JPH08109046A - Method for stabilizing transparent electroconductive film having high resistance - Google Patents

Method for stabilizing transparent electroconductive film having high resistance

Info

Publication number
JPH08109046A
JPH08109046A JP26617894A JP26617894A JPH08109046A JP H08109046 A JPH08109046 A JP H08109046A JP 26617894 A JP26617894 A JP 26617894A JP 26617894 A JP26617894 A JP 26617894A JP H08109046 A JPH08109046 A JP H08109046A
Authority
JP
Japan
Prior art keywords
film
resistance
sheet resistance
test
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26617894A
Other languages
Japanese (ja)
Inventor
Kazunori Saito
一徳 斉藤
Yasuhiro Seta
康弘 瀬田
Kazumasa Takizawa
一誠 滝沢
Kiyoshi Kawamura
潔 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP26617894A priority Critical patent/JPH08109046A/en
Publication of JPH08109046A publication Critical patent/JPH08109046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE: To obtain glass with a transparent electroconductive film, suppressing change in sheet resistance by heating, having excellent stability, not increasing linearity value by a current-applying moisture resistance test, by covering the surface of a transparent electroconductive film formed on a transparent glass substrate with a thin film of silicon dioxide. CONSTITUTION: A transparent electroconductive film having 10-30nm film thickness and 200-3,000Ω/square sheet resistance is formed on a transparent glass substrate by using ITO, FTO, ATO, Al-doped ZnO, In-doped ZnO, etc., by any method of sputtering, CVD, spraying, etc. The film is overcoated with a film of silicon dioxide having 2-100nm thickness or a film of silicon dioxide doped with 0.1-20wt.% of at least one element of boron, fluorine and phosphorus by any method of sputtering, CVD or dipping to give glass with a stabilized transparent electroconductive film having a linearity value of ±2%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は透明導電膜付ガラス、及
び透明導電膜の成膜方法に関するものであり、特にタッ
チパネルの透明電極として用いられる高抵抗で均一性に
優れた透明導電膜の成膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film-attached glass and a method for forming a transparent conductive film, and particularly to the formation of a transparent conductive film having high resistance and excellent uniformity used as a transparent electrode of a touch panel. Membrane method.

【0002】[0002]

【従来の技術】スズをドープした酸化インジウム膜(I
TOと称す)やフッ素をドープした酸化スズ膜(FTO
と称す)、アンチモンをドープした酸化スズ膜(ATO
と称す)、アルミニウムをドープした酸化亜鉛膜、イン
ジウムをドープした酸化亜鉛膜はその優れた透明性と導
電性を利用して、液晶ディスプレイ、エレクトロルミネ
ッセンスディスプレイ、面発熱体、タッチパネルの電
極、太陽電池の電極等に広く使用されている。この様に
広い分野で使用されると、使用目的によって抵抗値、透
明度は種々のものが要求される。すなわち、フラットパ
ネルディスプレイ用の透明導電膜では低抵抗、高透過率
のものが要求されるが、タッチパネル用の透明導電膜で
は逆に高抵抗、高透過率の膜が要求される。特に最近開
発されて市場の伸びが期待されるペン入力タッチパネル
用の導電膜は、位置の認識精度が高くなくてはならない
ことから、シート抵抗が200〜3000Ω/□といっ
た高抵抗でかつ抵抗値の均一性に優れた膜であることが
要求される。
2. Description of the Related Art Tin-doped indium oxide film (I
Fluorine-doped tin oxide film (FTO)
, And a tin oxide film doped with antimony (ATO
The aluminum oxide-doped zinc oxide film and the indium-doped zinc oxide film make use of their excellent transparency and conductivity to make use of liquid crystal displays, electroluminescent displays, surface heating elements, touch panel electrodes, and solar cells. It is widely used for electrodes and the like. When used in such a wide field, various resistance values and transparency are required depending on the purpose of use. That is, a transparent conductive film for a flat panel display is required to have a low resistance and a high transmittance, whereas a transparent conductive film for a touch panel is required to have a film having a high resistance and a high transmittance. In particular, the conductive film for a pen input touch panel, which has been recently developed and is expected to grow in the market, needs to have high position recognition accuracy, and thus has a high sheet resistance of 200 to 3000 Ω / □ and a high resistance value. It is required that the film has excellent uniformity.

【0003】抵抗値の均一性を評価する方法として、リ
ニアリティ試験がある。この方法は透明導電膜の向かい
合った2辺に銀ペースト等で低抵抗の電極を作成し、両
電極間に1〜10Vの直流電圧を印加する。この時、両
電極の間隔をD、印加電圧をVとする。透明導電膜の任
意の点について、マイナスの電極からの距離をd、マイ
ナスの電極とその点の電位差をvとすると(d/D−v
/V)×100をリニアリティ(%)と定義する。リニ
アリティ値は位置と、検出した電位差から計算した位置
とのずれを定義する量であり、文字や図形を認識する目
的で製作されるタッチパネルでは通常リニアリティ値で
±2%以内の抵抗値のバラツキであることが要求され
る。更に、液晶ディスプレイの上に置くことから高透過
率の膜であることが要求される。通常、高透過率を達成
する方法は膜厚を薄くすることであった。しかしなが
ら、膜厚を薄くしすぎると抵抗の安定性が悪くなり、種
々の条件で環境試験を行うとリニアリティ値が増大する
ために、高透過率と抵抗の安定性を両立することは困難
なことであった。
There is a linearity test as a method for evaluating the uniformity of resistance value. In this method, low-resistance electrodes are made of silver paste or the like on two opposite sides of a transparent conductive film, and a DC voltage of 1 to 10 V is applied between the electrodes. At this time, the distance between both electrodes is D and the applied voltage is V. Let d be the distance from the negative electrode and v be the potential difference between the negative electrode and that point at any point of the transparent conductive film (d / D−v
/ V) × 100 is defined as linearity (%). The linearity value is a quantity that defines the deviation between the position and the position calculated from the detected potential difference. In a touch panel manufactured for the purpose of recognizing characters and figures, the linearity value is usually within ± 2% of the variation in resistance value. Required to be present. Further, since it is placed on the liquid crystal display, it is required to be a film having high transmittance. Usually, the method of achieving high transmittance was to reduce the film thickness. However, if the film thickness is made too thin, the stability of resistance deteriorates, and if an environmental test is performed under various conditions, the linearity value increases, so it is difficult to achieve both high transmittance and resistance stability. Met.

