JPS62278705A - Transparent conducting material - Google Patents

Transparent conducting material

Info

Publication number
JPS62278705A
JPS62278705A JP12165086A JP12165086A JPS62278705A JP S62278705 A JPS62278705 A JP S62278705A JP 12165086 A JP12165086 A JP 12165086A JP 12165086 A JP12165086 A JP 12165086A JP S62278705 A JPS62278705 A JP S62278705A
Authority
JP
Japan
Prior art keywords
antimony
film
sol
tin oxide
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12165086A
Other languages
Japanese (ja)
Other versions
JPH0586605B2 (en
Inventor
西倉 宏
伸 山本
寺尾 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP12165086A priority Critical patent/JPS62278705A/en
Publication of JPS62278705A publication Critical patent/JPS62278705A/en
Publication of JPH0586605B2 publication Critical patent/JPH0586605B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は結晶質酸化スズ・アンチモンゾルからなる透明
導電材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a transparent conductive material comprising a crystalline tin oxide antimony sol.

透明+4電材料は太陽電池、!!像管等の光電変換素子
、防曇結氷防止ガラス等の透明面発熱体に利用され、ま
た岐近はエレクトロルミネッセンス素子、液晶表示素子
、エレクトロクロミック表示素子、プラズマディスプレ
イ、電子写真法淳にも応用され研究開発が盛んに行われ
ている。
Transparent +4 electric materials are solar cells! ! It is used in photoelectric conversion elements such as picture tubes, and transparent surface heating elements such as anti-fog and anti-icing glass, and is also applied to electroluminescent elements, liquid crystal display elements, electrochromic display elements, plasma displays, and electrophotography. Research and development is actively being carried out.

これらの中で、酸化スズや酸化インジウム系の透明導電
材f1は、その耐熱性、耐摩耗性が優れることより、発
熱体や薄膜抵抗体として広く応用されており、更に赤外
部の反Q(率の高いことを利用して、近年太陽熱発電の
ための選択透過膜としての研究171発も盛んに行われ
ている。
Among these, tin oxide and indium oxide-based transparent conductive materials f1 are widely used as heating elements and thin film resistors due to their excellent heat resistance and abrasion resistance. In recent years, taking advantage of this high rate, research has been actively conducted on the use of selectively permeable membranes for solar thermal power generation.

この碌に、電気光学素子の目覚ましい発展と相まって、
透明導電材料は近年飛躍的に需要が伸びつつある材料で
ある。
This ability, combined with the remarkable development of electro-optical elements,
Transparent conductive materials are materials whose demand has been increasing dramatically in recent years.

(従来の技術) 透明導電材料として、従来より酸化インジウム−スズ系
、酸化スズ−アンチモン系の材料が知られており、これ
らの金属あるいは酸化物粉末等の材料が使用されている
(Prior Art) Indium oxide-tin oxide-based materials and tin oxide-antimony-based materials have been known as transparent conductive materials, and materials such as powders of these metals or oxides have been used.

この様な透明導電材料は、一般に化学蒸首法、真空蒸着
法、反応性イオンブレーティング法、スパッタ法、イオ
ンビームスパッタ法等の膜形成法により基板に膜状に被
覆され実用に供されている。
Such transparent conductive materials are generally put into practical use by being coated on a substrate in the form of a film using a film forming method such as chemical vapor deposition, vacuum evaporation, reactive ion blating, sputtering, or ion beam sputtering. There is.

しかし、これらの方法はいずれも装置が複雑であり、ま
た膜形成速度が小さいという欠点を有するばかりでなく
、装置が複雑で、非常に高価なものであるため膜形成が
小面積であり、大面積の膜を得ることができない問題が
ある。
However, all of these methods not only have the drawbacks of complicated equipment and slow film formation speeds, but also have complicated and very expensive equipment, which means that the film formation can be carried out over a small area and over a large area. There is a problem that it is not possible to obtain a film with a large area.

更に、複雑な形状に膜を形成する場合には、この方法で
は不均一となることより、利用上制約があった。
Furthermore, when forming a film in a complicated shape, this method has limitations in its use because the film becomes non-uniform.

