JPH06234521A - Electric conductive transparent film and its production - Google Patents

Electric conductive transparent film and its production

Info

Publication number
JPH06234521A
JPH06234521A JP19048093A JP19048093A JPH06234521A JP H06234521 A JPH06234521 A JP H06234521A JP 19048093 A JP19048093 A JP 19048093A JP 19048093 A JP19048093 A JP 19048093A JP H06234521 A JPH06234521 A JP H06234521A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
coating solution
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19048093A
Other languages
Japanese (ja)
Other versions
JP3834339B2 (en
Inventor
Akira Umigami
暁 海上
Masatsugu Oyama
正嗣 大山
Masatoshi Shibata
雅敏 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP19048093A priority Critical patent/JP3834339B2/en
Publication of JPH06234521A publication Critical patent/JPH06234521A/en
Application granted granted Critical
Publication of JP3834339B2 publication Critical patent/JP3834339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electric conductive transparent film more excellent in etchability than an ITO film, having electric conductivity comparable to that of the ITO film and also more excellent in moisture resistance than the ITO film. CONSTITUTION:This electric conductive transparent film is made of amorphous oxide of indium and zinc and the atomic ratio between In and Zn satisfies In/(In+Zn)=0.55 to 0.75, or this film is made of amorphous oxide of indium, zinc and at least one kind of 3rd element selected among Sn, Al, Sb, Ga and Ge and the atomic ratio between In and Zn satisfies In/(In+Zn)=0.55 to 0.75. The percentage of the 3rd element is <=20 atomic % of the total amt. of the 3rd element, In and Zn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電膜およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film and its manufacturing method.

【0002】[0002]

【従来の技術】液晶表示装置は軽量化、薄型化が可能で
あり、駆動電圧も低いことから、パソコンやワープロ等
のOA機器への導入が活発である。そして、前述のよう
な利点を有している液晶表示装置は必然的に大面積化、
多画素化、高精細化の方向に向かっており、表示欠陥の
ない高品質の液晶表示素子が求められている。高品質の
液晶表示素子を得るうえでの重要な要素の一つに透明電
極があり、この透明電極としては、現在、ITO膜が主
流を占めている。また、ITO膜は光透過性や導電性に
優れてはいるものの、耐湿性が比較的低く、湿気により
電気抵抗値が増大するという難点を有しているため、化
学的安定性の高い物質である酸化亜鉛を酸化インジウム
と組み合わせることによりITO膜よりも化学的安定性
の高い透明導電膜を得る試みがなされている。
2. Description of the Related Art A liquid crystal display device can be made lighter and thinner, and has a low driving voltage, so that it is actively introduced into OA equipment such as personal computers and word processors. Then, the liquid crystal display device having the above-mentioned advantages inevitably has a large area,
There is a demand for high-quality liquid crystal display devices having no display defects in the direction of increasing the number of pixels and increasing the definition. One of the important factors for obtaining a high quality liquid crystal display element is a transparent electrode, and an ITO film is currently the mainstream of this transparent electrode. Further, although the ITO film has excellent light transmittance and conductivity, it has a relatively low moisture resistance and has a drawback that the electric resistance value increases due to moisture, so that it is a substance having high chemical stability. Attempts have been made to obtain a transparent conductive film that is more chemically stable than an ITO film by combining certain zinc oxide with indium oxide.

【0003】例えば特開昭61−205619号公報に
は、酸化亜鉛を主成分とする酸化亜鉛透明導電膜中に亜
鉛原子に対してInを1〜20原子%内の特定量含有さ
せてなる耐熱性酸化亜鉛透明導電膜が開示されている。
また特公平5−6289号公報には、出発原料の段階で
の計算値でInとZnの原子比In/(In+Zn)が
0.8である酸化亜鉛添加酸化インジウム膜が開示され
ている。
For example, in Japanese Patent Laid-Open No. 61-205619, a heat-resistant material containing a specific amount of In within 1 to 20 atomic% with respect to zinc atoms in a zinc oxide transparent conductive film containing zinc oxide as a main component. Zinc oxide transparent conductive film is disclosed.
In addition, Japanese Patent Publication No. 5-6289 discloses a zinc oxide-added indium oxide film in which the atomic ratio In / (In + Zn) of In and Zn calculated at the stage of the starting material is 0.8.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記特
開昭61−205619号公報に開示されている耐熱性
酸化亜鉛透明導電膜は、広い温度範囲にわたって電気抵
抗率の変化が小さいという利点を有するものの、電気抵
抗値がITO膜よりも高いという難点を有している。ま
た、前記特公平5−6289号公報に開示されている酸
化亜鉛添加酸化インジウム膜も、電気抵抗値がITO膜
よりも高いという難点を有している。
However, the heat-resistant zinc oxide transparent conductive film disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-205619 has the advantage that the change in electrical resistivity is small over a wide temperature range. However, it has a drawback that the electric resistance value is higher than that of the ITO film. Further, the zinc oxide-added indium oxide film disclosed in the above Japanese Patent Publication No. 5-6289 also has a drawback that its electric resistance value is higher than that of the ITO film.

【0005】本発明は、ITO膜に比べてエッチング特
性に優れるとともにITO膜と同等の導電性を有し、か
つITO膜よりも耐湿性に優れている透明導電膜および
その製造方法を提供することを目的とする。
The present invention provides a transparent conductive film which has excellent etching characteristics as compared with an ITO film, has conductivity equivalent to that of the ITO film, and has better moisture resistance than the ITO film, and a manufacturing method thereof. With the goal.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の透明導電膜は、インジウムと亜鉛との非晶質酸化物
からなり、InとZnの原子比がIn/(In+Zn)
=0.55〜0.75であることを特徴とする(以下、
この透明導電膜を透明導電膜Iという)。
The transparent conductive film of the present invention which achieves the above object is made of an amorphous oxide of indium and zinc and has an atomic ratio of In to Zn of In / (In + Zn).
= 0.55 to 0.75 (hereinafter,
This transparent conductive film is referred to as a transparent conductive film I).

【0007】また上記目的を達成する本発明の他の透明
導電膜は、インジウムと亜鉛、およびSn,Al,S
b,GaおよびGeからなる群より選択される少なくと
も1種の第3元素との非晶質酸化物からなり、InとZ
nの原子比がIn/(In+Zn)=0.55〜0.7
5で、InとZnと第3元素の合量に対する前記第3元
素の割合が20at%以下であることを特徴とする(以
下、この透明導電膜を透明導電膜IIという)。
Another transparent conductive film of the present invention which achieves the above object is indium and zinc, and Sn, Al and S.
In and Z, which is composed of an amorphous oxide of at least one third element selected from the group consisting of b, Ga and Ge,
The atomic ratio of n is In / (In + Zn) = 0.55 to 0.7
5, the ratio of the third element to the total amount of In, Zn and the third element is 20 at% or less (hereinafter, this transparent conductive film is referred to as transparent conductive film II).

【0008】一方、上記目的を達成する本発明の透明導
電膜の製造方法は、インジウム化合物および亜鉛化合物
をInとZnの原子比がIn/(In+Zn)=0.5
5〜0.75になる割合で溶解させたコーティング溶液
を調製し、このコーティング溶液を基板に塗布して30
0〜650℃で焼成した後に還元処理して非晶質の透明
導電膜を得ることを特徴とする(以下、この方法を方法
Iという)。
On the other hand, in the method of manufacturing a transparent conductive film of the present invention which achieves the above object, the indium compound and the zinc compound have an atomic ratio of In and Zn of In / (In + Zn) = 0.5.
A coating solution was prepared by dissolving the coating solution in a ratio of 5 to 0.75, and the coating solution was applied to the substrate to
It is characterized in that it is subjected to reduction treatment after firing at 0 to 650 ° C. to obtain an amorphous transparent conductive film (hereinafter, this method is referred to as method I).

【0009】そして、上記目的を達成する本発明の透明
導電膜の他の製造方法は、インジウム化合物と亜鉛化合
物、およびSn化合物,Al化合物,Sb化合物,Ga
化合物およびGe化合物からなる群より選択される少な
くとも1種の第3元素化合物とを、InとZnの原子比
がIn/(In+Zn)=0.55〜0.75で、In
とZnと第3元素の合量に対する前記第3元素の割合が
20at%以下になる割合で溶解させたコーティング溶液
を調製し、このコーティング溶液を基板に塗布して30
0〜650℃で焼成した後に還元処理して非晶質の透明
導電膜を得ることを特徴とする(以下、この方法を方法
IIという)。
Another method of manufacturing the transparent conductive film of the present invention that achieves the above object is to use an indium compound, a zinc compound, a Sn compound, an Al compound, an Sb compound, and a Ga compound.
At least one third element compound selected from the group consisting of a compound and a Ge compound, the atomic ratio of In to Zn is In / (In + Zn) = 0.55 to 0.75, and In
A coating solution is prepared by dissolving the third element with respect to the total amount of Zn, Zn, and the third element in a ratio of 20 at% or less, and the coating solution is applied to a substrate to
It is characterized by obtaining an amorphous transparent conductive film by performing a reduction treatment after firing at 0 to 650 ° C. (hereinafter, this method is referred to as a method.
II).

【0010】以下、本発明を詳細に説明する。まず本発
明の透明導電膜Iについて説明すると、この透明導電膜
Iは、上述したようにインジウムと亜鉛との非晶質酸化
物からなり、InとZnの原子比はIn/(In+Z
n)=0.55〜0.75である。ここで、前記非晶質
酸化物は、一般に組成式Inx Zn1-x y (式中、x
は0.55〜0.75の範囲内の数値を示し、yは化学
量論量を示す。)で表され、インジウム亜鉛酸化物中の
酸素は部分的に欠損している場合がある。また、この酸
化物には混合物、組成物、固溶体等の全ての形態の酸化
物が含まれる。
The present invention will be described in detail below. First, the transparent conductive film I of the present invention will be described. The transparent conductive film I is made of an amorphous oxide of indium and zinc as described above, and the atomic ratio of In to Zn is In / (In + Z).
n) = 0.55 to 0.75. Here, the amorphous oxide generally has a composition formula In x Zn 1-x O y (where x is
Indicates a numerical value within the range of 0.55 to 0.75, and y indicates a stoichiometric amount. ), And oxygen in indium zinc oxide may be partially deficient. Further, this oxide includes all forms of oxides such as a mixture, a composition, a solid solution and the like.

