ有利である。
(Example) As the ceramic material, various conventionally known ceramic materials can be used, but preferably aluminum oxide Al2
A composite ceramic material containing zirconium oxide Z r O@ alone or as a main component is used. According to the present invention, such a ceramic material molded body, for example, a plate-shaped molded body, is heated in an electric furnace or the like, and the heated surface is coated with Here A
o is an acetate group, X is an acetonate indium acetate solution with the composition of
(Here, R is an alkyl group, and y is 0 to 3). The molten tungsten is applied uniformly to the entire surface by spraying or coating. The solvent is
Water, alcoholic solvents, ester solvents, aromatic solvents, and other organic solvents may be used alone or in combination. The heating temperature of the molded body is 300°C, which is sufficient to cause the solution to undergo a heating oxidative decomposition reaction and to form a fired film with conductivity of several 100 μm or more, mainly consisting of indium oxide or a composite oxide of indium oxide and tin oxide. or more preferably 450" (: or more. Thus, generally several 10 ohms/ro or more or more several 100 ohms
A speech resistor film having a resistance of Ω/Ω or less is obtained. The thickness of the fired film is generally from several microns to several hundred angstroms, and a stable and robust product that firmly adheres to the surface of the molded product can be obtained. A heating element film with reduced manufacturing costs can be obtained without requiring any additional work.
Moreover, the fired film is transparent and has a good appearance. In addition, when the solution is applied to the surface of the molded body by spraying, the amount of spraying can be easily adjusted, and a fired film can be obtained immediately and uniformly, and the conductivity can be easily adjusted, so that a predetermined variety of conductivities can be obtained. It is advantageous to be able to obtain a ceramic molded body with

次に本発明の具体的な実施例として人体に有用な8μm
〜15μmの波長の遠赤外線を特に大坦に発生し得る遠
赤外線ヒーターにつき説明する。
Next, as a specific example of the present invention, 8 μm which is useful for the human body.
A far-infrared heater that can generate far-infrared rays having a wavelength of 15 μm in a particularly large amount will be explained.

メタノールにIn(OAc)x(aoac)、−x(但
しAaは酢酸基、Xは0〜3)をi、oOmol/l溶
解するとともに更にこのアセトナト酢酸インジウムに対
し2 m01%に相当する。、 02 mol/ lの
5nOly(OR)、−y(但しRはアルキル基、yは
O〜4)を添加溶解した溶液を予め電気炉などで105
mmX 105mmX 5mrn (厚さ)の板状の酸
化アルミニウム成形体を500℃に加熱したその加熱表
面にスプレーガンを使用し、空気圧力1kg/cn’で
その全面に均一に付着させた。噴霧圧力は0.4 kl
?/c% 〜2.0kg/crdの範囲が一般であるが
、1kg/cra前後が好ましく、良好な霧粒子で吹付
けることができた。
In(OAc) x (aoac), -x (where Aa is an acetate group and X is 0 to 3) is dissolved in methanol in an amount of i, oOmol/l, and the acetonate is equivalent to 2 m01% of the indium acetate. , 02 mol/l of 5nOly(OR), -y (where R is an alkyl group, y is O~4) was added and dissolved in a solution that was preheated in an electric furnace to 105 mol/l.
A plate-shaped aluminum oxide molded body measuring 105 mm x 5 mrn (thickness) was heated to 500° C., and a spray gun was used to uniformly adhere to the entire surface of the heated surface at an air pressure of 1 kg/cn'. Spray pressure is 0.4 kl
? /c% - 2.0 kg/crd is generally the range, but around 1 kg/cra is preferable, and it was possible to spray with good mist particles.