また化学スプレー法によると、比較的大面積の被膜を得
ることができるが、基板を高温に保ちながら溶液をスプ
レーすることより大装置を必要とし、更に膜の均一性の
制御が困難である。
Furthermore, chemical spraying allows a film to be obtained over a relatively large area, but requires larger equipment than spraying a solution while keeping the substrate at a high temperature, and furthermore, it is difficult to control the uniformity of the film.

これに対し、液状の原料を基板にディップして膜を形成
する所謂塗層法は、比較的単純なプロセスにより大面積
の膜が得られるという利点があり、且つ複雑な形状部位
への塗布でも比較的容易であることより、工業的に有望
な方法である。
On the other hand, the so-called coating method, in which a liquid raw material is dipped onto a substrate to form a film, has the advantage of being able to obtain a large-area film through a relatively simple process, and can also be applied to parts with complex shapes. This is an industrially promising method because it is relatively easy.

酸化スズ−アンチモン系の材料に於いてもこの塗布法は
幅広く検討されており、多種多様の液状スズ−アンチモ
ン化合物の熱分解挙動が研究されている。
This coating method has been widely studied for tin oxide-antimony based materials, and the thermal decomposition behavior of a wide variety of liquid tin-antimony compounds has been studied.

従来より検討されているスズ−アンチモン系材料は、主
としてスズ及びアンチモンを共にイオンとして含有する
71機或いは無機化合物の塩溶液である。 従って、有
機化合物の塩溶液の使用時には、有機物の残存がないよ
うに注意深く熱分解を行わなければならず、スズ及びア
ンチモンが有機塩として揮散したり、溶液の極性が低く
、ガラスなどの基板とのなじみが悪く、均一な膜を得る
ことができなかった。
The tin-antimony-based materials that have been studied so far are salt solutions of 71 organic or inorganic compounds containing both tin and antimony as ions. Therefore, when using a salt solution of an organic compound, careful thermal decomposition must be carried out to ensure that no organic matter remains.Tin and antimony may volatilize as organic salts, or the solution may have low polarity and may not interact with substrates such as glass. It was not possible to obtain a uniform film due to poor compatibility.

また、有機塩の液安定性を保つために安定化剤を多く必
要とする結果、薄い膜jγのものしが(;)られす、且
つ有機物含量が多いため、乾燥後に多層ディップを行っ
ても焼成時に剥離する等の問題があった。
In addition, a large amount of stabilizer is required to maintain the liquid stability of the organic salt, resulting in a thin film (;), and the high organic content makes it difficult to perform multilayer dipping after drying. There were problems such as peeling during firing.

更に、これらの熱分解時に生成する酸化スズ・アンチモ
ンは一般に粒子径が粗く、殊に均一微細性が要求される
分野への適用については問題があった。
Furthermore, the tin oxide and antimony oxide produced during these thermal decompositions generally have a coarse particle size, which poses a problem especially when applied to fields where uniform fineness is required.

また塩化第二スズ、三塩化アンチモン等の無機化合物の
使用時には、形成された膜が白濁化し、透明性の悪い膜
となるばかりが膜強度も小さく、更に、焼成時に腐食性
のガスを発生するため、炉の選定を要し、作業環境上も
好ましくない、また予め電極を取り付けた基板上に塗布
し、一体成形、焼成する場合には電極を腐食させるなど
の問題があった。
Furthermore, when inorganic compounds such as stannic chloride and antimony trichloride are used, the formed film becomes cloudy, resulting in a film with poor transparency and low film strength, and furthermore, corrosive gas is generated during firing. Therefore, it is necessary to select a furnace, which is not favorable in terms of the working environment, and there are also problems such as corrosion of the electrodes when coating on a substrate with electrodes attached in advance, integral molding, and firing.

(発明が解決しようとする問題点) 本発明者らはこれらの実情に鑑み、電気光学分野笠への
適用時に所望される種々の特性に於て優れる透明導電材
料を得べく鋭意研究を重ねた結果、本発明を完成させた
ものである。
(Problems to be Solved by the Invention) In view of these circumstances, the present inventors have conducted extensive research in order to obtain a transparent conductive material that is excellent in various properties desired when applied to a shade in the electro-optical field. As a result, the present invention has been completed.