【0011】この非晶質酸化物におけるInとZnの原
子比をIn/(In+Zn)=0.55〜0.75に限
定する理由は、前記原子比がこの範囲から外れると電気
抵抗値が大きくなるからである。In/(In+Zn)
の好ましい範囲は0.60〜0.75であり、特に好ま
しい範囲は0.65〜0.75である。また、結晶化し
たものはIn2 3 のIn(3価)の位置にZn(2
価)が入り込んでいるため、組成が同じであっても非晶
質のものより導電性に劣るので、透明導電膜Iは非晶質
のものに限定される。
The reason for limiting the atomic ratio of In to Zn in this amorphous oxide to In / (In + Zn) = 0.55 to 0.75 is that the electric resistance value becomes large when the atomic ratio deviates from this range. Because it will be. In / (In + Zn)
The preferred range is 0.60 to 0.75, and the particularly preferred range is 0.65 to 0.75. Also, the crystallized one is Zn (2) at the In (trivalent) position of In 2 O 3.
Since the conductivity value is inferior to that of an amorphous material even if the composition is the same, the transparent conductive film I is limited to an amorphous material.

【0012】このような非晶質酸化物からなる透明導電
膜Iは、ITO膜に比べてエッチング特性に優れるとと
もにITO膜と同等の導電性を有しており、また、優れ
た可視光透過性を有している。そして、湿気による電気
抵抗値の増大はITO膜よりも少ない。この透明導電膜
Iはスパッタ法、CVD法等、種々の方法により製造す
ることが可能であるが、組成を正確にかつ容易に制御し
得る点から、また低コストでの製造が可能である点か
ら、後述する本発明の方法Iにより製造することが好ま
しい。
The transparent conductive film I made of such an amorphous oxide is superior in etching characteristics to the ITO film and has the same conductivity as the ITO film, and also has excellent visible light transmittance. have. The increase in electric resistance value due to humidity is smaller than that in the ITO film. The transparent conductive film I can be manufactured by various methods such as a sputtering method and a CVD method, but the composition can be accurately and easily controlled, and the manufacturing cost can be low. Therefore, it is preferably produced by the method I of the present invention described later.

【0013】次に本発明の透明導電膜IIについて説明す
ると、この透明導電膜IIは、上述したようにインジウム
と亜鉛、およびSn,Al,Sb,GaおよびGeから
なる群より選択される少なくとも1種の第3元素との非
晶質酸化物からなり、InとZnの原子比はIn/(I
n+Zn)=0.55〜0.75、InとZnと第3元
素の合量に対する前記第3元素の割合は20at%以下で
ある。ここで、InとZnの原子比をIn/(In+Z
n)=0.55〜0.75に限定する理由は、前述した
透明導電膜Iにおける理由と同じである。透明導電膜I
の場合と同様に、In/(In+Zn)の好ましい範囲
は0.60〜0.75であり、特に好ましい範囲は0.
65〜0.75である。
Next, the transparent conductive film II of the present invention will be described. The transparent conductive film II is at least one selected from the group consisting of indium and zinc, and Sn, Al, Sb, Ga and Ge as described above. It is composed of an amorphous oxide with a third element, and the atomic ratio of In and Zn is In / (I
n + Zn) = 0.55 to 0.75, and the ratio of the third element to the total amount of In, Zn and the third element is 20 at% or less. Here, the atomic ratio of In and Zn is In / (In + Z
The reason for limiting n) to 0.55 to 0.75 is the same as the reason for the transparent conductive film I described above. Transparent conductive film I
As in the case of No. 2, the preferable range of In / (In + Zn) is 0.60 to 0.75, and the particularly preferable range is 0.
It is 65 to 0.75.

【0014】また、第3元素の割合を20at%以下に限
定する理由は、第3元素が20at%を超えるとイオンの
散乱が起こり、膜の導電性が低下し過ぎるからである。
第3元素の好ましい割合は1〜10at%であり、特に好
ましい割合は2〜10at%である。また、結晶化したも
のは、組成が同じであっても非晶質のものより導電性に
劣るので、透明導電膜IIも非晶質のものに限定される。
The reason for limiting the proportion of the third element to 20 at% or less is that if the third element exceeds 20 at%, ion scattering occurs and the conductivity of the film is lowered too much.
The preferable ratio of the third element is 1 to 10 at%, and the particularly preferable ratio is 2 to 10 at%. Further, the crystallized material is inferior in conductivity to the amorphous material even if the composition is the same, so that the transparent conductive film II is also limited to the amorphous material.

【0015】このような非晶質酸化物からなる透明導電
膜IIは、前述の透明導電膜Iよりも高い導電性を有して
いる。また、ITO膜に比べてエッチング特性に優れる
とともに優れた可視光透過性を有している。そして、湿
気による電気抵抗値の増大はITO膜よりも少ない。こ
の透明導電膜IIもスパッタ法、CVD法等、種々の方法
により製造することが可能であるが、前述した透明導電
膜Iと同様の理由から、後述する本発明の方法IIにより
製造することが好ましい。
The transparent conductive film II made of such an amorphous oxide has higher conductivity than the transparent conductive film I described above. Further, it has excellent etching characteristics and excellent visible light transmittance as compared with the ITO film. The increase in electric resistance value due to humidity is smaller than that in the ITO film. This transparent conductive film II can also be manufactured by various methods such as the sputtering method and the CVD method, but for the same reason as the above-mentioned transparent conductive film I, it can be manufactured by the method II of the present invention described later. preferable.

【0016】次に、本発明の方法Iおよび方法IIについ
て説明する。まず本発明の方法Iについて説明すると、
この方法Iは、前述したようにインジウム化合物および
亜鉛化合物をInとZnの原子比がIn/(In+Z
n)=0.55〜0.75になる割合で溶解させたコー
ティング溶液を調製し、このコーティング溶液を基板に
塗布して300〜65℃で焼成した後に還元処理して非
晶質の透明導電膜を得ることを特徴とするものである。
方法Iで用いるコーティング溶液は、上述したインジウ
ム化合物および亜鉛化合物の他に、溶剤および溶液の安
定化剤を含む。
Next, the method I and the method II of the present invention will be described. First, the method I of the present invention will be described.
In this method I, as described above, the indium compound and the zinc compound have an atomic ratio of In and Zn of In / (In + Z
n) = 0.55 to 0.75 to prepare a coating solution, and apply the coating solution to a substrate, bake at 300 to 65 ° C, and then perform a reduction treatment to obtain an amorphous transparent conductive material. It is characterized by obtaining a film.
The coating solution used in Method I contains, in addition to the indium and zinc compounds described above, a solvent and a solution stabilizer.

【0017】ここで、インジウム化合物の具体例として
は酢酸インジウム等のカルボン酸塩、塩化インジウム等
の無機インジウム化合物、インジウムエトキシド、イン
ジウムプロポキシド等のインジウムアルコキシドが挙げ
られる。また、亜鉛化合物の具体例としては酢酸亜鉛等
のカルボン酸塩、塩化亜鉛、フッ化亜鉛、ヨウ化亜鉛等
の無機亜鉛化合物、亜鉛メトキシド、亜鉛エトキシド、
亜鉛プロポキシド等の亜鉛アルコキシドが挙げられる。
Specific examples of the indium compound include carboxylates such as indium acetate, inorganic indium compounds such as indium chloride, and indium alkoxides such as indium ethoxide and indium propoxide. Specific examples of zinc compounds include carboxylates such as zinc acetate, inorganic zinc compounds such as zinc chloride, zinc fluoride and zinc iodide, zinc methoxide, zinc ethoxide,
Examples thereof include zinc alkoxide such as zinc propoxide.

【0018】溶剤としてはメタノール、エタノール、イ
ソプロピルアルコール、2−メトキシエタノール、2−
エトキシエタノール等のアルコール類や、トルエン、ベ
ンゼン等の炭化水素等を用いることができる。また、溶
液の安定化剤としてはモノエタノールアミン、ジエタノ
ールアミン、トリエタノールアミン等のアルカノールア
ミン等を用いることができる。
As the solvent, methanol, ethanol, isopropyl alcohol, 2-methoxyethanol, 2-
Alcohols such as ethoxyethanol and hydrocarbons such as toluene and benzene can be used. As the solution stabilizer, alkanolamines such as monoethanolamine, diethanolamine, triethanolamine and the like can be used.

【0019】このようなコーティング溶液の調製は、所
定量のインジウム化合物、亜鉛化合物、溶剤および安定
化剤を混合することにより行うことができる。このとき
の混合順序は特に限定されるものではない。混合はスタ
ーラー等の常法による攪拌混合でよく、このとき加熱し
てもよい。攪拌時間は0.01〜100時間が好まし
い。0.01時間未満では均一な透明溶液を得ることが
困難である。一方、100時間を超えると経済性に乏し
くなる。特に好ましい攪拌時間は0.1〜100時間で
ある。また攪拌時に加熱する場合、加熱温度は100℃
以下にすることが好ましい。100℃を超えると溶媒が
蒸発し、溶液濃度が変化する。
The coating solution can be prepared by mixing a predetermined amount of indium compound, zinc compound, solvent and stabilizer. The mixing order at this time is not particularly limited. The mixing may be stirring and mixing by a conventional method such as a stirrer, and heating may be performed at this time. The stirring time is preferably 0.01 to 100 hours. If it is less than 0.01 hours, it is difficult to obtain a uniform transparent solution. On the other hand, if it exceeds 100 hours, the economy becomes poor. Particularly preferable stirring time is 0.1 to 100 hours. When heating with stirring, the heating temperature is 100 ° C.
The following is preferable. When the temperature exceeds 100 ° C, the solvent evaporates and the solution concentration changes.

【0020】コーティング溶液におけるInとZnの原
子比は、前述のようにIn/(In+Zn)=0.55
〜0.75に限定される。前記原子比がこの範囲から外
れると、後述する実施例および比較例から明らかなよう
に、得られる透明導電膜の電気抵抗値が大きくなる。コ
ーティング溶液におけるIn/(In+Zn)は0.6
0〜0.75が好ましく、0.65〜0.75が特に好
ましい。
The atomic ratio of In to Zn in the coating solution is In / (In + Zn) = 0.55 as described above.
Limited to ~ 0.75. When the atomic ratio deviates from this range, the electric resistance value of the obtained transparent conductive film increases, as will be apparent from Examples and Comparative Examples described later. In / (In + Zn) in the coating solution is 0.6
0 to 0.75 is preferable, and 0.65 to 0.75 is particularly preferable.

【0021】また、コーティング溶液におけるInとZ
nの合量の濃度は、0.01〜10mol%とすることが
好ましい。0.01 mol%未満ではコーティング1回あ
たりの膜厚が薄く、所望の膜厚を得るためには多数回の
コーティングが必要になるため、経済性に乏しくなる。
一方、10 mol%を超えるとコーティング時に膜厚にむ
らが生じる。InとZnの合量の特に好ましい濃度は
0.1〜10 mol%である。
In and Z in the coating solution
The concentration of the total amount of n is preferably 0.01 to 10 mol%. If it is less than 0.01 mol%, the film thickness per coating is small, and a large number of coatings are required to obtain a desired film thickness, resulting in poor economic efficiency.
On the other hand, if it exceeds 10 mol%, the film thickness becomes uneven during coating. A particularly preferable concentration of the total amount of In and Zn is 0.1 to 10 mol%.