【0004】[0004]

【発明が解決しようとする課題】ITO、FTO、AT
O、酸化亜鉛膜等の透明導電膜材料はいずれも屈折率が
基板ガラスの屈折率(ソーダライムガラスでは1.5
2)より高く(1.7〜2.2)、透明導電膜の膜厚を
厚くすると基板との界面での反射が大きくなり、可視光
透過率が低下する。高透過率の膜を得ようとする場合は
膜厚を薄くする必要があるが、人間の目に感度良く感知
される550nm波長で85%の透過率を得ようとする
と膜厚は30nm以下の膜厚にする必要があり、89%
の透過率の場合には膜厚を20nm以下の膜厚にする必
要がある。膜厚を30nm以下まで薄くすると、温度変
化や湿度変化の影響を受けて抵抗値が変動しやすくな
り、面内の抵抗値の均一性が悪化する。従って、種々の
条件で環境試験を行うと抵抗値の均一性の悪化によりリ
ニアリティ値が増大してしまう。
[Problems to be Solved by the Invention] ITO, FTO, AT
All of the transparent conductive film materials such as O and zinc oxide film have the refractive index of the substrate glass (1.5 for soda lime glass).
2) higher (1.7 to 2.2), and when the film thickness of the transparent conductive film is increased, the reflection at the interface with the substrate is increased and the visible light transmittance is reduced. In order to obtain a film having a high transmittance, it is necessary to reduce the film thickness, but when it is attempted to obtain a transmittance of 85% at a wavelength of 550 nm which is sensitive to human eyes, the film thickness is 30 nm or less. Need to have a film thickness, 89%
In the case of the above transmittance, the film thickness needs to be 20 nm or less. When the film thickness is reduced to 30 nm or less, the resistance value is likely to change under the influence of temperature change and humidity change, and the in-plane resistance value uniformity is deteriorated. Therefore, when the environmental test is performed under various conditions, the linearity value increases due to the deterioration of the uniformity of the resistance value.

【0005】一般に行われる環境試験は多く、150〜
250℃で30〜60分といった高温−短時間試験、8
0〜100℃で100〜300時間といった中温度−長
時間試験、50〜80℃、90〜100%RHで100
〜300時間といった中温度−高湿度−長時間試験、更
に5〜10V直流電圧を印加して30〜80℃、90〜
100%RHで100〜300時間といった通電下−中
温度−高湿度−長時間試験や−50〜−20℃で100
〜300時間といった低温度−長時間試験がある。これ
らの環境試験によって抵抗が変動しても、面内全ての抵
抗が均一に変動するならば、リニアリティ値は変動せず
増大しないが、高温試験では酸素の出入りによって導電
膜のキャリア密度が変化するために抵抗値の変動が大き
く、リニアリティ値は増大する傾向を示す。また、高湿
度試験では水分の吸着によって抵抗が変化することが度
々ありこの場合もリニアリティ値は増大する傾向を示
す。通電下−中温度−高湿度−長時間試験(通電耐湿試
験と称す)ではプラス電極とマイナス電極付近での抵抗
変動の仕方が異なるためにリニアリティ値は顕著に増大
する傾向を示す。すなわち、プラス電極付近では酸化反
応が起こり導電膜が高抵抗化するのに対し、マイナス電
極付近では還元反応が起こり、導電膜は低抵抗化する。
そのために、導電膜の面内抵抗は高抵抗の部分と低抵抗
の部分が生じ、その結果リニアリティ値は±2%以上に
増大してしまう。
There are many commonly conducted environmental tests, ranging from 150 to
High temperature-short time test such as 30 to 60 minutes at 250 ° C, 8
Medium temperature-long time test such as 100 to 300 hours at 0 to 100 ° C., 100 at 50 to 80 ° C. and 90 to 100% RH
Medium temperature-high humidity-long time test such as ~ 300 hours, further applying 5-10V DC voltage, 30-80 ° C, 90-
Under energization at 100% RH for 100 to 300 hours-medium temperature-high humidity-long time test or 100 at -50 to -20 ° C.
There are low temperature-long time tests such as ~ 300 hours. Even if the resistance fluctuates by these environmental tests, if all the resistances in the plane fluctuate uniformly, the linearity value does not fluctuate and does not increase, but in the high temperature test, the carrier density of the conductive film changes due to the inflow and outflow of oxygen. Therefore, the resistance value varies greatly and the linearity value tends to increase. Further, in the high humidity test, the resistance often changes due to the adsorption of water, and the linearity value also tends to increase in this case. Under energization-medium temperature-high humidity-long-time test (referred to as energization humidity resistance test), the linearity value tends to remarkably increase because the way of resistance variation in the vicinity of the positive electrode and the negative electrode is different. That is, an oxidation reaction occurs near the plus electrode to increase the resistance of the conductive film, whereas a reduction reaction occurs near the minus electrode to decrease the resistance of the conductive film.
Therefore, the in-plane resistance of the conductive film has a high resistance portion and a low resistance portion, and as a result, the linearity value increases to ± 2% or more.