その付着霧粒子は、そのセラミック成形体の500℃付
近の高温の加熱面のため直ちに酸化分解反応を起こして
インジウム酷化物に少量のスズ酸化物の混入した複合酸
化物を主体とした厚さ1μm程度で抵抗値200〜30
(1/口の範囲の導電性薄膜として得られた。かくして
その常温に放冷されたものはセラミック成形体の表面に
強固に安定堅牢に密着した良好な導電性発熱抵抗体膜を
有するセラミック遠赤外線ヒーターとして得られた。こ
れに遠赤外線ヒーターとしての性能を検べるため、その
板の両端縁に焼付けによって銀電極を設けこれに通電し
、成形体の温度が150℃の時のその焼成膜の遠赤外線
等の発生量を測定した所、第1図に示すように、特に人
体に有効な8〜15μmの波長の遠赤外線の発生量が著
しく大きいが、やけどを与えるおそれのある近赤外線の
波長では発生量が小さくなる特性のものが得られること
が判明した。
The adhering mist particles immediately undergo an oxidative decomposition reaction due to the heated surface of the ceramic molded body at a high temperature of around 500°C, resulting in a thickness of 1 μm consisting mainly of a composite oxide containing a small amount of tin oxide mixed with indium agglomerate. Resistance value 200-30
(A conductive thin film was obtained in the range of 1/2 mm.Thus, the material that was left to cool to room temperature was a ceramic film having a good conductive heating resistor film that adhered strongly, stably, and firmly to the surface of the ceramic molded body. An infrared heater was obtained.In order to test its performance as a far-infrared heater, silver electrodes were baked on both edges of the plate and electricity was applied to it. When we measured the amount of far infrared rays generated by the film, as shown in Figure 1, the amount of far infrared rays emitted with a wavelength of 8 to 15 μm, which is particularly effective for the human body, was extremely large, but near infrared rays, which can cause burns, It was found that a characteristic in which the amount of generation is small can be obtained at a wavelength of .

第2図は、セラミック成形体としてAl、○、の代りに
、酸化ジルコニウムZrO,を使用した以外は、前記の
具体的と同様にして作成した導電性セラミックを同様の
遠赤外線放射性の試験を行なったその測定結果を示し、
上記と同様に特に遠赤外線ヒーターとして有利な製品で
あることが詔められた。
Figure 2 shows a conductive ceramic produced in the same manner as above, except that zirconium oxide (ZrO) was used instead of Al (○) as the ceramic molded body, and the same far-infrared radiation test was conducted. Showing the measurement results,
Similar to the above, it was praised as a particularly advantageous product as a far-infrared heater.

空気圧を1 kg/ crAと一定にした場合の溶液の
噴霧時間と溶液の濃度との関係を調べたが、アセトナト
酢酸インジウムの濃510.65 mol/ l〜5m
ol/lの範囲では、2〜10秒の範囲で変わるが、い
づれも短詩の吹付作業ですむ。噴霧圧力はo、 4 k
y /cI+I 〜2.Okg/cfの範囲を一般とす
る。
We investigated the relationship between solution spray time and solution concentration when the air pressure was kept constant at 1 kg/crA, and found that the concentration of indium acetonate acetate was 510.65 mol/l to 5 m
In the OL/L range, the time varies from 2 to 10 seconds, but all you need to do is spray short poems. Spray pressure is o, 4k
y/cI+I ~2. Generally, the range is Okg/cf.

次に、そのアセトナト酢酸インジウム単独及びこれにア
ルフキシ塩化スズを添加する新を色色に変えた溶液と導
電性(抵抗性)との関係を調べた所第3図示のような結
果を得た。第3図に示す如く、その抵抗値はドーパント
の添加量によって変わる。一般にそのSn添加量は10
 mo1%までが好ましい。
Next, we investigated the relationship between the conductivity (resistance) of indium acetonate acetate alone and a colored solution in which tin alphoxychloride was added, and the results shown in Figure 3 were obtained. As shown in FIG. 3, the resistance value changes depending on the amount of dopant added. Generally, the amount of Sn added is 10
Mo is preferably up to 1%.

かくして、その用途に応じ、抵抗値の異なる発熱抵抗体
膜を得るに当り、上記のように、ドーパントの添加量を
フントロールすることにより得られる。
Thus, heating resistor films having different resistance values can be obtained depending on the application by controlling the amount of dopant added as described above.