【0022】コーティング溶液における安定化剤の濃度
は、0.01〜10 mol%とすることが好ましい。0.
01 mol%未満ではインジウム化合物および亜鉛化合物
の溶剤への溶解が困難になる。一方、10 mol%を超え
ると、焼成時に安定化剤が分解することにより生じる炭
素が焼成後も膜中に残存するようになり、膜の導電性を
低下させる。安定化剤の特に好ましい濃度は、0.1〜
10 mol%である。
The concentration of the stabilizer in the coating solution is preferably 0.01 to 10 mol%. 0.
If it is less than 01 mol%, it becomes difficult to dissolve the indium compound and the zinc compound in the solvent. On the other hand, if it exceeds 10 mol%, carbon generated by decomposition of the stabilizer during baking will remain in the film even after baking, and the conductivity of the film will be reduced. A particularly preferred concentration of stabilizer is 0.1-
It is 10 mol%.

【0023】方法Iでは、上述のようにして調製したコ
ーティング溶液を基板に塗布した後に300〜650℃
で焼成する。基板としては用途に応じて種々のものを用
いることができるが、例えば透明基板としてはアルカリ
ガラス、無アルカリガラス、石英ガラス、透明ポリマー
等が挙げられる。なお、基板はアンダーコート層を有し
ていてもよい。アンダーコート層の具体例としてはZn
O、SiO2 、TiO2 等の薄膜が挙げられる。また、
塗布方法は特に限定されるものではなく、溶液から薄膜
を製造する際に従来より適用されている種々の方法を用
いることができる。具体例としてはスプレー法、ディッ
ピング法、スピンコート法等が挙げられる。
In Method I, the coating solution prepared as described above is applied to a substrate and then 300 to 650 ° C.
Bake at. Although various substrates can be used depending on the application, examples of the transparent substrate include alkali glass, non-alkali glass, quartz glass, and transparent polymer. The substrate may have an undercoat layer. As a specific example of the undercoat layer, Zn
Examples of the thin film include O, SiO 2 , and TiO 2 . Also,
The coating method is not particularly limited, and various methods conventionally applied when manufacturing a thin film from a solution can be used. Specific examples include a spray method, a dipping method, a spin coating method and the like.

【0024】焼成方法は特に限定されるものではなく、
常圧焼成、真空焼成、加圧焼成等の方法を適用すること
ができるが、焼成温度は300〜650℃に限定され
る。焼成温度の下限を300℃に限定する理由は、30
0℃未満では溶剤あるいは安定化剤の分解により生じた
炭素が焼成後の膜中に残存し、膜の導電性を低下させる
からである。一方、焼成温度の上限を650℃に限定す
る理由は、650℃を超えると得られる膜が結晶質とな
り、膜の導電性が低下するからである。好ましい焼成温
度は300〜600℃である。
The firing method is not particularly limited,
Methods such as normal pressure firing, vacuum firing, and pressure firing can be applied, but the firing temperature is limited to 300 to 650 ° C. The reason for limiting the lower limit of the firing temperature to 300 ° C. is 30
If the temperature is lower than 0 ° C., the carbon generated by the decomposition of the solvent or the stabilizer remains in the film after baking, which lowers the conductivity of the film. On the other hand, the reason for limiting the upper limit of the firing temperature to 650 ° C. is that if the temperature exceeds 650 ° C., the obtained film becomes crystalline and the conductivity of the film decreases. The preferable firing temperature is 300 to 600 ° C.

【0025】焼成時間は、焼成温度にもよるが、0.0
1〜10時間が好ましい。0.01時間未満では、溶剤
あるいは安定化剤の分解により生じた炭素が焼成後も膜
中に残存し、膜の導電性を低下させる。一方、10時間
を超えると経済性に乏しくなる。特に好ましい焼成時間
は0.1〜10時間である。
The firing time is 0.0 although it depends on the firing temperature.
1 to 10 hours is preferable. If it is less than 0.01 hours, the carbon generated by the decomposition of the solvent or the stabilizer remains in the film even after firing, and the conductivity of the film is lowered. On the other hand, if it exceeds 10 hours, the economy becomes poor. A particularly preferable firing time is 0.1 to 10 hours.

【0026】なお、塗布した後に焼成するという操作を
1回行っただけでは所望の膜厚が得られない場合には、
塗布した後に仮焼するという操作を必要回数行った後に
本焼成することが好ましい。仮焼する場合の温度は、3
00〜650℃が好ましい。300℃未満では溶剤ある
いは安定化剤の分解により生じた炭素が仮焼後も膜中に
残存し、膜の導電性を低下させる。一方、650℃を超
えると得られる膜が結晶質となり、膜の導電性が低下す
る。特に好ましい温度は300〜600℃である。
When the desired film thickness cannot be obtained by performing the operation of coating and baking only once,
It is preferable to perform the operation of calcining after coating a required number of times and then performing the main calcination. The temperature for calcination is 3
The temperature is preferably 00 to 650 ° C. If the temperature is lower than 300 ° C., the carbon generated by the decomposition of the solvent or the stabilizer remains in the film even after the calcination, which lowers the conductivity of the film. On the other hand, if the temperature exceeds 650 ° C., the obtained film becomes crystalline and the conductivity of the film decreases. A particularly preferable temperature is 300 to 600 ° C.

【0027】仮焼時間は、仮焼温度によっても異なるが
0.01〜1時間が好ましい。0.01時間未満では、
溶剤あるいは安定化剤が飛びきらず残ってしまうため、
何回塗布、仮焼を繰り返しても、前にコーティングした
膜が、次のコーティング時に溶けてしまい膜が厚くなら
ない。一方、1時間を超えると経済性に乏しくなる。
The calcination time varies depending on the calcination temperature, but is preferably 0.01 to 1 hour. In less than 0.01 hours,
Since the solvent or stabilizer does not fly off and remains,
No matter how many times coating and calcination are repeated, the previously coated film will melt at the next coating and the film will not become thick. On the other hand, if it exceeds 1 hour, the economy becomes poor.

【0028】方法Iでは、上述のようにして焼成した後
に還元処理を行う。還元方法としては還元性ガスによる
還元、不活性ガスによる還元、真空焼成による還元等を
適用することができる。還元性ガスとしては水素ガス、
水蒸気等を用いることができる。また、不活性ガスとし
ては窒素ガスやアルゴンガス、あるいはこれらのガスと
酸素との混合ガス等を用いることができる。
In method I, reduction treatment is performed after firing as described above. As the reduction method, reduction with a reducing gas, reduction with an inert gas, reduction by vacuum firing, or the like can be applied. Hydrogen gas as the reducing gas,
Steam or the like can be used. As the inert gas, nitrogen gas, argon gas, a mixed gas of these gases and oxygen, or the like can be used.

【0029】還元温度は100〜650℃が好ましい。
100℃未満では十分な還元を行うことが困難である。
一方、650℃を超えると膜が結晶質となり、膜の導電
性が低下する。特に好ましい還元温度は200〜500
℃である。還元時間は、還元温度にもよるが、0.01
〜10時間が好ましい。0.01時間未満では十分な還
元を行うことが困難である。一方、10時間を超えると
経済性に乏しくなる。特に好ましい還元時間は0.1〜
10時間である。
The reduction temperature is preferably 100 to 650 ° C.
If it is less than 100 ° C, it is difficult to perform sufficient reduction.
On the other hand, when the temperature exceeds 650 ° C, the film becomes crystalline and the conductivity of the film decreases. Particularly preferable reduction temperature is 200 to 500.
℃. The reduction time is 0.01 depending on the reduction temperature.
10 hours is preferable. If it is less than 0.01 hours, it is difficult to perform sufficient reduction. On the other hand, if it exceeds 10 hours, the economy becomes poor. Particularly preferred reduction time is 0.1
10 hours.

【0030】上述の方法Iにより製造することができる
本発明の透明導電膜Iは、ITO膜と同等の導電性を有
しており、また、ITO膜に比べてエッチング特性に優
れるとともに優れた可視光透過性を有している。そし
て、湿気による電気抵抗値の増大はITO膜よりも少な
い。この透明導電膜Iは、液晶表示素子用電極や太陽電
池用電極等、種々の用途の電極として使用することがで
きる。
The transparent conductive film I of the present invention which can be produced by the above-mentioned method I has the same conductivity as that of the ITO film, and has excellent etching characteristics and excellent visibility as compared with the ITO film. Has optical transparency. The increase in electric resistance value due to humidity is smaller than that in the ITO film. The transparent conductive film I can be used as an electrode for various applications such as an electrode for a liquid crystal display element and an electrode for a solar cell.

【0031】次に、本発明の方法IIについて説明する。
方法IIは、前述したようにインジウム化合物と亜鉛化合
物、およびSn化合物,Al化合物,Sb化合物,Ga
化合物およびGe化合物からなる群より選択される少な
くとも1種の第3元素化合物とを、InとZnの原子比
がIn/(In+Zn)=0.55〜0.75で、In
とZnと第3元素の合量に対する前記第3元素(Sn,
Al,Sb,Ga,Ge)の割合が20at%以下になる
割合で溶解させたコーティング溶液を調製し、このコー
ティング溶液を基板に塗布して300〜650℃で焼成
した後に還元処理して非晶質の透明導電膜を得ることを
特徴とするものである。
Next, the method II of the present invention will be described.
Method II includes indium compound and zinc compound, and Sn compound, Al compound, Sb compound, Ga as described above.
At least one third element compound selected from the group consisting of a compound and a Ge compound, the atomic ratio of In to Zn is In / (In + Zn) = 0.55 to 0.75, and In
And Zn and the total amount of the third element (Sn,
A coating solution is prepared by dissolving Al, Sb, Ga, Ge) in a proportion of 20 at% or less, and the coating solution is applied to a substrate, baked at 300 to 650 ° C., and then subjected to reduction treatment to be amorphous. It is characterized in that a high quality transparent conductive film is obtained.

【0032】ここで、コーティング溶液におけるInと
Znの原子比をIn/(In+Zn)=0.55〜0.
75に限定する理由は前述した方法Iにおける理由と同
じである。コーティング溶液におけるIn/(In+Z
n)は0.60〜0.75が好ましく、0.65〜0.
75が特に好ましい。
Here, the atomic ratio of In and Zn in the coating solution is In / (In + Zn) = 0.55-0.
The reason for limiting the number to 75 is the same as the reason in Method I described above. In / (In + Z in coating solution
n) is preferably 0.60 to 0.75, and 0.65 to 0.
75 is especially preferred.