【0006】本発明は、前述の実情からみてなされたも
ので、種々の環境試験においてリニアリティが変化をし
ない、タッチパネル用の10〜30nmの膜厚の安定化
された透明導電膜を作成する方法を提供することを目的
とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a method for producing a stabilized transparent conductive film having a film thickness of 10 to 30 nm for a touch panel, the linearity of which does not change in various environmental tests. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明者らは通電耐湿試
験等の環境試験でリニアリティ値が増大しない方法につ
いて鋭意検討した結果、透明導電膜上を二酸化珪素の薄
膜で覆う方法により、抵抗安定性の良好な透明導電膜が
得られることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made earnest studies on a method in which the linearity value does not increase in an environmental test such as a resistance to humidity test. The inventors have found that a transparent conductive film having good properties can be obtained, and completed the present invention.

【0008】即ち、本発明は、(1)透明ガラス基板上
に形成した透明導電膜の表面を二酸化珪素の薄膜で覆う
ことを特徴とする透明導電膜の安定化方法、(2)上
記、二酸化珪素膜中にホウ素、フッ素、リンの3種の元
素のうち少なくとも1種の元素を含有することを特徴と
する方法、(3)透明導電膜のシート抵抗値が、200
〜3000Ω/□、リニアリティ値が±2%以内である
上記の透明導電膜の安定化方法およびそれらの方法によ
り作製された透明導電膜付ガラスを用いることを特徴と
するタッチパネルである。以下、本発明を詳細に説明す
る。
That is, the present invention provides: (1) a method for stabilizing a transparent conductive film, characterized in that the surface of a transparent conductive film formed on a transparent glass substrate is covered with a thin film of silicon dioxide, (2) above. (3) A sheet resistance value of the transparent conductive film is 200, wherein the silicon film contains at least one element selected from the three elements of boron, fluorine and phosphorus.
It is a touch panel characterized by using the above-mentioned methods for stabilizing a transparent conductive film having a linearity value of up to 3,000 Ω / □ and a linearity value of ± 2% or less, and a glass with a transparent conductive film produced by these methods. Hereinafter, the present invention will be described in detail.

【0009】本発明の基板上に形成される透明導電膜と
しては、ITO、FTO、ATO、AlドープZnO、
InドープZnO等が用いられるが、本発明の範囲はこ
れに限定されるものではない。
As the transparent conductive film formed on the substrate of the present invention, ITO, FTO, ATO, Al-doped ZnO,
Although In-doped ZnO or the like is used, the scope of the present invention is not limited to this.

【0010】通常一般的に用いられている安価なソーダ
ライムガラス(SLGと称す)を基板とした場合、シー
ト抵抗が200〜3000Ω/□の導電膜で実用的な膜
厚は10〜30nmであり、この膜厚での抵抗安定性は
良いとは言えず種々の環境試験を行うと、抵抗値が変動
する。抵抗値が変動する原因は高温下での膜表面の酸素
の授受であったり、高湿度下での水分の吸着であった
り、通電高湿度下での電解酸化、還元等であり、外部環
境との相互作用の結果抵抗値が変動すると考えられる。
すなわち、導電膜に外部環境の影響を及ぼさないように
すれば、抵抗変動は起きず、リニアリティも変化しない
であろう。この様な観点から導電膜上に酸化防止膜や、
水分防止膜をオーバーコートすることによって目的が逹
せられると考え、導電性膜の抵抗を変化させず、且つ透
過率も低下しないオーバーコート膜について探索、検討
した。その結果、透明導電膜上に二酸化珪素膜をオーバ
ーコートする方法により、種々の環境試験下でも抵抗安
定性の良好な透明導電膜が得られることを見出した。
When an inexpensive soda lime glass (referred to as SLG) which is generally used in general is used as a substrate, a conductive film having a sheet resistance of 200 to 3000 Ω / □ and a practical film thickness of 10 to 30 nm. However, the resistance stability at this film thickness cannot be said to be good, and the resistance value fluctuates when various environmental tests are performed. The reason why the resistance value fluctuates is the exchange of oxygen on the film surface at high temperature, the adsorption of water under high humidity, the electrolytic oxidation and reduction under high electric current humidity, etc. It is considered that the resistance value fluctuates as a result of the interaction.
That is, if the conductive film is not affected by the external environment, resistance fluctuation will not occur and linearity will not change. From such a viewpoint, an antioxidant film on the conductive film,
It was thought that the purpose could be improved by overcoating the moisture prevention film, and an overcoat film that does not change the resistance of the conductive film and does not decrease the transmittance was searched and examined. As a result, they have found that a transparent conductive film having good resistance stability can be obtained even under various environmental tests by a method of overcoating a transparent conductive film with a silicon dioxide film.

【0011】二酸化珪素膜はそれ自身でも、或いはフッ
素、ホウ素、リンの元素のうち少なくとも1種類以上の
元素をドープした膜でも用いることが出来る。二酸化珪
素は電気的には絶縁性の材料として知られているが、5
0nm以下の膜厚であれば導電性を示し、更に有機珪素
化合物を原料として膜中に有機基が残存した二酸化珪素
膜や、或いはディップ法等で成膜した後の焼成過程でマ
イクロポアを生じるような二酸化珪素膜は100nm以
下の膜厚でも電気伝導性を示すことを見出した。すなわ
ち、この様な二酸化珪素膜をオーバーコートすることで
透明導電膜のシート抵抗値を変動させることなく、外部
環境の影響を排除することが出来るのである。
The silicon dioxide film can be used by itself or as a film doped with at least one element selected from the elements of fluorine, boron and phosphorus. Silicon dioxide is known as an electrically insulating material.
If the film thickness is 0 nm or less, it exhibits conductivity, and further, a silicon dioxide film in which an organic group remains in the film using an organic silicon compound as a raw material, or micropores are generated in the firing process after the film is formed by a dip method or the like. It has been found that such a silicon dioxide film exhibits electrical conductivity even at a film thickness of 100 nm or less. That is, by overcoating such a silicon dioxide film, it is possible to eliminate the influence of the external environment without changing the sheet resistance value of the transparent conductive film.