成形体の加熱温度は第4図示の如く300℃以上とする
ときは、導電性が得られ、赤外線ヒーターの場合は数百
0/口が望ましいので、これを得るために450℃程度
以上が好ましい。
When the heating temperature of the molded body is 300°C or higher as shown in Figure 4, conductivity can be obtained, and in the case of an infrared heater, it is desirable to have several hundred 0/mouth, so in order to obtain this, it is preferably about 450°C or higher. .

溶液の吹付量は、前記の具体的な実施例における溶液を
使用した場合は第5図示の通りであった。
The amount of solution sprayed was as shown in Figure 5 when the solution in the above specific example was used.

このように、加熱温度、吹付量の調製によっても、種々
の特性の発熱抵抗体膜が得られる。
In this way, heating resistor films with various characteristics can be obtained by adjusting the heating temperature and spraying amount.

本発明の該焼成膜の組成は現在定かでないが、純粋な酸
化物ではないことから判断して、発熱抵抗体になり得る
理由は、結晶構造欠陥による金属インジウム等の金属原
子イオン、塩素イオンが電子供与体及び受容体として栄
くためと推測される。
Although the composition of the fired film of the present invention is currently unknown, judging from the fact that it is not a pure oxide, the reason why it can become a heat generating resistor is that metal atomic ions such as metallic indium and chlorine ions due to crystal structure defects. It is assumed that this is because it flourishes as an electron donor and acceptor.

このように本発甲」によるときは、セラミック成形体を
加熱しその加熱面に、アセトナト酢酸インジウム溶液又
はこれにアルフキシバo ’f ン化スズを混入した溶
液を付着させると共に加熱酸化分解度忘させるので、そ
のセラミック成形体の表面に強固に密着した堅牢なイン
ジウム酸化物単独又はインジウム酸化物とスズ酸化物の
複合酸化物を主体とした導電性セラミックが得られその
製造コストは安価であり、遠赤外線ヒーターとして優れ
た材料を提供する効果を有する。
In this way, when the ceramic molded body is heated, an acetonate indium acetate solution or a solution containing tin alphoxybanide is attached to the heated surface, and the degree of oxidative decomposition is forgotten by heating. Therefore, it is possible to obtain a conductive ceramic based on indium oxide alone or a composite oxide of indium oxide and tin oxide, which is firmly adhered to the surface of the ceramic molded body, and its production cost is low and it can be manufactured over long distances. It has the effect of providing an excellent material as an infrared heater.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明製品の遠赤外線放射特性を示すグラフ
、第2図は他側のグラフ、第5図乃至第5図は夫々Sb
/Snの配合量、成形体の加熱温度、溶液の吹付量と得
られる製品の導電性との関係を示すグラフである。 外2名 第1図 第3図       第4図 巻板:JL度(0c) Srn(rr+Ofl’10) 第2図 第5図 IIfm外m2
Fig. 1 is a graph showing the far-infrared radiation characteristics of the product of the present invention, Fig. 2 is a graph on the other side, and Figs.
2 is a graph showing the relationship between the blending amount of /Sn, the heating temperature of the molded body, the spraying amount of the solution, and the conductivity of the obtained product. 2 people outside Figure 1 Figure 3 Figure 4 Winding plate: JL degree (0c) Srn (rr + Ofl'10) Figure 2 Figure 5 IIfm outside m2

Claims (1)