【0033】InとZnと第3元素の合量に対する前記
第3元素の割合を20at%以下に限定する理由は、20
at%を超えると得られる膜の導電性がイオンの散乱によ
り低下し過ぎるからである。第3元素の割合が20at%
以下となるように第3元素化合物を溶解させることによ
り、透明導電膜Iよりも導電性の高い透明導電膜を得る
ことができる。第3元素の割合は1〜10at%が好まし
く、2〜10at%が特に好ましい。
The reason why the ratio of the third element to the total amount of In, Zn and the third element is limited to 20 at% or less is 20.
This is because if it exceeds at%, the conductivity of the obtained film is excessively lowered by the scattering of ions. The proportion of the third element is 20 at%
By dissolving the third element compound as described below, a transparent conductive film having higher conductivity than the transparent conductive film I can be obtained. The proportion of the third element is preferably 1 to 10 at%, particularly preferably 2 to 10 at%.

【0034】この方法IIは、インジウム化合物および亜
鉛化合物の他に、Sn化合物,Al化合物,Sb化合
物,Ga化合物およびGe化合物からなる群より選択さ
れる少なくとも1種の第3元素化合物を所定量溶解させ
てコーティング溶液を調製する点で前述した方法Iと異
なる。他の点、すなわち、インジウム化合物および亜鉛
化合物の種類やコーティング溶液の調製方法、基板の種
類、焼成方法、および還元方法については方法Iと同じ
である。なお、コーティング溶液におけるInとZnと
第3元素の合量の濃度は、方法Iと同様の理由から、
0.01〜10 mol%が好ましく、特に0.1〜10 m
ol%が好ましい。
In this method II, in addition to an indium compound and a zinc compound, a predetermined amount of at least one third element compound selected from the group consisting of Sn compounds, Al compounds, Sb compounds, Ga compounds and Ge compounds is dissolved. This is different from Method I described above in that the coating solution is prepared. The other points, that is, the types of the indium compound and the zinc compound, the method for preparing the coating solution, the type of the substrate, the firing method, and the reduction method are the same as those in Method I. For the same reason as in Method I, the total concentration of In, Zn, and the third element in the coating solution was
0.01 to 10 mol% is preferable, especially 0.1 to 10 m
ol% is preferred.

【0035】方法IIで第3元素化合物として用いられる
Sn化合物の具体例としては酢酸錫(2価)、ジメトキ
シ錫、ジエトキシ錫、ジプロポキシ錫、ジブトキシ錫、
テトラメトキシ錫、テトラエトキシ錫、テトラプロポキ
シ錫、テトラブトキシ錫、塩化錫(2価)、塩化錫(4
価)等が挙げられる。また、Al化合物の具体例として
は塩化アルミニウム、トリメトキシアルミニウム、トリ
エトキシアルミニウム、トリプロポキシアルミニウム、
トリブトキシアルミニウム等が挙げられる。
Specific examples of the Sn compound used as the third element compound in Method II include tin acetate (divalent), dimethoxytin, diethoxytin, dipropoxytin, dibutoxytin,
Tetramethoxytin, tetraethoxytin, tetrapropoxytin, tetrabutoxytin, tin chloride (divalent), tin chloride (4
Value) and the like. Further, specific examples of the Al compound include aluminum chloride, trimethoxyaluminum, triethoxyaluminum, tripropoxyaluminum,
Tributoxy aluminum and the like can be mentioned.

【0036】Sb化合物の具体例としては塩化アンチモ
ン(3価)、塩化アンチモン(5価)、トリメトキシア
ンチモン、トリエトキシアンチモン、トリプロポキシア
ンチモン、トリブトキシアンチモン等が挙げられる。G
a化合物の具体例としては塩化ガリウム(3価)、トリ
メトキシガリウム、トリエトキシガリウム、トリプロポ
キシガリウム、トリブトキシガリウム等が挙げられる。
そして、Ge化合物の具体例としては塩化ゲルマニウム
(4価)、テトラメトキシゲルマニウム、テトラエトキ
シゲルマニウム、テトラプロポキシゲルマニウム、テト
ラブトキシゲルマニウム等が挙げられる。
Specific examples of the Sb compound include antimony chloride (trivalent), antimony chloride (pentavalent), trimethoxyantimony, triethoxyantimony, tripropoxyantimony, tributoxyantimony and the like. G
Specific examples of the compound a include gallium chloride (trivalent), trimethoxygallium, triethoxygallium, tripropoxygallium, tributoxygallium and the like.
Specific examples of the Ge compound include germanium chloride (tetravalent), tetramethoxygermanium, tetraethoxygermanium, tetrapropoxygermanium, tetrabutoxygermanium and the like.

【0037】上述の方法IIによって製造することができ
る本発明の透明導電膜IIは、前述の透明導電膜Iよりも
高い導電性を有しており、また、ITO膜に比べてエッ
チング特性に優れるとともに優れた可視光透過性を有し
ている。そして、湿気による電気抵抗値の増大はITO
膜よりも少ない。この透明導電膜IIも、液晶表示素子用
電極や太陽電池用電極等、種々の用途の電極として使用
することができる。
The transparent conductive film II of the present invention which can be produced by the above method II has higher conductivity than the transparent conductive film I described above, and is more excellent in etching characteristics than the ITO film. It also has excellent visible light transmittance. And the increase of the electric resistance value due to the humidity is due to the ITO
Less than a membrane. This transparent conductive film II can also be used as an electrode for various applications such as an electrode for a liquid crystal display element and an electrode for a solar cell.

【0038】[0038]

【実施例】以下、本発明の実施例について説明する。実施例1 (方法Iによる透明導電膜Iの製造例:In/
(In+Zn)=0.67,本焼成温度300〜600
℃) インジウム化合物として酢酸インジウムを、亜鉛化合物
として無水酢酸亜鉛を、溶剤として2−メトキシメタノ
ールを、安定化剤としてモノエタノールアミンを、基板
として石英ガラス板をそれぞれ用いて、方法Iに基づい
て以下のようにして透明導電膜Iを製造した。まず、2
−メトキシメタノール21.5gにモノエタノールアミ
ン4.6gと酢酸インジウム3.0gを添加し、10分
間攪拌混合して、透明溶液を得た。この透明溶液を攪拌
しながら、当該透明溶液に無水酢酸亜鉛0.9gを添加
し、10分間攪拌混合して、透明で均一なコーティング
溶液を調製した。このコーティング溶液におけるInと
Znの原子比はIn/(In+Zn)=0.67であ
り、InとZnの合量の濃度は0.5 mol/リットル
(4 mol%)であった。
EXAMPLES Examples of the present invention will be described below. Example 1 (Production Example of Transparent Conductive Film I by Method I: In /
(In + Zn) = 0.67, main firing temperature 300-600
C.) Indium acetate is used as the indium compound, anhydrous zinc acetate is used as the zinc compound, 2-methoxymethanol is used as the solvent, monoethanolamine is used as the stabilizer, and a quartz glass plate is used as the substrate. Thus, the transparent conductive film I was manufactured. First, 2
-To 21.5 g of methoxymethanol, 4.6 g of monoethanolamine and 3.0 g of indium acetate were added and mixed with stirring for 10 minutes to obtain a transparent solution. 0.9 g of anhydrous zinc acetate was added to the transparent solution while stirring, and the mixture was stirred and mixed for 10 minutes to prepare a transparent and uniform coating solution. The atomic ratio of In and Zn in this coating solution was In / (In + Zn) = 0.67, and the total concentration of In and Zn was 0.5 mol / liter (4 mol%).

【0039】次に、得られたコーティング溶液に石英ガ
ラス板(70×20×1.5mm)を浸漬してディップ
コーティング(コーティング速度:1.2cm/分)し
た後、電気炉を用いて500℃で10分間仮焼した。デ
ィップコーティングした後に仮焼するという前述の操作
を計10回繰り返した後、更に、500℃で1時間かけ
て本焼成した。この後、400℃で2時間真空(1×1
-2torr)還元して、目的とする透明導電膜Iを得た。
また、表1に示すように、仮焼温度を300℃,400
℃,500℃にするとともに本焼成温度を300℃,4
00℃,600℃にした以外は全く同様にして、別途、
計3種の透明導電膜Iを得た。
Next, a quartz glass plate (70 × 20 × 1.5 mm) was dipped in the obtained coating solution for dip coating (coating speed: 1.2 cm / min), and then 500 ° C. using an electric furnace. It was calcined for 10 minutes. The above-mentioned operation of performing dip coating and then calcining was repeated 10 times in total, and then main firing was performed at 500 ° C. for 1 hour. Then, vacuum (1 x 1) at 400 ° C for 2 hours.
0 -2 torr) was reduced to obtain the target transparent conductive film I.
In addition, as shown in Table 1, the calcination temperature is 300 ° C, 400
℃, 500 ℃ and main firing temperature 300 ℃, 4
Separately, except that the temperature was set to 00 ° C and 600 ° C.
A total of three types of transparent conductive films I were obtained.

【0040】このようにして得られた計4種の透明導電
膜Iは、XRD(X線回折)測定の結果より、いずれも
InとZnとの非晶質酸化物であった。なお、500℃
で本焼成して得た透明導電膜IのXRD測定結果を図1
に示す。また、各透明導電膜Iの組成をX線光電子分光
分析(XPS)で測定したところ、いずれの透明導電膜
IにおいてもInとZnの原子比はIn/(In+Z
n)=0.67であった。さらに、各透明導電膜Iの断
面の電子顕微鏡写真からその膜厚を測定したところ、い
ずれの透明導電膜Iの膜厚も200nmであった。
From the results of XRD (X-ray diffraction) measurement, all four kinds of transparent conductive films I thus obtained were amorphous oxides of In and Zn. In addition, 500 ℃
FIG. 1 shows the XRD measurement results of the transparent conductive film I obtained by main firing in
Shown in. Moreover, when the composition of each transparent conductive film I was measured by X-ray photoelectron spectroscopy (XPS), the atomic ratio of In to Zn was In / (In + Z
n) = 0.67. Furthermore, when the film thickness was measured from an electron micrograph of the cross section of each transparent conductive film I, the film thickness of each transparent conductive film I was 200 nm.

【0041】各透明導電膜Iの表面抵抗を四端子法によ
り測定した結果を表1に示す。また、石英ガラス板上の
各透明導電膜Iの可視光(波長550nm)透過率の測
定結果も表1に示す。さらに、各透明導電膜Iについて
40℃、90%RHの条件で耐湿性試験を行い、試験時
間1000時間後の表面抵抗をそれぞれ測定した結果も
表1に示す。
Table 1 shows the results of measuring the surface resistance of each transparent conductive film I by the four-terminal method. Table 1 also shows the measurement results of visible light (wavelength 550 nm) transmittance of each transparent conductive film I on the quartz glass plate. Furthermore, Table 1 also shows the results of performing a moisture resistance test on each transparent conductive film I under the conditions of 40 ° C. and 90% RH and measuring the surface resistance after a test time of 1000 hours.