【0012】二酸化珪素膜はそれ自身、透明導電膜表面
に酸素や水分が接触するのを妨害する役目をしており効
果が認められるが、二酸化珪素膜にホウ素、フッ素、リ
ン等の元素をドープすると疏水性や撥水性が付与され、
耐湿度特性が大幅に改善される。これらの元素のドープ
量は0.1〜20wt%であり0.5〜10%が好適に
用いられる。二酸化珪素オーバーコート膜の膜厚は、厚
すぎると導電性を低下させ高抵抗化してしまい、また薄
すぎる場合は各種環境試験での安定性改善の効果がなく
なるので2〜100nm、望ましくは5〜50nmの膜
厚でオーバーコートする。
The silicon dioxide film itself has a function of hindering the contact of oxygen and moisture on the surface of the transparent conductive film, and its effect is recognized. However, the silicon dioxide film is doped with an element such as boron, fluorine or phosphorus. Then, hydrophobicity and water repellency are given,
The humidity resistance is greatly improved. The doping amount of these elements is 0.1 to 20 wt%, and 0.5 to 10% is preferably used. If the thickness of the silicon dioxide overcoat film is too thick, it lowers the conductivity and increases the resistance, and if it is too thin, the effect of improving stability in various environmental tests is lost, so it is preferably 2 to 100 nm, preferably 5 to 100 nm. Overcoat with a film thickness of 50 nm.

【0013】膜の成膜法は、スパッター法、CVD法、
プラズマCVD法、パイロゾル法、ディップ法、スピン
コート法、印刷法等の一般的な成膜方法を採用すること
が可能である。ホウ素、フッ素、リンの添加方法として
は、二酸化珪素膜の成膜時に添加すれば良い。例えば、
スパッター法ではターゲット中にホウ素、フッ素、リン
の化合物(B2O3,NH4BF4,NH4F,NH4PF6,P2O5等)を添加
し、CVD法では気化し易い有機ホウ素化合物、有機フ
ッ素化合物、有機リン化合物を原料に添加し、ディップ
法では原料溶液中にこれらの元素の化合物を添加してや
れば良い。ホウ素化合物としては、B(OCH3)3,B(OC
2H5)3,B(OC4H9)3,B(OC6H5)3,B(OC16H33)3,B(C4H9)3,B(O
H)3、フッ素化合物としては、NH4F,CF3CH2OH,CF3COOH,C
6H5CF3,CF3C6H4CH2OH,C4F9(CH2)2Si(OCH3)3,CF3(CH2)2S
i(OCH3)3,C4F9(CH2)2Si(OC2H5)3、リン化合物として
は、PO(OC2H5)3,PO(CH3)3,PO(C6H5)3,P(OCH3)3,P(OC
2H5)3,P(OC18H35)3,P(OC6H5)3を挙げることができる。
The film is formed by sputtering, CVD,
It is possible to adopt a general film forming method such as a plasma CVD method, a pyrosol method, a dipping method, a spin coating method, or a printing method. As a method of adding boron, fluorine, or phosphorus, it may be added when the silicon dioxide film is formed. For example,
In the sputter method, boron, fluorine, and phosphorus compounds (B 2 O 3 , NH 4 BF 4 , NH 4 F, NH 4 PF 6 , P 2 O 5 etc.) are added to the target, and in the CVD method, it is easy to vaporize organic substances. A boron compound, an organic fluorine compound, and an organic phosphorus compound may be added to the raw materials, and the dip method may add the compounds of these elements to the raw material solution. Examples of boron compounds include B (OCH 3 ) 3 , B (OC
2 H 5 ) 3 , B (OC 4 H 9 ) 3 , B (OC 6 H 5 ) 3 , B (OC 16 H 33 ) 3 , B (C 4 H 9 ) 3 , B (O
H) 3 , as a fluorine compound, NH 4 F, CF 3 CH 2 OH, CF 3 COOH, C
6 H 5 CF 3 , CF 3 C 6 H 4 CH 2 OH, C 4 F 9 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CH 2 ) 2 S
i (OCH 3) 3, C 4 F 9 (CH 2) 2 Si (OC 2 H 5) 3, as the phosphorus compound, PO (OC 2 H 5) 3, PO (CH 3) 3, PO (C 6 H 5 ) 3 , P (OCH 3 ) 3 , P (OC
2 H 5) 3, P ( OC 18 H 35) 3, can be mentioned P (OC 6 H 5) 3 .

【0014】ディップ法、スピンコート法、印刷法で成
膜する場合は、成膜後200〜500℃で焼成するが、
焼成温度が高いほど膜は緻密化し絶縁性が高くなり、焼
成温度が低いほど膜中に有機物が残存しやすく、絶縁性
が低くなるので膜厚と焼成温度をマッチングする必要が
ある。膜厚が50〜100nmの場合は100〜200
℃、膜厚が30〜50nmの場合は200〜300℃、
膜厚が30nm以下の場合は300℃以上の焼成温度を
選択するのが良い。
When the film is formed by the dip method, the spin coat method, or the printing method, the film is baked at 200 to 500 ° C.,
The higher the baking temperature is, the denser the film is and the higher the insulating property is. The lower the baking temperature is, the more organic substances are likely to remain in the film and the lower the insulating property is. Therefore, it is necessary to match the film thickness with the baking temperature. 100 to 200 when the film thickness is 50 to 100 nm
C., 200 to 300.degree. C. when the film thickness is 30 to 50 nm,
When the film thickness is 30 nm or less, it is preferable to select a firing temperature of 300 ° C. or higher.

【0015】透明導電膜を成膜する方法としては、一般
に知られている方法を採用できる。即ち、スパッター
法、電子ビーム蒸着法、イオンプレーティング法、化学
気相成膜法(CVD法)、パイロゾル法、スプレー法、
ディップ法等で所定の材料を所定の厚さで成膜すること
で達成される。
As a method for forming the transparent conductive film, a generally known method can be adopted. That is, a sputtering method, an electron beam evaporation method, an ion plating method, a chemical vapor deposition method (CVD method), a pyrosol method, a spray method,
This is achieved by forming a predetermined material with a predetermined thickness by a dip method or the like.