(問題点を解決するための手段) 即ち本発明は、 Sb/Snモル比0.3以下でSb及
びSnが固溶する結晶質酸化スズ・アンチモンゾルから
なる透明導電材11に関し、膜形成が容易であり、且つ
均一な膜を得ることができる塗布法により使用すること
ができる、優れた透明導電材料を提供するものである。
(Means for Solving the Problems) That is, the present invention relates to a transparent conductive material 11 made of crystalline tin oxide/antimony sol in which Sb and Sn are dissolved in solid solution at an Sb/Sn molar ratio of 0.3 or less. The object of the present invention is to provide an excellent transparent conductive material that can be used by a coating method that is easy and can form a uniform film.

また本発明の結晶質酸化スズ・アンチモンゾルは、スズ
、アンチモンの二成分を混合物として合イ[して熱処理
後に導電性化合物となるものではなく、ゾル状態で分子
分散状に固溶した酸化スズ・アンチモンの微細結晶コロ
イド′f8液であり、これを透明導電材料に用いるもの
である。
In addition, the crystalline tin oxide/antimony sol of the present invention is not a mixture of tin and antimony that becomes a conductive compound after heat treatment, but a solid solution of tin oxide in a molecularly dispersed state in a sol state.・Antimony microcrystalline colloid 'f8 liquid, which is used for transparent conductive materials.

本発明の透明導電材料の特徴を更に挙げれば、極性の大
きなゾル溶液からなる透明導電材料であるため、ガラス
基板をはじめ、セラミック材f1やフィラーへのなじみ
が良く均一な薄膜が得られること、また、酸化スズと酸
化アンチモンの混合物ではなく、酸化スズと酸化アンチ
モンが分子分ilk状に均、−に固溶した超微粒子から
なるゾルであるために、透明導電薄膜の透光性が著しく
優れていること、更に、比較的低温の熱処理によっても
導電性を有し、 500〜600’Cでは非常に導電率
が高いことである。
Further features of the transparent conductive material of the present invention are that since it is a transparent conductive material made of a highly polar sol solution, it has good compatibility with glass substrates, ceramic materials f1, and fillers, and a uniform thin film can be obtained; In addition, since it is not a mixture of tin oxide and antimony oxide, but a sol consisting of ultrafine particles in which tin oxide and antimony oxide are uniformly dissolved in a molecular structure, the transparent conductive thin film has extremely excellent light transmittance. Furthermore, it has electrical conductivity even when heat treated at a relatively low temperature, and has extremely high electrical conductivity at 500 to 600'C.

(作 用) 本発明の透明導電材料について更に説明すると、本発明
に使用する結晶質酸化スズ・アンチモンゾルはSb/S
nモル比0,3以下でSb及びSnが固溶しているもの
であり、その製法については特願昭61−63657に
記載する方法によればよい。
(Function) To further explain the transparent conductive material of the present invention, the crystalline tin oxide antimony sol used in the present invention is Sb/Sb
Sb and Sn are dissolved in solid solution at an n molar ratio of 0.3 or less, and the method for producing it may be according to the method described in Japanese Patent Application No. 61-63657.

その製法の一例を挙げると、先ず塩化第二スズ水溶液に
三塩化アンチモンをSb/Snモル比0゜07になるよ
うに混合溶解させ、これを重炭酸アンモニウム水溶液に
加えゲルを生成させる。
To give an example of the manufacturing method, first, antimony trichloride is mixed and dissolved in a stannic chloride aqueous solution at a Sb/Sn molar ratio of 0.07, and this is added to an ammonium bicarbonate aqueous solution to form a gel.

次いで、このゲルをよく水洗した後、アンモニア水を適
量加え、オートクレーブで200℃10時間の水熱処理
を行うことにより結晶質酸化スズ・アンチモンゾルを得
ることができる。
Next, after thoroughly washing this gel with water, a suitable amount of aqueous ammonia is added and hydrothermal treatment is performed at 200° C. for 10 hours in an autoclave to obtain a crystalline tin oxide antimony sol.

この様にして得られるゾルを透明導電材料として使用す
る方法は、塗布法についてその一例を挙げると、先ず前
記ゾルをSnO2換算で10%濃度としたものをガラス
板に塗布し、乾燥させる。
An example of a coating method for using the sol obtained in this manner as a transparent conductive material is to first apply the sol to a concentration of 10% in terms of SnO2 on a glass plate and dry it.

この場合、室温で風乾させるだけで透明な膜が生成する
が、100℃前後で乾燥を行っても良い。
In this case, a transparent film is produced simply by air drying at room temperature, but drying may also be carried out at around 100°C.