【0042】比較例1(In/(In+Zn)=0.6
7,本焼成温度700℃) 本焼成温度を本発明の限定範囲外の温度である700℃
にした以外は、実施例1と同様にして(仮焼温度500
℃)、透明導電膜(膜厚200nm)を得た。このよう
にして得られた透明導電膜は、XRD測定の結果より結
晶質であった。また、その組成をXPSで測定したとこ
ろ、InとZnの原子比はIn/(In+Zn)=0.
67であった。この透明導電膜の表面抵抗および可視光
透過率を実施例1と同様にして測定するとともに、実施
例1と同様の耐湿性試験を行って試験時間1000時間
後の表面抵抗を実施例1と同様にして測定した。これら
の結果を表1に示す。
Comparative Example 1 (In / (In + Zn) = 0.6
7. Main firing temperature 700 ° C.) The main firing temperature is 700 ° C., which is outside the limit range of the present invention.
Except that the calcination temperature was 500
C.) and a transparent conductive film (film thickness 200 nm) was obtained. The transparent conductive film thus obtained was crystalline according to the result of XRD measurement. When the composition was measured by XPS, the atomic ratio of In and Zn was In / (In + Zn) = 0.
It was 67. The surface resistance and visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of testing as in Example 1. Was measured. The results are shown in Table 1.

【0043】実施例2(方法Iによる透明導電膜Iの製
造例:In/(In+Zn)=0.75,本焼成温度3
00〜600℃) 2−メトキシメタノール21.91gにモノエタノール
アミン4.45gと酢酸インジウム2.97gを添加
し、10分間攪拌混合して透明溶液を得た。この透明溶
液を攪拌しながら、当該透明溶液に無水酢酸亜鉛0.6
7gを添加し、10分間攪拌混合して、透明で均一なコ
ーティング溶液を調製した。このコーティング溶液にお
けるInとZnの原子比はIn/(In+Zn)=0.
75であり、InとZnの合量の濃度は0.5 mol/リ
ットル(4 mol%)であった。この後は実施例1と同様
にして、本焼成温度が表1に示すように300℃,40
0℃,500℃,600℃と異なる計4種の透明導電膜
I(膜厚200nm)を得た。
Example 2 (Production Example of Transparent Conductive Film I by Method I: In / (In + Zn) = 0.75, Main Burning Temperature 3
(00-600 ° C.) Monoethanolamine (4.45 g) and indium acetate (2.97 g) were added to 2-methoxymethanol (21.91 g), and the mixture was stirred and mixed for 10 minutes to obtain a transparent solution. While stirring this clear solution, add 0.6% anhydrous zinc acetate to the clear solution.
7 g was added and mixed by stirring for 10 minutes to prepare a transparent and uniform coating solution. The atomic ratio of In to Zn in this coating solution was In / (In + Zn) = 0.
And the total concentration of In and Zn was 0.5 mol / liter (4 mol%). After this, as in Example 1, the main firing temperature was 300 ° C., 40 ° C. as shown in Table 1.
A total of four kinds of transparent conductive films I (film thickness 200 nm) different from 0 ° C., 500 ° C. and 600 ° C. were obtained.

【0044】このようにして得られた計4種の透明導電
膜Iは、XRD測定の結果より、いずれもInとZnと
の非晶質酸化物であった。また、各透明導電膜Iの組成
をXPSで測定したところ、いずれの透明導電膜Iにお
いてもInとZnの原子比はIn/(In+Zn)=
0.75であった。各透明導電膜Iの表面抵抗および可
視光透過率を実施例1と同様にして測定するとともに、
実施例1と同様の耐湿性試験を行って試験時間1000
時間後の表面抵抗を実施例1と同様にして測定した。こ
れらの結果を表1に示す。
The four types of transparent conductive films I thus obtained were all amorphous oxides of In and Zn according to the result of XRD measurement. Moreover, when the composition of each transparent conductive film I was measured by XPS, the atomic ratio of In to Zn in any transparent conductive film I was In / (In + Zn) =
It was 0.75. The surface resistance and visible light transmittance of each transparent conductive film I were measured in the same manner as in Example 1, and
The same moisture resistance test as in Example 1 was conducted and the test time was 1000
The surface resistance after the elapse of time was measured in the same manner as in Example 1. The results are shown in Table 1.

【0045】比較例2(In/(In+Zn)=0.7
5,本焼成温度700℃) 本焼成温度を本発明の限定範囲外の温度である700℃
にした以外は、実施例2と同様にして(仮焼温度500
℃)、透明導電膜(膜厚200nm)を得た。このよう
にして得られた透明導電膜は、XRD測定の結果より結
晶質であった。また、その組成をXPSで測定したとこ
ろ、InとZnの原子比はIn/(In+Zn)=0.
75であった。この透明導電膜の表面抵抗および可視光
透過率を実施例1と同様にして測定するとともに、実施
例1と同様の耐湿性試験を行って試験時間1000時間
後の表面抵抗を実施例1と同様にして測定した。これら
の結果を表1に示す。
Comparative Example 2 (In / (In + Zn) = 0.7
5, main baking temperature 700 ° C.) The main baking temperature is 700 ° C., which is outside the limit range of the present invention.
The same procedure as in Example 2 except that the calcination temperature was 500
C.) and a transparent conductive film (film thickness 200 nm) was obtained. The transparent conductive film thus obtained was crystalline according to the result of XRD measurement. When the composition was measured by XPS, the atomic ratio of In and Zn was In / (In + Zn) = 0.
It was 75. The surface resistance and visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of testing as in Example 1. Was measured. The results are shown in Table 1.

【0046】実施例3(方法Iによる透明導電膜Iの製
造例:In/(In+Zn)=0.55,本焼成温度3
00〜600℃)) 2−メトキシメタノール21.32gにモノエタノール
アミン4.93gと酢酸インジウム2.41gを添加
し、10分間攪拌混合して透明溶液を得た。この透明溶
液を攪拌しながら、当該透明溶液に無水酢酸亜鉛1.3
4gを添加し、10分間攪拌混合して、透明で均一なコ
ーティング溶液を調製した。このコーティング溶液にお
けるInとZnの原子比はIn/(In+Zn)=0.
55であり、InとZnの合量の濃度は0.5 mol/リ
ットル(4 mol%)であった。この後は実施例1と同様
にして、本焼成温度が表1に示すように300℃,40
0℃,500℃,600℃と異なる計4種の透明導電膜
I(膜厚200nm)を得た。
Example 3 (Production Example of Transparent Conductive Film I by Method I: In / (In + Zn) = 0.55, Main Firing Temperature 3
(00-600 ° C.)) To 21.32 g of 2-methoxymethanol, 4.93 g of monoethanolamine and 2.41 g of indium acetate were added, and mixed by stirring for 10 minutes to obtain a transparent solution. While stirring the transparent solution, add 1.3 g of anhydrous zinc acetate to the transparent solution.
4 g was added and mixed by stirring for 10 minutes to prepare a transparent and uniform coating solution. The atomic ratio of In to Zn in this coating solution was In / (In + Zn) = 0.
The total concentration of In and Zn was 0.5 mol / liter (4 mol%). After this, as in Example 1, the main firing temperature was 300 ° C., 40 ° C. as shown in Table 1.
A total of four kinds of transparent conductive films I (film thickness 200 nm) different from 0 ° C., 500 ° C. and 600 ° C. were obtained.

【0047】このようにして得られた計4種の透明導電
膜Iは、XRD測定の結果より、いずれもInとZnと
の非晶質酸化物であった。また、各透明導電膜Iの組成
をXPSで測定したところ、いずれの透明導電膜Iにお
いてもInとZnの原子比はIn/(In+Zn)=
0.55であった。各透明導電膜Iの表面抵抗および可
視光透過率を実施例1と同様にして測定するとともに、
実施例1と同様の耐湿性試験を行って試験時間1000
時間後の表面抵抗を実施例1と同様にして測定した。こ
れらの結果を表1に示す。
The four types of transparent conductive films I thus obtained were all amorphous oxides of In and Zn according to the result of XRD measurement. Moreover, when the composition of each transparent conductive film I was measured by XPS, the atomic ratio of In to Zn in any transparent conductive film I was In / (In + Zn) =
It was 0.55. The surface resistance and visible light transmittance of each transparent conductive film I were measured in the same manner as in Example 1, and
The same moisture resistance test as in Example 1 was conducted and the test time was 1000
The surface resistance after the elapse of time was measured in the same manner as in Example 1. The results are shown in Table 1.

【0048】比較例3(In/(In+Zn)=0.5
5,本焼成温度700℃) 本焼成温度を本発明の限定範囲外の温度である700℃
にした以外は、実施例3と同様にして(仮焼温度500
℃)、透明導電膜(膜厚200nm)を得た。このよう
にして得られた透明導電膜は、XRD測定の結果より結
晶質であった。また、その組成をXPSで測定したとこ
ろ、InとZnの原子比はIn/(In+Zn)=0.
55であった。この透明導電膜の表面抵抗および可視光
透過率を実施例1と同様にして測定するとともに、実施
例1と同様の耐湿性試験を行って試験時間1000時間
後の表面抵抗を実施例1と同様にして測定した。これら
の結果を表1に示す。
Comparative Example 3 (In / (In + Zn) = 0.5
5, main baking temperature 700 ° C.) The main baking temperature is 700 ° C., which is outside the limit range of the present invention.
The same procedure as in Example 3 except that the calcination temperature was 500
C.) and a transparent conductive film (film thickness 200 nm) was obtained. The transparent conductive film thus obtained was crystalline according to the result of XRD measurement. When the composition was measured by XPS, the atomic ratio of In and Zn was In / (In + Zn) = 0.
It was 55. The surface resistance and visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of testing as in Example 1. Was measured. The results are shown in Table 1.

【0049】比較例4(In/(In+Zn)=0.5
0,本焼成温度500〜700℃) コーティング溶液におけるInとZnの原子比In/
(In+Zn)を本発明の限定範囲外である0.50と
した以外は実施例1と同様にして、透明で均一なコーテ
ィング溶液を調製した。この後、本焼成温度を表1に示
す500℃,600℃,700℃の温度とした以外は実
施例1と同様にして(仮焼温度500℃)、計3種の透
明導電膜(膜厚200nm)を得た。
Comparative Example 4 (In / (In + Zn) = 0.5
0, main baking temperature 500 to 700 ° C.) In / Zn atomic ratio In / Zn in coating solution In /
A transparent and uniform coating solution was prepared in the same manner as in Example 1 except that (In + Zn) was set to 0.50, which is outside the range of the present invention. Thereafter, a total of three types of transparent conductive films (film thickness) were prepared in the same manner as in Example 1 (calcination temperature: 500 ° C.) except that the main firing temperature was set to 500 ° C., 600 ° C., and 700 ° C. shown in Table 1. 200 nm) was obtained.