【0016】[0016]

【実施例】以下、実施例により本発明を更に具体的に説
明する。ただし、本発明はこれらに何ら限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these.

【0017】実施例1 厚さ1mmで10cm角のソーダライムガラスを超音波
霧化による常圧CVD法(パイロゾル成膜法)成膜装置
にセットし450℃に加熱した。InCl3 のCH3
H溶液(濃度は0.25mol/l)にSnCl4 をI
nに対して10原子%添加した溶液を超音波により2.
5ml/min霧化させ基板に導入し、2分間成膜し
た。その後成膜装置より取り出し、空気中で冷却した。
得られた膜は膜厚21nmのITO結晶膜であった。こ
の膜のシート抵抗を9点測定したところ、平均550Ω
/□、比抵抗1.1×10-3Ωcmであった。シート抵抗
の均一性は、平均±45Ω/□以内であった。透過率は
550nmで90.0%を示した。引き続きSi(C2
5 O)4 のC2 5 OH溶液(濃度は0.5mol/
l)を超音波により2.2ml/min霧化させ基板に
導入し2分間成膜した。SiO2 の膜厚は30nmであ
った。シート抵抗と透過率を測定したところ、平均シー
ト抵抗580Ω/□、シート抵抗の均一性は±50Ω/
□以内であった。550nmの透過率は89.7%を示
した。この試料について耐熱試験と通電耐湿試験を行っ
た。耐熱試験は、200℃で1時間加熱後の抵抗変化を
測定したところ、シート抵抗は、平均600Ω/□であ
り、シート抵抗の均一性は、平均±53Ω/□以内であ
った。通電耐湿試験については以下のように行った。ま
ず、この試料の向かい合う辺に導電性の銀ペーストを5
mm幅で塗布し電極を作成した。この2本の電極に直流
5Vを印加してリニアリティを5列(15mm間隔)、
10点/列(8mm間隔)で測定したところ−0.2〜
0.4%の値であった。この試料の7V,40℃,95
%RHの条件下で240時間放置した後のリニアリティ
を測定したところ−0.1〜0.5%の値であり、±1
%以内の変化であった。
Example 1 Soda lime glass having a thickness of 1 mm and a size of 10 cm was set in an atmospheric pressure CVD (pyrosol film forming) film forming apparatus by ultrasonic atomization and heated to 450 ° C. InCl 3 CH 3 O
SnCl 4 was added to H solution (concentration: 0.25 mol / l)
2. A solution in which 10 atomic% of n is added by ultrasonic wave.
It was atomized at 5 ml / min, introduced into the substrate, and formed into a film for 2 minutes. Then, it was taken out from the film forming apparatus and cooled in air.
The obtained film was an ITO crystal film having a film thickness of 21 nm. When the sheet resistance of this film was measured at 9 points, the average was 550Ω.
/ □, the specific resistance was 1.1 × 10 −3 Ωcm. The sheet resistance uniformity was within ± 45Ω / □ on average. The transmittance was 90.0% at 550 nm. Continue to Si (C 2
H 5 O) 4 in C 2 H 5 OH (concentration 0.5 mol /
l) was atomized by ultrasonic waves at 2.2 ml / min and introduced into a substrate to form a film for 2 minutes. The film thickness of SiO 2 was 30 nm. When the sheet resistance and the transmittance were measured, the average sheet resistance was 580 Ω / □, and the uniformity of the sheet resistance was ± 50 Ω /
It was within □. The transmittance at 550 nm was 89.7%. A heat resistance test and an electric humidity resistance test were performed on this sample. In the heat resistance test, when a resistance change after heating at 200 ° C. for 1 hour was measured, the sheet resistance was 600 Ω / □ on average, and the uniformity of the sheet resistance was ± 53 Ω / □ on average. The electric humidity resistance test was performed as follows. First, apply a conductive silver paste to the opposite sides of this sample.
An electrode was prepared by coating with a width of mm. DC 5V is applied to these two electrodes to provide linearity in 5 rows (15 mm interval),
When measured at 10 points / row (8 mm interval), -0.2 to
The value was 0.4%. 7V, 40 ° C, 95 of this sample
When linearity was measured after standing for 240 hours under the condition of% RH, the value was −0.1 to 0.5%, and ± 1.
The change was within%.

【0018】実施例2 実施例1のSiO2 成膜において、Si(C2 5 O)
4 のC2 5 OH溶液(濃度は0.5mol/l)にB
(OCH3 3 をSiに対して5mol%添加した原料
を用いた以外は実施例1と全く同様の方法で行った。B
ドープSiO2の膜厚は35nmであった。シート抵抗
と透過率を測定したところ、シート抵抗は、平均560
Ω/□であり、シート抵抗の均一性は、平均±48Ω/
□以内であった。透過率は550nmで89.6%を示
した。実施例1と同様に耐熱試験と通電耐湿試験を行っ
たところ、耐熱試験後のシート抵抗は、平均570Ω/
□であり、シート抵抗の均一性は、平均±50Ω/□以
内であった。通電耐湿試験前のリニアリティは−0.4
〜0.1%の値であった。この試料を7V,40℃,9
5%RHの条件下で240時間放置した後、試験前と同
じ条件でリニアリティを測定したところ−0.3〜0.
2%の値であり、ほとんど変化していなかった。
Example 2 In the SiO 2 film formation of Example 1, Si (C 2 H 5 O)
B in 4 C 2 H 5 OH solution (concentration 0.5 mol / l)
The same procedure as in Example 1 was performed except that a raw material obtained by adding 5 mol% of (OCH 3 ) 3 to Si was used. B
The film thickness of the doped SiO 2 was 35 nm. When the sheet resistance and the transmittance were measured, the sheet resistance was 560 on average.
Ω / □, and the sheet resistance uniformity is ± 48Ω / average.
It was within □. The transmittance was 89.6% at 550 nm. When a heat resistance test and an electric humidity resistance test were conducted in the same manner as in Example 1, the sheet resistance after the heat resistance test was 570 Ω / average.
□, and the uniformity of the sheet resistance was within ± 50Ω / □ on average. The linearity before the electric humidity test is -0.4
The value was ˜0.1%. This sample is 7V, 40 ℃, 9
After standing for 240 hours under the condition of 5% RH, the linearity was measured under the same conditions as before the test.
The value was 2%, which was almost unchanged.