また所望する膜厚の調整は、結晶質酸化スズ・アンチモ
ンゾルの濃度や塗布方法を適時選択すれば良く、塗布及
び乾燥操作を繰返すことにより、膜JVを厚く調整する
ことは可能である。
Further, the desired film thickness can be adjusted by appropriately selecting the concentration of the crystalline tin oxide antimony sol and the coating method, and it is possible to adjust the thickness of the film JV by repeating the coating and drying operations.

従来の塩化第二スズ水溶液やテトラブトキシスズ化合物
等の使用では、熱分解時の揮散の問題や熱分解機が多い
がために膜厚を厚くすると剥離する問題を生じる。
The conventional use of aqueous solutions of stannic chloride, tetrabutoxytin compounds, etc. causes problems of volatilization during thermal decomposition and problems of peeling when the film is thickened due to the large number of thermal decomposition machines.

しかし本発明によると、前記ゾルは水溶液で且つ安定剤
として少量のアンモニアを含むだけであるため、乾燥操
作のみで充分な強度を有する膜を得ることが可能であり
、多層コーティングの後、熱処理を行っても膜は剥離す
ることがない。
However, according to the present invention, since the sol is an aqueous solution and contains only a small amount of ammonia as a stabilizer, it is possible to obtain a film with sufficient strength only by drying, and after multilayer coating, heat treatment is not necessary. Even if you do this, the film will not peel off.

塗布、乾燥した後の基板を焼成することにより透明導電
性を有するガラス基板を得ることができる。
A transparent conductive glass substrate can be obtained by baking the substrate after coating and drying.

従来の塩化第二スズやテトラブトキシスズ化合物の使用
では、300’C以下の焼成によると塩素や71機物が
残留することより導電性が匹いが、本発明の結晶a酸化
スズ・アンチモンゾルの使用では、酸化スズにアンチモ
ンが固溶する結晶形を有すること、及び水分散体である
ことがら、水、アンモニアが乾燥操作で殆ど揮散するた
め、200°Cの熱処理後でも面抵抗値は10’Ω/s
q程度の導電性を示し、且つ透光率も98%程度と優れ
ている。
In the conventional use of stannic chloride and tetrabutoxytin compounds, conductivity is comparable due to residual chlorine and 71 compounds when fired at 300'C or below, but the crystalline tin oxide/antimony sol of the present invention When using tin oxide, since it has a crystalline form in which antimony is solid dissolved in tin oxide, and because it is an aqueous dispersion, most of the water and ammonia are volatilized during the drying operation, so the sheet resistance value remains unchanged even after heat treatment at 200°C. 10'Ω/s
It exhibits conductivity of about q, and has an excellent light transmittance of about 98%.

熱処理温度については、上述のように200°C程度の
低温処理で導電性が得られるが、高温で焼成を行う程5
n02の焼結が進行し、導電性が向上することから、よ
り好ましくは500〜600℃で30〜60分程度の焼
成を行えば良い。
Regarding the heat treatment temperature, as mentioned above, conductivity can be obtained by low temperature treatment of about 200 °C, but the higher the temperature is, the higher the temperature is.
Since the sintering of n02 progresses and the conductivity improves, firing is more preferably performed at 500 to 600°C for about 30 to 60 minutes.

(実施例) 以下に本発明の実施例を掲げ更に説明を行うが、本発明
はこれらに限定されるものではない。
(Example) The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.

尚、%は特にことわらない限り全て1室%を示す。In addition, all percentages indicate 1 chamber % unless otherwise specified.

実施例I Sb/Snモル比0.01になるように塩化第二スズ水
溶液に三塩化アンチモンを加えた混合溶液を。
Example I A mixed solution was prepared by adding antimony trichloride to an aqueous stannic chloride solution so that the Sb/Sn molar ratio was 0.01.

重炭酸アンモニウム水溶液に攪はんを行ないながら除々
に添加し、SbとSnの共沈ゲルを生成させた。
It was gradually added to an aqueous ammonium bicarbonate solution while stirring to form a coprecipitated gel of Sb and Sn.

このゲルをろ別し、ろ液中に塩素イオンが認められなく
なるまで洗浄を繰り返し行なった。
This gel was filtered and washed repeatedly until no chloride ions were observed in the filtrate.