【0050】このようにして得られた各透明導電膜の組
成をXPSで測定したところ、いずれの透明導電膜にお
いてもInとZnの原子比はIn/(In+Zn)=
0.50であった。また、各透明導電膜の表面抵抗およ
び可視光透過率を実施例1と同様にして測定するととも
に、実施例1と同様の耐湿性試験を行って試験時間10
00時間後の表面抵抗を実施例1と同様にして測定し
た。これらの結果を表1に示す。
When the composition of each transparent conductive film thus obtained was measured by XPS, the atomic ratio of In to Zn in any transparent conductive film was In / (In + Zn) =
It was 0.50. Further, the surface resistance and the visible light transmittance of each transparent conductive film were measured in the same manner as in Example 1, and the moisture resistance test was performed in the same manner as in Example 1 for a test time of 10
The surface resistance after 00 hours was measured in the same manner as in Example 1. The results are shown in Table 1.

【0051】比較例5(In/(In+Zn)=0.3
3,本焼成温度500℃) コーティング溶液におけるInとZnの原子比In/
(In+Zn)を本発明の限定範囲外である0.33と
した以外は実施例1と同様にして、透明で均一なコーテ
ィング溶液を調製した。この後は実施例1と同様にして
コーティング、焼成(仮焼温度500℃、本焼成温度5
00℃)および還元処理を行って、透明導電膜(膜厚2
00nm)を得た。
Comparative Example 5 (In / (In + Zn) = 0.3
3, main firing temperature 500 ° C) Atomic ratio of In and Zn in coating solution In /
A transparent and uniform coating solution was prepared in the same manner as in Example 1 except that (In + Zn) was set to 0.33, which is outside the range of the present invention. After this, coating and firing were performed in the same manner as in Example 1 (calcination temperature 500 ° C., main firing temperature 5
00 ° C.) and reduction treatment to obtain a transparent conductive film (film thickness 2
00 nm) was obtained.

【0052】このようにして得られた透明導電膜の組成
をXPSで測定したところ、InとZnの原子比はIn
/(In+Zn)=0.33であった。また、この透明
導電膜の表面抵抗および可視光透過率を実施例1と同様
にして測定するとともに、実施例1と同様の耐湿性試験
を行って試験時間1000時間後の表面抵抗を実施例1
と同様にして測定した。これらの結果を表1に示す。
When the composition of the transparent conductive film thus obtained was measured by XPS, the atomic ratio of In to Zn was In.
/(In+Zn)=0.33. Moreover, the surface resistance and visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of test in Example 1.
It measured similarly to. The results are shown in Table 1.

【0053】比較例6(In/(In+Zn)=0.8
0,本焼成温度500〜700℃) コーティング溶液におけるInとZnの原子比In/
(In+Zn)を本発明の限定範囲外である0.80と
した以外は実施例1と同様にして、透明で均一なコーテ
ィング溶液を調製した。この後は比較例4と同様にし
て、計3種の透明導電膜(膜厚200nm)を得た。
Comparative Example 6 (In / (In + Zn) = 0.8
0, main baking temperature 500 to 700 ° C.) In / Zn atomic ratio In / Zn in coating solution In /
A transparent and uniform coating solution was prepared in the same manner as in Example 1 except that (In + Zn) was set to 0.80, which is outside the range of the present invention. Thereafter, in the same manner as in Comparative Example 4, a total of three types of transparent conductive films (film thickness 200 nm) were obtained.

【0054】このようにして得られた各透明導電膜の組
成をXPSで測定したところ、いずれの透明導電膜にお
いてもInとZnの原子比はIn/(In+Zn)=
0.80であった。また、各透明導電膜の表面抵抗およ
び可視光透過率を実施例1と同様にして測定するととも
に、実施例1と同様の耐湿性試験を行って試験時間10
00時間後の表面抵抗を実施例1と同様にして測定し
た。これらの結果を表1に示す。
When the composition of each transparent conductive film thus obtained was measured by XPS, the atomic ratio of In to Zn in any transparent conductive film was In / (In + Zn) =
It was 0.80. Further, the surface resistance and the visible light transmittance of each transparent conductive film were measured in the same manner as in Example 1, and the moisture resistance test was performed in the same manner as in Example 1 for a test time of 10
The surface resistance after 00 hours was measured in the same manner as in Example 1. The results are shown in Table 1.

【0055】比較例7(In/(In+Zn)=0.9
0,本焼成温度500℃) コーティング溶液におけるInとZnの原子比In/
(In+Zn)を本発明の限定範囲外である0.90と
した以外は実施例1と同様にして、透明で均一なコーテ
ィング溶液を調製した。この後は比較例5と同様にし
て、透明導電膜(膜厚200nm)を得た。
Comparative Example 7 (In / (In + Zn) = 0.9
0, main baking temperature 500 ° C.) In / Zn atomic ratio in coating solution In /
A transparent and uniform coating solution was prepared in the same manner as in Example 1 except that (In + Zn) was set to 0.90, which is outside the range of the present invention. Thereafter, in the same manner as in Comparative Example 5, a transparent conductive film (film thickness 200 nm) was obtained.

【0056】このようにして得られた透明導電膜の組成
をXPSで測定したところ、InとZnの原子比はIn
/(In+Zn)=0.90であった。また、この透明
導電膜の表面抵抗および可視光透過率を実施例1と同様
にして測定するとともに、実施例1と同様の耐湿性試験
を行って試験時間1000時間後の表面抵抗を実施例1
と同様にして測定した。これらの結果を表1に示す。
When the composition of the transparent conductive film thus obtained was measured by XPS, the atomic ratio of In to Zn was In.
/(In+Zn)=0.90. Moreover, the surface resistance and visible light transmittance of this transparent conductive film were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of test in Example 1.
It measured similarly to. The results are shown in Table 1.

【0057】比較例8(In/(In+Zn)=1.
0,酸化インジウム薄膜) 2−メトキシメタノール22.2gにモノエタノールア
ミン4.0gと酢酸インジウム3.8gを添加し、10
分間攪拌混合して、透明で均一なコーティング溶液を調
製した。このコーティング溶液におけるIn濃度は4 m
ol%であった。この後は比較例5と同様にして、酸化イ
ンジウム薄膜(膜厚200nm)を得た。このようにし
て得られた酸化インジウム薄膜の表面抵抗および可視光
透過率を実施例1と同様にして測定するとともに、実施
例1と同様の耐湿性試験を行って試験時間1000時間
後の表面抵抗を実施例1と同様にして測定した。これら
の結果を表1に示す。
Comparative Example 8 (In / (In + Zn) = 1.
(0, indium oxide thin film) To 22.2 g of 2-methoxymethanol, 4.0 g of monoethanolamine and 3.8 g of indium acetate were added.
A transparent and uniform coating solution was prepared by stirring and mixing for a minute. In concentration in this coating solution is 4 m
It was ol%. Thereafter, in the same manner as in Comparative Example 5, an indium oxide thin film (film thickness 200 nm) was obtained. The surface resistance and the visible light transmittance of the thus obtained indium oxide thin film were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after a test time of 1000 hours. Was measured in the same manner as in Example 1. The results are shown in Table 1.

【0058】比較例9(ITO薄膜) 比較例8のコーティング溶液にSn(OC4 9 2
0.16g添加した以外は比較例8と同様に実施して、
ITO薄膜(Sn4at%,膜厚200nm)を得た。こ
のようにして得られたITO薄膜の表面抵抗および可視
光透過率を実施例1と同様にして測定するとともに、実
施例1と同様の耐湿性試験を行って試験時間1000時
間後の表面抵抗を実施例1と同様にして測定した。これ
らの結果を表1に示す。
Comparative Example 9 (ITO thin film) Comparative Example 8 was repeated except that 0.16 g of Sn (OC 4 H 9 ) 2 was added to the coating solution of Comparative Example 8.
An ITO thin film (Sn 4 at%, film thickness 200 nm) was obtained. The surface resistance and visible light transmittance of the ITO thin film thus obtained were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of test time. The measurement was performed in the same manner as in Example 1. The results are shown in Table 1.

【0059】[0059]

【表1】 [Table 1]

【0060】表1から明らかなように、In/(In+
Zn)が0.55〜0.75の非晶質酸化物からなる実
施例1〜実施例3の各透明導電膜Iは、比較例9のIT
O膜と同等以上の導電性を有している。また、これら実
施例1〜実施例3の各透明導電膜Iはいずれも優れた可
視光透過率を有している。さらに、実施例1〜実施例3
の各透明導電膜Iの表面抵抗は、耐湿性試験の前後でほ
とんど変化がない。このことから、実施例1〜実施例3
の各透明導電膜Iは耐湿性に優れていることがわかる。
また、実施例1〜実施例3の各透明導電膜Iは、ITO
膜よりもエッチング特性に優れていることが確認され
た。
As is clear from Table 1, In / (In +
Each transparent conductive film I of Examples 1 to 3 made of an amorphous oxide having Zn) of 0.55 to 0.75 is IT of Comparative Example 9.
It has conductivity equal to or higher than that of the O film. Further, each of the transparent conductive films I of Examples 1 to 3 has excellent visible light transmittance. Furthermore, Examples 1 to 3
The surface resistance of each of the transparent conductive films I is almost unchanged before and after the moisture resistance test. From this, Example 1 to Example 3
It can be seen that each of the transparent conductive films I has excellent moisture resistance.
In addition, each of the transparent conductive films I of Examples 1 to 3 is ITO.
It was confirmed that the film had better etching characteristics than the film.

【0061】一方、表1から明らかなように、In/
(In+Zn)が0.55〜0.75であっても結晶質
酸化物からなる比較例1〜比較例3の各透明導電膜の導
電性は極めて低い。また、In/(In+Zn)が本発
明の限定範囲外である比較例4〜比較例7の透明導電膜
は、表1から明らかなように、出発原料の種類、焼成条
件および還元条件が同一である実施例の透明導電膜Iよ
りも導電性に劣る。そして、比較例8の酸化インジウム
薄膜は導電性および耐湿性の点で実施例1〜実施例3の
各透明導電膜Iよりも劣り、比較例9のITO膜は優れ
た導電性および可視光透過率を有しているものの、耐湿
性については実施例1〜実施例3の各透明導電膜Iより
も劣ることが明らかである。
On the other hand, as is clear from Table 1, In /
Even if (In + Zn) is 0.55 to 0.75, the conductivity of each transparent conductive film of Comparative Examples 1 to 3 made of crystalline oxide is extremely low. Further, as is clear from Table 1, the transparent conductive films of Comparative Examples 4 to 7 in which In / (In + Zn) is out of the limited range of the present invention have the same starting material type, firing conditions, and reduction conditions. It is inferior in conductivity to the transparent conductive film I of a certain example. The indium oxide thin film of Comparative Example 8 is inferior to the transparent conductive films I of Examples 1 to 3 in terms of conductivity and moisture resistance, and the ITO film of Comparative Example 9 has excellent conductivity and visible light transmission. It is clear that although it has the rate, the moisture resistance is inferior to that of each transparent conductive film I of Examples 1 to 3.