【0019】実施例3 実施例1のSiO2 成膜において、Si(C2 5 O)
4 のC2 5 OH溶液(濃度は0.5mol/l)にC
4 9 (CH2 2 Si(OCH3 3 をF/Si=5
mol%添加した原料を用いた以外は実施例1と全く同
様の方法で行った。FドープSiO2 の膜厚は27nm
であった。シート抵抗と透過率を測定したところ、シー
ト抵抗は、平均530Ω/□であり、シート抵抗の均一
性は、平均±48Ω/□以内であった。透過率は550
nmで89.8%を示した。実施例1と同様に耐熱試験
と通電耐湿試験を行ったところ、耐熱試験後のシート抵
抗は、平均540Ω/□であり、シート抵抗の均一性
は、平均±50Ω/□以内であった。通電耐湿試験前の
リニアリティは−0.2〜0.1%の値であった。この
試料を7V,40℃,95%RHの条件下で240時間
放置した後、試験前と同じ条件でリニアリティを測定し
たところ−0.1〜0.3%の値であり、ほとんど変化
していなかった。
Example 3 In the SiO 2 film formation of Example 1, Si (C 2 H 5 O)
4 C 2 H 5 OH solution (concentration 0.5 mol / l) in C
4 F 9 (CH 2 ) 2 Si (OCH 3 ) 3 with F / Si = 5
The same procedure as in Example 1 was carried out except that the raw material added in mol% was used. The thickness of F-doped SiO 2 is 27 nm
Met. When the sheet resistance and the transmittance were measured, the sheet resistance was 530 Ω / □ on average, and the uniformity of the sheet resistance was ± 48 Ω / □ on average. Transmittance is 550
It showed 89.8% in nm. When a heat resistance test and an electric resistance / moisture resistance test were conducted in the same manner as in Example 1, the sheet resistance after the heat resistance test was 540 Ω / □ on average, and the uniformity of the sheet resistance was within ± 50 Ω / □ on average. The linearity before the electrical humidity resistance test was a value of -0.2 to 0.1%. When this sample was left for 240 hours under the conditions of 7V, 40 ° C. and 95% RH, the linearity was measured under the same conditions as before the test, and the value was −0.1 to 0.3%, showing almost no change. There wasn't.

【0020】実施例4 実施例1のSiO2 成膜において、Si(C2 5 O)
4 のC2 5 OH溶液(濃度は0.5mol/l)にP
O(OCH3 3 をP/Si=5mol%添加した原料
を用いた以外は実施例1と全く同様の方法で行った。P
ドープSiO2の膜厚は33nmであった。シート抵抗
と透過率を測定したところ、シート抵抗は、平均560
Ω/□であり、シート抵抗の均一性は、平均±54Ω/
□以内であった。透過率は550nmで89.6%を示
した。実施例1と同様に耐熱試験と通電耐湿試験を行っ
たところ、耐熱試験後のシート抵抗は、平均580Ω/
□であり、シート抵抗の均一性は、平均±56Ω/□以
内であった。通電耐湿試験前のリニアリティは−0.2
〜0.4%の値であった。この試料を7V,40℃,9
5%RHの条件下で240時間放置した後、試験前と同
じ条件でリニアリティを測定したところ−0.1〜0.
6%の値であり、±1%以内の変化であった。
Example 4 In the SiO 2 film formation of Example 1, Si (C 2 H 5 O)
P in 4 C 2 H 5 OH solution (concentration 0.5 mol / l)
The same procedure as in Example 1 was carried out except that a raw material containing P (Si) = 5 mol% of O (OCH 3 ) 3 was used. P
The film thickness of the doped SiO 2 was 33 nm. When the sheet resistance and the transmittance were measured, the sheet resistance was 560 on average.
Ω / □, average sheet resistance is ± 54Ω /
It was within □. The transmittance was 89.6% at 550 nm. When a heat resistance test and an electric humidity resistance test were conducted in the same manner as in Example 1, the sheet resistance after the heat resistance test was 580 Ω / average.
□, and the sheet resistance uniformity was within ± 56 Ω / □ on average. The linearity before the electric humidity test is -0.2
It was a value of 0.4%. This sample is 7V, 40 ℃, 9
When the linearity was measured under the same conditions as before the test after standing for 240 hours under the condition of 5% RH, it was -0.1 to 0.
The value was 6%, and the change was within ± 1%.