洗浄後のゲルに適量のアンモニア、及び水を加えて5n
OelO%に調整し、オートクレーブに移した後、22
0℃で4時間の水熱処理を行ない、結晶質酸化スズ・ア
ンチモンゾルを得た。
Add an appropriate amount of ammonia and water to the washed gel to make 5N
After adjusting to OelO% and transferring to autoclave, 22
Hydrothermal treatment was performed at 0° C. for 4 hours to obtain a crystalline tin oxide/antimony sol.

まり、 Sb/Sn モ)k比M O、03,0,1,
0,25となるように上記と同様の方法によりゾルを製
造し、更に、比較のためにSb/Snモル比が0.35
についても同様に行った。
Mari, Sb/Sn Mo) k ratio M O, 03,0,1,
A sol was manufactured in the same manner as above so that the Sb/Sn molar ratio was 0.25, and for comparison, a sol was prepared with a Sb/Sn molar ratio of 0.35.
The same thing was done for

この様にして得たゾルを充分に脱脂処理したパイレック
スガラス上に塗布し、100℃で1時間の乾燥を行なっ
た。 次いで、これを5℃/winでH1温加熱し、5
00’Cで30分の焼成を行ない、透明導電薄膜を得た
The sol thus obtained was applied onto Pyrex glass which had been thoroughly degreased and dried at 100° C. for 1 hour. Next, this was heated to H1 temperature at 5°C/win, and
A transparent conductive thin film was obtained by baking at 00'C for 30 minutes.

この薄膜に銀ベーストで電罹を付け、薄膜の面抵抗値を
測定した。
This thin film was coated with an electric coating using a silver base, and the sheet resistance value of the thin film was measured.

また、薄膜の波長600nm可視光線の透過率、及び光
干渉法による膜厚を測定した。
In addition, the transmittance of the thin film to visible light at a wavelength of 600 nm and the film thickness were measured by optical interference method.

更に、鉛筆による引っ罎き試験により膜の強度を調べ、
10%硫酸により膜の耐薬品性をみた。
Furthermore, the strength of the membrane was examined by a pencil scratch test.
The chemical resistance of the membrane was examined using 10% sulfuric acid.

此等の結果を第1表に示した。These results are shown in Table 1.

実施例2 Sb/Snモル比0.07になるように硫酸第二スズ水
溶液に三塩化アンチモンを加えた)U合溶液を、重炭酸
アンモニウム水溶液に攪はんを行ないながら徐々に添加
し−SbとSnの共沈ゲルを生成させた。
Example 2 A solution of antimony trichloride added to an aqueous solution of stannic sulfate so that the Sb/Sn molar ratio was 0.07 was gradually added to an aqueous ammonium bicarbonate solution with stirring. A co-precipitated gel of Sn and Sn was produced.

このゲルをろ別し、ろ液中に塩素イオン、硫酸根が認め
られなくなるまで洗浄を繰り返し行なった。
This gel was filtered and washed repeatedly until no chloride ions or sulfate groups were observed in the filtrate.

洗浄後のゲルに適量のアンモニア、及び水を加えて5n
O610%に3111整し、オー(・クレープに移した
後、180°Cで10時間の水熱処理を行ない、結晶質
酸化スズ・アンチモンゾルを得た。
Add an appropriate amount of ammonia and water to the washed gel to make 5N
The mixture was adjusted to 10% O6, transferred to an au crepe, and then subjected to hydrothermal treatment at 180°C for 10 hours to obtain a crystalline tin oxide antimony sol.

この様にして得たゾルを充分に脱脂処理したパイレック
スガラス上に塗布し、100°Cで1時間の乾燥を行な
った。
The sol thus obtained was applied onto Pyrex glass which had been thoroughly degreased and dried at 100°C for 1 hour.

次いで、これを第2表に示した各温度で1時間焼成し、
透明導電薄膜を得た。
Next, this was baked for 1 hour at each temperature shown in Table 2,
A transparent conductive thin film was obtained.

此等の面抵抗、光透A率、膜厚及び膜強度を測定し、結
果を第2表に示した。
The sheet resistance, light transmittance A, film thickness and film strength of this film were measured and the results are shown in Table 2.