【0062】実施例4(方法IIによる透明導電膜IIの製
造例) インジウム化合物として酢酸インジウムを、亜鉛化合物
として無水酢酸亜鉛を、第3元素化合物としてジブトキ
シ錫を、溶剤として2−メトキシメタノールを、安定化
剤としてモノエタノールアミンを、基板として石英ガラ
ス板をそれぞれ用いて、方法IIに基づいて以下のように
して透明導電膜IIを製造した。まず、2−メトキシメタ
ノールと、モノエタノールアミンと、酢酸インジウム
と、無水酢酸亜鉛とを用いて、実施例1と全く同様にし
て透明で均一な溶液30g(実施例1のコーティング溶
液に相当)を調製した。次に、この溶液にジブトキシ錫
0.16gを添加し、10分間攪拌混合して、透明で均
一なコーティング溶液を調製した。このコーティング溶
液におけるInとZnの原子比はIn/(In+Zn)
=0.67、InとZnとSnの合量に対するSnの割
合{[Sn/(In+Zn+Sn)]×100}は4at
%、InとZnとSnの合量の濃度は0.5 mol/リッ
トル(4 mol%)であった。
Example 4 (Production Example of Transparent Conductive Film II by Method II) Indium acetate was used as the indium compound, anhydrous zinc acetate was used as the zinc compound, dibutoxytin was used as the third element compound, and 2-methoxymethanol was used as the solvent. Using monoethanolamine as a stabilizer and a quartz glass plate as a substrate, a transparent conductive film II was produced based on Method II as follows. First, using 2-methoxymethanol, monoethanolamine, indium acetate, and anhydrous zinc acetate, 30 g of a transparent and uniform solution (corresponding to the coating solution of Example 1) was carried out in exactly the same manner as in Example 1. Prepared. Next, 0.16 g of dibutoxytin was added to this solution and mixed by stirring for 10 minutes to prepare a transparent and uniform coating solution. The atomic ratio of In to Zn in this coating solution is In / (In + Zn)
= 0.67, the ratio of Sn to the total amount of In, Zn and Sn {[Sn / (In + Zn + Sn)] × 100} is 4 at
%, The total concentration of In, Zn and Sn was 0.5 mol / liter (4 mol%).

【0063】次いで、得られたコーティング溶液にガラ
ス板(コーニング社製7059:70×20×1.5m
m)を浸漬し、実施例1と同条件でディップコーティン
グした後、電気炉を用いて500℃で10分間仮焼し
た。ディップコーティングした後に仮焼するという前述
の操作を計10回繰り返した後、更に、500℃で1時
間かけて本焼成した。この後、400℃で2時間真空
(1×10-2torr)還元して、目的とする透明導電膜II
(膜厚200nm)を得た。
Next, a glass plate (7059: 70 × 20 × 1.5 m manufactured by Corning Incorporated) was added to the obtained coating solution.
m) was dipped, dip-coated under the same conditions as in Example 1, and then calcined at 500 ° C. for 10 minutes using an electric furnace. The above-mentioned operation of performing dip coating and then calcining was repeated 10 times in total, and then main firing was performed at 500 ° C. for 1 hour. Then, vacuum (1 × 10 -2 torr) reduction is performed at 400 ° C. for 2 hours to obtain the target transparent conductive film II.
(Film thickness 200 nm) was obtained.

【0064】このようにして得られた透明導電膜IIは、
XRD測定の結果より、InとZnとSnとの非晶質酸
化物であった。また、得られた透明導電膜IIの表面抵抗
および可視光透過率を実施例1と同様にして測定すると
ともに、実施例1と同様の耐湿性試験を行って試験時間
1000時間後の表面抵抗を実施例1と同様にして測定
した。これらの結果を表2に示す。
The transparent conductive film II thus obtained is
From the result of XRD measurement, it was an amorphous oxide of In, Zn, and Sn. Further, the surface resistance and visible light transmittance of the obtained transparent conductive film II were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of test time. The measurement was performed in the same manner as in Example 1. The results are shown in Table 2.

【0065】実施例5(方法IIによる透明導電膜IIの製
造例) ジブトキシ錫に代えてトリブトキシアルミニウム0.1
5gを用いた以外は実施例4と全く同様にしてコーティ
ング溶液{In/(In+Zn)=0.67、[Al/
(In+Zn+Al)]×100=4at%、InとZn
とAlの合量の濃度=0.5 mol/リットル(4 mol
%)}を調製し、このコーティング溶液を用いて実施例
4と全く同様にして透明導電膜II(膜厚200nm)を
得た。
Example 5 (Production Example of Transparent Conductive Film II by Method II) Tributoxyaluminum 0.1 in place of dibutoxytin
A coating solution {In / (In + Zn) = 0.67, [Al /
(In + Zn + Al)] × 100 = 4at%, In and Zn
And the total concentration of Al = 0.5 mol / liter (4 mol
%)} Was prepared, and using this coating solution, a transparent conductive film II (film thickness 200 nm) was obtained in exactly the same manner as in Example 4.

【0066】このようにして得られた透明導電膜IIは、
XRD測定の結果より、InとZnとAlとの非晶質酸
化物であった。また、得られた透明導電膜IIの表面抵抗
および可視光透過率を実施例1と同様にして測定すると
ともに、実施例1と同様の耐湿性試験を行って試験時間
1000時間後の表面抵抗を実施例1と同様にして測定
した。これらの結果を表2に示す。
The transparent conductive film II thus obtained is
From the result of XRD measurement, it was an amorphous oxide of In, Zn, and Al. Further, the surface resistance and visible light transmittance of the obtained transparent conductive film II were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of test time. The measurement was performed in the same manner as in Example 1. The results are shown in Table 2.

【0067】実施例6(方法IIによる透明導電膜IIの製
造例) ジブトキシ錫に代えてトリブトキシアンチモン0.21
gを用いた以外は実施例4と全く同様にしてコーティン
グ溶液{In/(In+Zn)=0.67、[Sb/
(In+Zn+Sb)]×100=4at%、InとZn
とSbの合量の濃度=0.5 mol/リットル(4 mol
%)}を調製し、このコーティング溶液を用いて実施例
4と全く同様にして透明導電膜II(膜厚200nm)を
得た。
Example 6 (Production Example of Transparent Conductive Film II by Method II) Tributoxyantimony 0.21 in place of dibutoxytin
A coating solution {In / (In + Zn) = 0.67, [Sb /
(In + Zn + Sb)] × 100 = 4 at%, In and Zn
Concentration of total amount of Sb and Sb = 0.5 mol / liter (4 mol
%)} Was prepared, and using this coating solution, a transparent conductive film II (film thickness 200 nm) was obtained in exactly the same manner as in Example 4.

【0068】このようにして得られた透明導電膜IIは、
XRD測定の結果より、InとZnとSbとの非晶質酸
化物であった。また、得られた透明導電膜IIの表面抵抗
および可視光透過率を実施例1と同様にして測定すると
ともに、実施例1と同様の耐湿性試験を行って試験時間
1000時間後の表面抵抗を実施例1と同様にして測定
した。これらの結果を表2に示す。
The transparent conductive film II thus obtained is
From the result of XRD measurement, it was an amorphous oxide of In, Zn, and Sb. Further, the surface resistance and visible light transmittance of the obtained transparent conductive film II were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of test time. The measurement was performed in the same manner as in Example 1. The results are shown in Table 2.

【0069】実施例7(方法IIによる透明導電膜IIの製
造例) ジブトキシ錫に代えて塩化ガリウム(3価)0.11g
を用いた以外は実施例4と全く同様にしてコーティング
溶液{In/(In+Zn)=0.67、[Ga/(I
n+Zn+Ga)]×100=4at%、InとZnとG
aの合量の濃度=0.5 mol/リットル(4 mol%)}
を調製し、このコーティング溶液を用いて実施例4と全
く同様にして透明導電膜II(膜厚200nm)を得た。
Example 7 (Production Example of Transparent Conductive Film II by Method II) Gallium chloride (trivalent) 0.11 g instead of dibutoxytin
The coating solution {In / (In + Zn) = 0.67, [Ga / (I
n + Zn + Ga)] × 100 = 4 at%, In, Zn and G
Concentration of total amount of a = 0.5 mol / liter (4 mol%)}
Was prepared, and a transparent conductive film II (film thickness 200 nm) was obtained in exactly the same manner as in Example 4 using this coating solution.

【0070】このようにして得られた透明導電膜IIは、
XRD測定の結果より、InとZnとGaとの非晶質酸
化物であった。また、得られた透明導電膜IIの表面抵抗
および可視光透過率を実施例1と同様にして測定すると
ともに、実施例1と同様の耐湿性試験を行って試験時間
1000時間後の表面抵抗を実施例1と同様にして測定
した。これらの結果を表2に示す。
The transparent conductive film II thus obtained is
From the result of XRD measurement, it was an amorphous oxide of In, Zn, and Ga. Further, the surface resistance and visible light transmittance of the obtained transparent conductive film II were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of test time. The measurement was performed in the same manner as in Example 1. The results are shown in Table 2.

【0071】実施例8(方法IIによる透明導電膜IIの製
造例) ジブトキシ錫に代えてテトラプロポキシゲルマニウム
0.15gを用いた以外は実施例4と全く同様にしてコ
ーティング溶液{In/(In+Zn)=0.67、
[Ge/(In+Zn+Ge)]×100=4at%、I
nとZnとGeの合量の濃度=0.5 mol/リットル
(4 mol%)}を調製し、このコーティング溶液を用い
て実施例4と全く同様にして透明導電膜II(膜厚200
nm)を得た。
Example 8 (Production Example of Transparent Conductive Film II by Method II) A coating solution {In / (In + Zn) was prepared in the same manner as in Example 4 except that 0.15 g of tetrapropoxygermanium was used instead of dibutoxytin. = 0.67,
[Ge / (In + Zn + Ge)] × 100 = 4 at%, I
A total concentration of n, Zn, and Ge = 0.5 mol / liter (4 mol%)} was prepared, and using this coating solution, the transparent conductive film II (film thickness 200
nm) was obtained.

【0072】このようにして得られた透明導電膜IIは、
XRD測定の結果より、InとZnとGeとの非晶質酸
化物であった。また、得られた透明導電膜IIの表面抵抗
および可視光透過率を実施例1と同様にして測定すると
ともに、実施例1と同様の耐湿性試験を行って試験時間
1000時間後の表面抵抗を実施例1と同様にして測定
した。これらの結果を表2に示す。
The transparent conductive film II thus obtained is
From the result of XRD measurement, it was an amorphous oxide of In, Zn, and Ge. Further, the surface resistance and visible light transmittance of the obtained transparent conductive film II were measured in the same manner as in Example 1, and the same moisture resistance test as in Example 1 was performed to determine the surface resistance after 1000 hours of test time. The measurement was performed in the same manner as in Example 1. The results are shown in Table 2.