【0021】実施例5 実施例1においてITO膜のかわりに以下の方法でFT
O膜を成膜した。原料はSnCl4 のCH3 OH溶液
(濃度0.3mol/l)にNH4 FをF/Sn=5m
ol%添加した液を用いた。成膜温度は420℃、超音
波により2.0ml/min霧化し、2.5分間成膜し
た。得られた膜は膜厚24nmのFTO結晶膜であっ
た。この膜のシート抵抗を9点測定したところ、平均9
50Ω/□、比抵抗2.3×10-3Ωcmであった。シー
ト抵抗の均一性は、平均±88Ω/□以内であった。透
過率は550nmで88.7%を示した。その後、実施
例1と全く同様の方法でSiO2 成膜を行った。シート
抵抗と透過率を測定したところ、シート抵抗は、平均1
060Ω/□であり、シート抵抗の均一性は、平均±9
4Ω/□以内であった。透過率は550nmで88.4
%を示した。実施例1と同様に耐熱試験と通電耐湿試験
を行ったところ、耐熱試験後のシート抵抗は、平均10
80Ω/□であり、シート抵抗の均一性は、平均±98
Ω/□以内であった。通電耐湿試験前のリニアリティは
−0.4〜0.4%の値であった。この試料を7V,4
0℃,95%RHの条件下で240時間放置した後、試
験前と同じ条件でリニアリティを測定したところ−0.
3〜0.6%の値であり、±1%以内の変化であった。
Example 5 Instead of the ITO film in Example 1, FT was performed by the following method.
An O film was formed. The raw material was SnCl 4 in CH 3 OH (concentration 0.3 mol / l) and NH 4 F in F / Sn = 5 m.
A liquid added with ol% was used. The film forming temperature was 420 ° C., and the film was atomized by ultrasonic waves at 2.0 ml / min for 2.5 minutes. The obtained film was an FTO crystal film having a film thickness of 24 nm. When the sheet resistance of this film was measured at 9 points, the average was 9
It was 50Ω / □ and the specific resistance was 2.3 × 10 −3 Ωcm. The sheet resistance uniformity was within ± 88 Ω / □ on average. The transmittance was 88.7% at 550 nm. After that, a SiO 2 film was formed in the same manner as in Example 1. When the sheet resistance and the transmittance were measured, the sheet resistance was 1 on average.
It is 060Ω / □, and the sheet resistance uniformity is ± 9 on average.
It was within 4Ω / □. Transmittance is 88.4 at 550 nm.
%showed that. When a heat resistance test and an electric humidity resistance test were conducted in the same manner as in Example 1, the sheet resistance after the heat resistance test was 10 on average.
80Ω / □, and the sheet resistance uniformity is ± 98 on average.
Within Ω / □. The linearity before the electric humidity resistance test was a value of −0.4 to 0.4%. This sample is 7V, 4
When the linearity was measured under the same conditions as before the test after standing for 240 hours under the conditions of 0 ° C. and 95% RH, it was −0.
The value was 3 to 0.6%, and the change was within ± 1%.

【0022】比較例1 実施例1と同様の方法でITO成膜を行った。この膜に
オーバーコートをしないで実施例1と同様に耐熱試験と
通電耐湿試験を行ったところ、耐熱試験後のシート抵抗
は、平均740Ω/□であり、シート抵抗の均一性は、
平均±145Ω/□となった。通電耐湿試験前のリニア
リティは−0.3〜0.3%の値であった。この試料を
7V,40℃,95%RHの条件下で240時間放置し
た後、試験前と同じ条件でリニアリティ値を測定したと
ころ3.2〜4.4%に増大した。
Comparative Example 1 An ITO film was formed in the same manner as in Example 1. When a heat resistance test and an electric humidity resistance test were performed in the same manner as in Example 1 without overcoating this film, the sheet resistance after the heat resistance test was 740 Ω / □ on average, and the uniformity of the sheet resistance was
The average was ± 145 Ω / □. The linearity before the electrical humidity resistance test was a value of -0.3 to 0.3%. After this sample was allowed to stand for 240 hours under the conditions of 7 V, 40 ° C. and 95% RH, the linearity value was measured under the same conditions as before the test, and the linearity value increased to 3.2 to 4.4%.

【0023】比較例2 実施例5と同様の方法でFTO成膜を行った。この膜に
オーバーコートをしないで実施例5と同様に耐熱試験と
通電耐湿試験を行ったところ、耐熱試験後のシート抵抗
は、平均1240Ω/□であり、シート抵抗の均一性
は、平均±220Ω/□となった。通電耐湿試験前のリ
ニアリティは−0.4〜0.5%の値であった。この試
料を7V,40℃,95%RHの条件下で240時間放
置した後、試験前と同じ条件でリニアリティ値を測定し
たところ2.8〜4.2%に増大した。
Comparative Example 2 An FTO film was formed in the same manner as in Example 5. When a heat resistance test and an electric humidity resistance test were conducted in the same manner as in Example 5 without overcoating this film, the sheet resistance after the heat resistance test was 1240 Ω / □ on average, and the uniformity of the sheet resistance was ± 220 Ω on average. It became / □. The linearity before the electrical humidity resistance test was a value of -0.4 to 0.5%. After this sample was left under conditions of 7 V, 40 ° C. and 95% RH for 240 hours, the linearity value was measured under the same conditions as before the test, and the linearity value increased to 2.8 to 4.2%.

【0024】ガラス基板にITO成膜しただけの膜(比
較例1)の耐熱性は悪く1.3倍程度にシート抵抗は増
加し、均一性も約±20%に悪化するのに対し、本発明
によるオーバーコートを行うと、オーバーコート後のシ
ート抵抗、均一性、透過率はそれほど変わらないのに、
耐熱試験後もシート抵抗は1.1倍以下に抑えられ、均
一性も±10%以内を維持する。更に、通電耐湿試験を
行った場合のリニアリティは、オーバーコートなしの膜
(比較例1)が2%以上の値に増大したのに、本発明の
オーバーコートにより、いずれも±1%以内のリニアリ
ティ値を示した。FTO膜についても同様の結果となり
効果が大きいことが示された。
The heat resistance of the film (Comparative Example 1) formed by simply depositing ITO on the glass substrate was poor, and the sheet resistance increased about 1.3 times, and the uniformity deteriorated to about ± 20%. When the overcoating according to the invention is carried out, the sheet resistance, the uniformity and the transmittance after the overcoating do not change so much,
After the heat resistance test, the sheet resistance is suppressed to 1.1 times or less, and the uniformity is maintained within ± 10%. Further, the linearity in the case of conducting the resistance to humidity test was 2% or more in the film without the overcoat (Comparative Example 1), but the linearity was within ± 1% by the overcoat of the present invention. Showed the value. Similar results were obtained for the FTO film, indicating that the effect was large.