実施例3 Sb/Snモル比0.05で実施例1と同様に製造した
結晶質酸化スズ・アンチモンゾルを、充分に脱脂j!L
JINシたソーダガラス上に塗布し、100°Cで1時
間の乾燥を行ない、次いで500°Cで1時間の焼成を
行なった。
Example 3 A crystalline tin oxide/antimony sol produced in the same manner as in Example 1 with an Sb/Sn molar ratio of 0.05 was thoroughly degreased. L
It was coated on JIN soda glass, dried at 100°C for 1 hour, and then fired at 500°C for 1 hour.

次に、この塗布、乾燥、焼成の工程を数回縁り返し、い
わゆる多層コーティング法により透明導電薄膜を得た。
Next, this coating, drying, and baking process was repeated several times to obtain a transparent conductive thin film using a so-called multilayer coating method.

此等の面抵抗、光透過率、膜状態を調べ、結果を第;3
表に示した。
Examine the sheet resistance, light transmittance, and film condition of these, and record the results in Section 3.
Shown in the table.

第3表 実施例4 実施例2で得た本発明の結晶質酸化スズ・アンチモンゾ
ル(Sb/Snモル比0.07、SnO□10%)を用
い、充分に脱脂処理したソーダガラス上に塗布を行い、
100°Cで20分の乾燥を行った。
Table 3 Example 4 Using the crystalline tin oxide antimony sol of the present invention obtained in Example 2 (Sb/Sn molar ratio 0.07, SnO □ 10%), coating on soda glass that had been thoroughly degreased. and
Drying was performed at 100°C for 20 minutes.

この操作を3回繰り返し、次いで200℃2時間の焼成
を行った。
This operation was repeated three times, and then baking was performed at 200° C. for 2 hours.

また比較のために、塩化第二スズ水溶液に三塩化アンチ
モンをSb/Snモル比0.07となるように添加し、
適至の塩酸と水をこれに加え溶解させ、5nO8lO%
のスズ、アンチモンを含有する均一な溶液を得た。
For comparison, antimony trichloride was added to the stannic chloride aqueous solution so that the Sb/Sn molar ratio was 0.07.
Add suitable hydrochloric acid and water to this and dissolve it to make 5nO8lO%
A homogeneous solution containing tin and antimony was obtained.

又更に、テトラブトキシスズとアンチモントリプトキサ
イドをブタノールに溶解させ、Sb/Snモル比0.0
7.5nOeI 0%のスズ、アンチモンを含有する溶
液を得た。
Furthermore, tetrabutoxytin and antimony triptoxide are dissolved in butanol, and the Sb/Sn molar ratio is 0.0.
A solution containing 7.5 nOeI 0% tin and antimony was obtained.

これらの溶液を前記と同様に、ソーダガラス上に塗布、
乾燥、焼成処理を行なった。
Apply these solutions on soda glass in the same manner as above,
Drying and firing treatments were performed.

この様にして得られたr?を膜の面抵抗、光透過率、膜
状態を調べ、結果4第4表に示した。
r obtained in this way? The sheet resistance, light transmittance, and film condition of the film were investigated, and the results are shown in Table 4.

第1I表 手続補正1fF(自発) 昭和61年6月口日 2、発明の名称 透明導電材f1 3、補正をすると !II f↑との関係 特許出願人 1−、ノア 4、補正の対象 明細δ 5、補正の内容 (1)明!III占箒9頁第6行と第7行の間に次の文
を挿入する。
Table 1I Procedural Amendment 1fF (Voluntary) Date of June 1986 2, Name of Invention Transparent Conductive Material f1 3, When Amendments Are Made! II Relationship with f↑ Patent applicant 1-, Noah 4, Specification subject to amendment δ 5, Contents of amendment (1) Clear! Insert the following sentence between lines 6 and 7 on page 9 of III Zunho.

「 このようにしてi′)られる本発明の透明導電材f
1は、導電性材料として優れた特性を有することより、
太陽電池、EL素子、M晶素子、透明スイッチ等の透明
ξ極、CRT等のディスプレイ°表面の帯電防止、マイ
クロ波による電磁波障′X防止、放ぺ管の導電促進、自
動車、航空機、a器等の窓の曇り防止、透明発熱体、i
!膜抵抗器、無電解メッキの下地処理、ガラス繊維の・
1:【電防上等に利用することができる。
“The transparent conductive material f of the present invention produced in this way i′)
1 has excellent properties as a conductive material,
Solar cells, EL elements, M crystal elements, transparent ξ poles such as transparent switches, prevention of charging on the surface of displays such as CRTs, prevention of electromagnetic wave interference caused by microwaves, promotion of electrical conductivity in discharge tubes, automobiles, aircraft, A devices Anti-fog windows, transparent heating elements, etc.
! Membrane resistors, surface treatment for electroless plating, glass fiber
1: [Can be used for electric protection etc.