【0073】[0073]

【表2】 [Table 2]

【0074】表2から明らかなように、InとZnと第
3元素(Sn、Al、Sb、GaまたはGe)との非晶
質酸化物からなる実施例4〜実施例8の各透明導電膜II
は、第3元素を含有していない実施例1〜実施例3の各
透明導電膜Iよりも更に高い導電性を有している。ま
た、これら実施例4〜実施例8の各透明導電膜IIはいず
れも優れた可視光透過率を有している。さらに、実施例
4〜実施例8の各透明導電膜IIの表面抵抗は、耐湿性試
験の前後でほとんど変化がない。このことから、実施例
4〜実施例8の各透明導電膜IIは耐湿性に優れているこ
とがわかる。また、実施例4〜実施例8の各透明導電膜
IIは、ITO膜よりもエッチング特性に優れていること
が確認された。
As is clear from Table 2, each of the transparent conductive films of Examples 4 to 8 made of an amorphous oxide of In, Zn and a third element (Sn, Al, Sb, Ga or Ge). II
Has a higher conductivity than each of the transparent conductive films I of Examples 1 to 3 containing no third element. Moreover, each of the transparent conductive films II of Examples 4 to 8 has excellent visible light transmittance. Furthermore, the surface resistance of each transparent conductive film II of Examples 4 to 8 hardly changed before and after the moisture resistance test. From this, it is understood that each of the transparent conductive films II of Examples 4 to 8 has excellent moisture resistance. In addition, each transparent conductive film of Examples 4 to 8
It was confirmed that II has better etching characteristics than the ITO film.

【0075】[0075]

【発明の効果】以上説明したように、本発明の透明導電
膜はITO膜に比べてエッチング特性に優れるとともに
ITO膜と同等の導電性を有し、かつITO膜よりも耐
湿性に優れている。したがって、本発明によれば耐久性
の向上した透明導電膜を提供することが可能になる。
As described above, the transparent conductive film of the present invention is superior to the ITO film in etching characteristics, has the same conductivity as the ITO film, and is superior in moisture resistance to the ITO film. . Therefore, according to the present invention, it is possible to provide a transparent conductive film having improved durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で得られた透明導電膜I(仮焼温度
500℃,本焼成温度500℃)についてのXRD測定
の結果を示すグラフである。
FIG. 1 is a graph showing the results of XRD measurement for a transparent conductive film I (calcination temperature 500 ° C., main baking temperature 500 ° C.) obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 503 B 7244−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01B 13/00 503 B 7244-5G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 インジウムと亜鉛との非晶質酸化物から
なり、InとZnの原子比がIn/(In+Zn)=
0.55〜0.75であることを特徴とする透明導電
膜。
1. An amorphous oxide of indium and zinc, wherein the atomic ratio of In to Zn is In / (In + Zn) =
A transparent conductive film having a thickness of 0.55 to 0.75.
【請求項2】 インジウムと亜鉛、およびSn,Al,
Sb,GaおよびGeからなる群より選択される少なく
とも1種の第3元素との非晶質酸化物からなり、Inと
Znの原子比がIn/(In+Zn)=0.55〜0.
75で、InとZnと第3元素の合量に対する前記第3
元素の割合が20at%以下であることを特徴とする透明
導電膜。
2. Indium and zinc, Sn, Al,
It is composed of an amorphous oxide of at least one third element selected from the group consisting of Sb, Ga and Ge, and the atomic ratio of In to Zn is In / (In + Zn) = 0.55-0.
75, the third element relative to the total content of In, Zn, and the third element.
A transparent conductive film, wherein the ratio of elements is 20 at% or less.
【請求項3】 インジウム化合物および亜鉛化合物をI
nとZnの原子比がIn/(In+Zn)=0.55〜
0.75になる割合で溶解させたコーティング溶液を調
製し、このコーティング溶液を基板に塗布して300〜
650℃で焼成した後に還元処理して非晶質の透明導電
膜を得ることを特徴とする透明導電膜の製造方法。
3. An indium compound and a zinc compound
The atomic ratio of n and Zn is In / (In + Zn) = 0.55.
A coating solution was prepared by dissolving the coating solution at a ratio of 0.75, and the coating solution was applied to a substrate to give 300-
A method for producing a transparent conductive film, comprising: performing a reduction treatment after firing at 650 ° C. to obtain an amorphous transparent conductive film.
【請求項4】 インジウム化合物と亜鉛化合物、および
Sn化合物,Al化合物,Sb化合物,Ga化合物およ
びGe化合物からなる群より選択される少なくとも1種
の第3元素化合物とを、InとZnの原子比がIn/
(In+Zn)=0.55〜0.75で、InとZnと
第3元素の合量に対する前記第3元素の割合が20at%
以下になる割合で溶解させたコーティング溶液を調製
し、このコーティング溶液を基板に塗布して300〜6
50℃で焼成した後に還元処理して非晶質の透明導電膜
を得ることを特徴とする透明導電膜の製造方法。
4. An atomic ratio of In and Zn, wherein an indium compound and a zinc compound and at least one third element compound selected from the group consisting of Sn compounds, Al compounds, Sb compounds, Ga compounds and Ge compounds are used. Is In /
(In + Zn) = 0.55 to 0.75, and the ratio of the third element to the total amount of In, Zn and the third element is 20 at%.
Prepare a coating solution dissolved in the following ratio, apply this coating solution to a substrate, and apply 300 to 6
A method for producing a transparent conductive film, which comprises firing at 50 ° C. and then performing a reduction treatment to obtain an amorphous transparent conductive film.
JP19048093A 1992-12-15 1993-07-30 Transparent conductive film and method for producing the same Expired - Lifetime JP3834339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19048093A JP3834339B2 (en) 1992-12-15 1993-07-30 Transparent conductive film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33473192 1992-12-15
JP4-334731 1992-12-15
JP19048093A JP3834339B2 (en) 1992-12-15 1993-07-30 Transparent conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06234521A true JPH06234521A (en) 1994-08-23
JP3834339B2 JP3834339B2 (en) 2006-10-18

Family

ID=26506115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19048093A Expired - Lifetime JP3834339B2 (en) 1992-12-15 1993-07-30 Transparent conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3834339B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628933A (en) * 1994-10-13 1997-05-13 Lucent Technologies Inc. Transparent conductors comprising zinc-indium-oxide and methods for making films
WO2000068456A1 (en) * 1999-05-10 2000-11-16 Japan Energy Corporation Sputtering target and production method therefor
US6552765B2 (en) * 1998-03-24 2003-04-22 Idemitsu Kosan Co., Ltd. Color filter for reflection liquid crystal display and reflection liquid crystal display comprising the same
US6911163B2 (en) 2002-03-27 2005-06-28 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescene device
JP2007250470A (en) * 2006-03-17 2007-09-27 Tosoh Corp Zinc oxide based transparent conductive film and liquid crystal display using it, as well as zinc oxide based sputtering target
US7825021B2 (en) * 2004-01-16 2010-11-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
JP2011119273A (en) * 2006-04-03 2011-06-16 Ind Technol Res Inst Method of manufacturing aluminum-added zinc oxide transparent conductive film containing metal nanoparticle
JP2014029032A (en) * 2007-12-13 2014-02-13 Idemitsu Kosan Co Ltd Sputtering target and method for manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628933A (en) * 1994-10-13 1997-05-13 Lucent Technologies Inc. Transparent conductors comprising zinc-indium-oxide and methods for making films
US6552765B2 (en) * 1998-03-24 2003-04-22 Idemitsu Kosan Co., Ltd. Color filter for reflection liquid crystal display and reflection liquid crystal display comprising the same
CN1316057C (en) * 1999-05-10 2007-05-16 日矿金属株式会社 Sputtering target and production method therefor
WO2000068456A1 (en) * 1999-05-10 2000-11-16 Japan Energy Corporation Sputtering target and production method therefor
KR100603128B1 (en) * 1999-05-10 2006-07-20 닛코킨조쿠 가부시키가이샤 Sputtering target
US6911163B2 (en) 2002-03-27 2005-06-28 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescene device
US7125503B2 (en) 2002-03-27 2006-10-24 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
US7276186B2 (en) 2002-03-27 2007-10-02 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
US7276187B2 (en) 2002-03-27 2007-10-02 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminiscence device
US7825021B2 (en) * 2004-01-16 2010-11-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
JP2007250470A (en) * 2006-03-17 2007-09-27 Tosoh Corp Zinc oxide based transparent conductive film and liquid crystal display using it, as well as zinc oxide based sputtering target
JP4702126B2 (en) * 2006-03-17 2011-06-15 東ソー株式会社 Zinc oxide-based transparent conductive film, liquid crystal display using the same, and zinc oxide-based sputtering target
JP2011119273A (en) * 2006-04-03 2011-06-16 Ind Technol Res Inst Method of manufacturing aluminum-added zinc oxide transparent conductive film containing metal nanoparticle
JP2014029032A (en) * 2007-12-13 2014-02-13 Idemitsu Kosan Co Ltd Sputtering target and method for manufacturing the same

Also Published As

Publication number Publication date
JP3834339B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
US3949146A (en) Process for depositing transparent electrically conductive tin oxide coatings on a substrate
JP2004084064A (en) Composition and solution for forming transparent conductive film and method for forming transparent conductive film
JPH06318406A (en) Conductive transparent base member and manufacture thereof
JPH06234521A (en) Electric conductive transparent film and its production
JP5376822B2 (en) Method for producing transparent conductive film
JPWO2003106732A1 (en) Article coated with titanium compound film, method for producing the article, and sputtering target used for coating the film
JPH06187832A (en) Manufacture of transparent conductive film
JP4377003B2 (en) Method for adjusting sheet resistance value of transparent conductive film and method for forming transparent conductive film
JPH07131044A (en) Transparent conductive substrate
JP3373898B2 (en) Transparent conductive film and method of manufacturing the same
JP3352772B2 (en) Transparent conductive film and method of manufacturing the same
JP4522566B2 (en) Method for adjusting sheet resistance value of transparent conductive film
JP3589428B2 (en) High resistance indium oxide film
JPH0586605B2 (en)
US20220102639A1 (en) Aqueous solution precursors for making oxide thin films, and composition and method for making conductive oxide thin films therefrom
JP2001035252A (en) Transparent conductive film
JP2526632B2 (en) Method for producing transparent conductive zinc oxide film
JP3549089B2 (en) Glass substrate with transparent conductive film and its manufacturing method
JPS60220505A (en) Transparent conductive film and method of forming same
JPS6380413A (en) Transparent conductor
JPH0790550A (en) Production of transparent conductive film
JPH0530001B2 (en)
US10513773B2 (en) Deposition process
JPH0798911B2 (en) Coating liquid for conductive film formation
JPH07161235A (en) Transparent conductive film and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

EXPY Cancellation because of completion of term