【特許請求の範囲】 1、セラミック成形体の表面にアセトナト酢酸インジウ
ム(In(OAc)_x(acac)_3_−_x)(
ここでAcは酢酸基、xは0〜3)の酸化分解生成物か
ら成る焼成薄膜を一体に有する遠赤外線ヒーター。 2、セラミック成形体を加熱した表面にアセトナト酢酸
インジウムの溶液又は、これに少量のアルコキシハロゲ
ン化スズ(SnCl_y(OR)_4_−_y)(ここ
でRはアルキル基、yは0〜3)を混入した溶液を均一
に付着させると共に加熱酸化分解反応を行い、スズ酸化
物を主体とする焼成膜を一体に生成せしめることを特徴
とする遠赤外線ヒーターの製造法。 3、該成形体の加熱温度は300℃以上とし、該温度に
加熱された表面に噴霧により該溶液を均一に付着させる
ことを特徴とする特許請求の範囲2項に記載の遠赤外線
ヒーターの製造法。
[Claims] 1. Indium acetonate acetate (In(OAc)_x(acac)_3_-_x) (
Here, Ac is an acetic acid group, and x is a far-infrared heater that integrally has a fired thin film made of an oxidative decomposition product of 0 to 3). 2. A solution of indium acetonate acetate or a small amount of alkoxy tin halide (SnCl_y(OR)_4_-_y) (where R is an alkyl group and y is 0 to 3) is mixed on the heated surface of the ceramic molded body. A method for producing a far-infrared heater, characterized by uniformly depositing a solution and carrying out a heating oxidative decomposition reaction to integrally produce a fired film mainly composed of tin oxide. 3. Manufacturing the far-infrared heater according to claim 2, wherein the heating temperature of the molded body is 300°C or higher, and the solution is uniformly adhered to the surface heated to the temperature by spraying. Law.
JP17936085A 1985-08-16 1985-08-16 ENSEKIGAISENHIITAANARABINISONOSEIZOHO Expired - Lifetime JPH0238555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17936085A JPH0238555B2 (en) 1985-08-16 1985-08-16 ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17936085A JPH0238555B2 (en) 1985-08-16 1985-08-16 ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS6241788A true JPS6241788A (en) 1987-02-23
JPH0238555B2 JPH0238555B2 (en) 1990-08-30

Family

ID=16064487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17936085A Expired - Lifetime JPH0238555B2 (en) 1985-08-16 1985-08-16 ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0238555B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668959A (en) * 1992-08-19 1994-03-11 Kawai Musical Instr Mfg Co Ltd Heater
JPH0668960A (en) * 1992-08-19 1994-03-11 Kawai Musical Instr Mfg Co Ltd Heater
US6108038A (en) * 1992-01-27 2000-08-22 Mitsubishi Denki Kabushiki Kaisha Color video camera for generating a luminance signal with unattenuated harmonics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108038A (en) * 1992-01-27 2000-08-22 Mitsubishi Denki Kabushiki Kaisha Color video camera for generating a luminance signal with unattenuated harmonics
JPH0668959A (en) * 1992-08-19 1994-03-11 Kawai Musical Instr Mfg Co Ltd Heater
JPH0668960A (en) * 1992-08-19 1994-03-11 Kawai Musical Instr Mfg Co Ltd Heater

Also Published As

Publication number Publication date
JPH0238555B2 (en) 1990-08-30

Similar Documents

Publication Publication Date Title
EP0030732B1 (en) Transparent electrically conductive film and process for production thereof
JP4087447B2 (en) Sputtering target and manufacturing method thereof
DK166536B1 (en) PRODUCT WITH HIGH TRANSMITTANCE AND LOW EMISSIVITY
US2689803A (en) Method of producing a film of uniform electroconductivity on refractory bases
JPH0160548B2 (en)
US2777044A (en) Electrical heating device
SE503967C2 (en) Methods for making a reflective article
JPS63274757A (en) Bismuth/tin oxide film
JPS6241788A (en) Far infrared ray heater and manufacture
US3217281A (en) Electrical resistor
JPH07249316A (en) Transparent conductive film and transparent substrate using the transparent conductive film
JPS62502811A (en) Method for forming a transparent, cloud-free tin oxide film
US2842463A (en) Vapor deposited metal films
GB1357274A (en) Conductive coatings for glass
JPS6241789A (en) Far infrared ray heater and manufacture
JPH0233882A (en) Heater and manufacture thereof
JPS6237894A (en) Far infrared ray heater and manufacture thereof
JPS61279082A (en) Far infrared heater and manufacture thereof
JPS62278705A (en) Transparent conducting material
JP2961466B2 (en) heater
JPS62228484A (en) Production of thin titania film
JPH0217629B2 (en)
JPS62148339A (en) Transparent substrate coated with ultraviolet ray absorbing film
JPS63232288A (en) Glass plate coated with conductive material and manufacture of the same
JPH08109046A (en) Method for stabilizing transparent electroconductive film having high resistance