更には、炭カル、シリカ等の無a質フィラーにコーティ
ングを行なった導電性粉末としての利用もできる。
Furthermore, it can also be used as a conductive powder coated with a non-aluminous filler such as charcoal or silica.

Claims (1)

【特許請求の範囲】[Claims]  Sb/Snモル比0.3以下でSb及びSnが固溶す
る結晶質酸化スズ・アンチモンゾルからなる透明導電材
料。
A transparent conductive material made of a crystalline tin oxide/antimony sol in which Sb and Sn are dissolved in solid solution at an Sb/Sn molar ratio of 0.3 or less.
JP12165086A 1986-05-26 1986-05-26 Transparent conducting material Granted JPS62278705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12165086A JPS62278705A (en) 1986-05-26 1986-05-26 Transparent conducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12165086A JPS62278705A (en) 1986-05-26 1986-05-26 Transparent conducting material

Publications (2)

Publication Number Publication Date
JPS62278705A true JPS62278705A (en) 1987-12-03
JPH0586605B2 JPH0586605B2 (en) 1993-12-13

Family

ID=14816500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12165086A Granted JPS62278705A (en) 1986-05-26 1986-05-26 Transparent conducting material

Country Status (1)

Country Link
JP (1) JPS62278705A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221124A (en) * 1989-02-21 1990-09-04 Catalysts & Chem Ind Co Ltd Production of tin-antimony multiple oxide sol
JPH02263017A (en) * 1989-03-31 1990-10-25 Sharp Corp Production of microwave absorption exothermic cooking vessel
US6143418A (en) * 1996-06-11 2000-11-07 Sumitomo Osaka Cement Co., Ltd. Transparent conductive film, low-reflectivity transparent conductive film, and display device
WO2001036544A1 (en) * 1999-11-17 2001-05-25 Toyo Gosei Kogyo Co., Ltd. Coating solution for forming transparent and conductive tin oxide film and method for preparing transparent and conductive tin oxide film, and transparent and conductive tin oxide film
JP2007070673A (en) * 2005-09-06 2007-03-22 Univ Of Tokyo Antimony-containing stannic oxide film formed on aluminum substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123403A (en) 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Method for manufacturing crystalline ito dispersion