【0025】[0025]

【発明の効果】以上説明したように、本発明の方法によ
り、加熱によるシート抵抗変化を抑制し、かつ通電耐湿
試験でリニアリティ値が増大しない安定性に優れた透明
導電膜付ガラスを作成することが出来る。
As described above, according to the method of the present invention, it is possible to prepare a glass with a transparent conductive film which suppresses a change in sheet resistance due to heating and which is excellent in stability such that a linearity value does not increase in a resistance to humidity test. Can be done.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河村 潔 千葉県市原市五井南海岸12−8 日曹化成 株式会社生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Kawamura 12-8 Goi Minamikaigan, Ichihara City, Chiba Nisso Kasei Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】透明ガラス基板上に形成した透明導電膜の
表面を二酸化珪素の薄膜で覆うことを特徴とする透明導
電膜の安定化方法。
1. A method for stabilizing a transparent conductive film, which comprises covering the surface of a transparent conductive film formed on a transparent glass substrate with a thin film of silicon dioxide.
【請求項2】二酸化珪素膜中にホウ素、フッ素、リンの
3種の元素のうち少なくとも1種の元素を含有すること
を特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the silicon dioxide film contains at least one element selected from the group consisting of boron, fluorine and phosphorus.
【請求項3】透明導電膜のシート抵抗値が、200〜3
000Ω/□、リニアリティ値が±2%以内である請求
項1、2記載の透明導電膜の安定化方法。
3. The sheet resistance value of the transparent conductive film is 200 to 3
The method for stabilizing a transparent conductive film according to claim 1, wherein the linearity value is within ± 2%.
【請求項4】請求項1、2および3に記載の方法により
作製された透明導電膜付ガラスを用いることを特徴とす
るタッチパネル。
4. A touch panel using the glass with a transparent conductive film produced by the method according to any one of claims 1, 2 and 3.
JP26617894A 1994-10-05 1994-10-05 Method for stabilizing transparent electroconductive film having high resistance Pending JPH08109046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26617894A JPH08109046A (en) 1994-10-05 1994-10-05 Method for stabilizing transparent electroconductive film having high resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26617894A JPH08109046A (en) 1994-10-05 1994-10-05 Method for stabilizing transparent electroconductive film having high resistance

Publications (1)

Publication Number Publication Date
JPH08109046A true JPH08109046A (en) 1996-04-30

Family

ID=17427347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26617894A Pending JPH08109046A (en) 1994-10-05 1994-10-05 Method for stabilizing transparent electroconductive film having high resistance

Country Status (1)

Country Link
JP (1) JPH08109046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327496A (en) * 2003-04-21 2004-11-18 Asahi Glass Co Ltd Solar battery and its manufacturing method
JP2009140930A (en) * 2001-10-19 2009-06-25 Asahi Glass Co Ltd Substrate with transparent conductive oxide film, and photoelectric conversion element
WO2009119962A1 (en) * 2008-03-24 2009-10-01 Sungkyunkwan University Foundation For Corporate Collaboration Boron-doped zinc oxide based transparent conducting film and manufacturing method of thereof
CN111316398A (en) * 2017-11-20 2020-06-19 国际商业机器公司 Patterning directly on amorphous silicon hard mask

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140930A (en) * 2001-10-19 2009-06-25 Asahi Glass Co Ltd Substrate with transparent conductive oxide film, and photoelectric conversion element
JP2004327496A (en) * 2003-04-21 2004-11-18 Asahi Glass Co Ltd Solar battery and its manufacturing method
WO2009119962A1 (en) * 2008-03-24 2009-10-01 Sungkyunkwan University Foundation For Corporate Collaboration Boron-doped zinc oxide based transparent conducting film and manufacturing method of thereof
CN111316398A (en) * 2017-11-20 2020-06-19 国际商业机器公司 Patterning directly on amorphous silicon hard mask

Similar Documents

Publication Publication Date Title
CN104205021A (en) Transparent body for use in a touch screen panel manufacturing method and system
CN102324271A (en) Crystallized type ITO (Indium Tin Oxide) transparent conductive film and preparation method thereof
US10167545B2 (en) Indium tin oxide thin films with both near-infrared transparency and excellent resistivity
CN103102084A (en) Glass for broadband high transmittance OGS (one glass solution) and preparation method thereof
JPH08109043A (en) Transparent electroconductive film-attached glass having high resistance
CN102723128A (en) Flexible transparent conductive film and manufacturing method thereof and touch panel
JPH08109046A (en) Method for stabilizing transparent electroconductive film having high resistance
JPH09161542A (en) Transparent conductive laminate and touch panel using the same
JP3545141B2 (en) Transparent conductive laminate and touch panel using the same
JP2989886B2 (en) Analog touch panel
JP4132191B2 (en) Electrode member for resistive film type transparent touch panel
JP3662958B2 (en) Touch panel
JPH08249929A (en) Transparent electrode film for input panel of coordinate data input apparatus
JP2010020951A (en) Method for manufacturing transparent conductive film
JPH04230906A (en) Transparent conductive laminated body
JP2000113732A (en) Transparent conductive film, its manufacture, substrate with transparent conductive film, and touch panel
JPH08109045A (en) Method for stabilizing film of indium oxide doped with tin
JPH07257945A (en) Transparent electric conductive laminated body and pen input touch panel
JPH08109044A (en) Method for stabilizing transparent electroconductive film
KR101174359B1 (en) Multi-component metal oxide based transparency electrode having metal layer and manufacturing method thereof
JPH08119675A (en) Stabilized glass with transparent electrically conductive film
JPH07242442A (en) Glass with transparent conductive film and production of transparent conductive film
CN106024110A (en) Strontium stannate-based flexible transparent conductive electrode and preparation method thereof
CN105741916A (en) Flexible transparent electrode and fabrication method thereof
CN103031517A (en) ITO (indium tin oxide) film and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041018