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156603A (en) * 1980-05-06 1981-12-03 Mitsubishi Metal Corp Conductive fine powder
JPS5771822A (en) * 1980-10-24 1982-05-04 Mitsubishi Metal Corp Production of electrically conductive fine particles
JPS5785866A (en) * 1980-11-18 1982-05-28 Mitsubishi Metal Corp Antistatic transparent paint
JPS57118242A (en) * 1981-01-14 1982-07-23 Fuji Photo Film Co Ltd Photographic sensitive material
JPS5862647A (en) * 1981-10-09 1983-04-14 Fuji Photo Film Co Ltd Antistaticized silver halide photosensitive material
JPS5889712A (en) * 1981-11-24 1983-05-28 三菱マテリアル株式会社 Method of forming transparent conductive film on surface of glass substrate
JPS5891777A (en) * 1981-11-25 1983-05-31 Mitsubishi Metal Corp Electrically conductive clear paint
JPS5962341A (en) * 1982-08-13 1984-04-09 ユナイテッド キングドム アトミック エナ↓−ヂイ オ↓−ソリテイ Preparation of dispersion
JPS59122561A (en) * 1982-12-28 1984-07-16 Mitsubishi Metal Corp Electrically conductive transparent paint stable to moisture
JPS61121650A (en) * 1984-11-19 1986-06-09 Canon Inc Copying machine
JPH0258213A (en) * 1988-08-23 1990-02-27 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156603A (en) * 1980-05-06 1981-12-03 Mitsubishi Metal Corp Conductive fine powder
JPS5771822A (en) * 1980-10-24 1982-05-04 Mitsubishi Metal Corp Production of electrically conductive fine particles
JPS5785866A (en) * 1980-11-18 1982-05-28 Mitsubishi Metal Corp Antistatic transparent paint
JPS57118242A (en) * 1981-01-14 1982-07-23 Fuji Photo Film Co Ltd Photographic sensitive material
JPS5862647A (en) * 1981-10-09 1983-04-14 Fuji Photo Film Co Ltd Antistaticized silver halide photosensitive material
JPS5889712A (en) * 1981-11-24 1983-05-28 三菱マテリアル株式会社 Method of forming transparent conductive film on surface of glass substrate
JPS5891777A (en) * 1981-11-25 1983-05-31 Mitsubishi Metal Corp Electrically conductive clear paint
JPS5962341A (en) * 1982-08-13 1984-04-09 ユナイテッド キングドム アトミック エナ↓−ヂイ オ↓−ソリテイ Preparation of dispersion
JPS59122561A (en) * 1982-12-28 1984-07-16 Mitsubishi Metal Corp Electrically conductive transparent paint stable to moisture
JPS61121650A (en) * 1984-11-19 1986-06-09 Canon Inc Copying machine
JPH0258213A (en) * 1988-08-23 1990-02-27 Seiko Epson Corp Manufacture of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221124A (en) * 1989-02-21 1990-09-04 Catalysts & Chem Ind Co Ltd Production of tin-antimony multiple oxide sol
JPH02263017A (en) * 1989-03-31 1990-10-25 Sharp Corp Production of microwave absorption exothermic cooking vessel
US6143418A (en) * 1996-06-11 2000-11-07 Sumitomo Osaka Cement Co., Ltd. Transparent conductive film, low-reflectivity transparent conductive film, and display device
WO2001036544A1 (en) * 1999-11-17 2001-05-25 Toyo Gosei Kogyo Co., Ltd. Coating solution for forming transparent and conductive tin oxide film and method for preparing transparent and conductive tin oxide film, and transparent and conductive tin oxide film
US6777477B1 (en) 1999-11-17 2004-08-17 Toyo Gosei Kogyo Co., Ltd. Coating solution for forming transparent and conductive tin oxide film and method for preparing transparent and conductive tin oxide film, and transparent and conductive tin oxide film
JP2007070673A (en) * 2005-09-06 2007-03-22 Univ Of Tokyo Antimony-containing stannic oxide film formed on aluminum substrate

Also Published As

Publication number Publication date
JPH0586605B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
US4187340A (en) Method of forming patterned transparent electro-conductive film on the substrate of liquid crystal display
US4000346A (en) Optically transparent, electrically conductive coating
CN104962865A (en) Ion-source auxiliary ITO film thermal evaporation process
JPS62278705A (en) Transparent conducting material
CN107512854A (en) ITO/WO with Nanoparticles Embedded structure3Compound electrochromic membrane and preparation method thereof
JP2605855B2 (en) Method for producing conductive tin oxide powder
US5501883A (en) Material for use as a transparent conductive film and method for making a transparent conductive film using the material
JP2001035273A (en) Adjusting method for sheet resistance value of transparent conductive film and forming method for the transparent conductive film
JP3634394B2 (en) High resistance indium oxide film
Seng et al. Effect of annealing time on aluminium doped tin oxide (SnO2) as a transparent conductive oxide
JPH06234521A (en) Electric conductive transparent film and its production
JP2742068B2 (en) Method for producing transparent conductive fine particles and method for producing transparent conductive thin film thereby
JP2759470B2 (en) Stannate sol and method for producing the same
JP3549089B2 (en) Glass substrate with transparent conductive film and its manufacturing method
JPH04277408A (en) Transparent electrode
JPH07223814A (en) Indium oxide film having enhanced resistance
JPS647445B2 (en)
JP3821883B2 (en) Method for producing amorphous tin oxide sol
TWI765357B (en) Manufacturing method of indium tin oxide
KR101008237B1 (en) Method of forming transparent conducting film
JP4122117B2 (en) Method for producing amorphous tin oxide sol
JP2006225256A (en) Indium tin oxide precursor, indium tin oxide film, and method for production thereof
JPS60220507A (en) Transparent conductive film and method of forming same
JP2678033B6 (en) Coating material and production method thereof
JP3997363B2 (en) Composition for forming indium oxide film