JPS6241789A - Far infrared ray heater and manufacture - Google Patents

Far infrared ray heater and manufacture

Info

Publication number
JPS6241789A
JPS6241789A JP18004885A JP18004885A JPS6241789A JP S6241789 A JPS6241789 A JP S6241789A JP 18004885 A JP18004885 A JP 18004885A JP 18004885 A JP18004885 A JP 18004885A JP S6241789 A JPS6241789 A JP S6241789A
Authority
JP
Japan
Prior art keywords
molded body
far
solution
alkyl group
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18004885A
Other languages
Japanese (ja)
Other versions
JPH0238556B2 (en
Inventor
柿沢 勝利
裕 萩原
伊与田 哲司
佐次本 英行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Musical Instrument Manufacturing Co Ltd
Original Assignee
Kawai Musical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Musical Instrument Manufacturing Co Ltd filed Critical Kawai Musical Instrument Manufacturing Co Ltd
Priority to JP18004885A priority Critical patent/JPH0238556B2/en
Publication of JPS6241789A publication Critical patent/JPS6241789A/en
Publication of JPH0238556B2 publication Critical patent/JPH0238556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、遠赤外線ヒーター並にその製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a far-infrared heater and a method for manufacturing the same.

(従来の技術〕 従来、酸化アルミニウムやガラスなどのシリカを主成分
とするものなどのセラミック材の成形体を基体とし、そ
の表面に導電性膜や発熱抵抗体膜を生成した製品とする
には、金属や金属酸化物を、真空蒸着法、スパッタリン
グ法、イオンブレーティング法、プラズマ溶射法、湿式
電気メツキ法、導電塗料の塗布法などが採用されている
。又発熱線と放射板とを機械的に組み合わせた遠赤外線
ヒーターも公知である。
(Conventional technology) Conventionally, in order to produce a product using a molded body of a ceramic material such as aluminum oxide or glass whose main component is silica, a conductive film or a heating resistor film is formed on the surface of the molded body. , metals and metal oxides are deposited by vacuum evaporation, sputtering, ion blating, plasma spraying, wet electroplating, and conductive paint coating. Far infrared heaters in combination with

(発明が解決しようとする問題点) 上記従来の製造法や装置は製造作業が面倒で且つ製造コ
ストが高くなり、又遠赤外線ヒーターとして必ずしも有
効でない。
(Problems to be Solved by the Invention) The conventional manufacturing methods and devices described above require troublesome manufacturing operations and high manufacturing costs, and are not necessarily effective as far-infrared heaters.

(問題点を解決するための手段) 本発明は、上記の問題点を解決し、波長4μm〜100
μmの範囲、特に人体に有効な5μm〜15μmの遠赤
外線を放射し得る安定堅牢なセラミック遠赤外線ヒータ
ーを提供するものである。
(Means for solving the problems) The present invention solves the above problems and
The present invention provides a stable and robust ceramic far-infrared heater capable of emitting far-infrared rays in the μm range, particularly in the range of 5 μm to 15 μm, which is effective for the human body.

即ち、本発明の遠赤外線ヒーターは、セラミック成形体
の表面にアルコキシハロゲン化スズSnXn(OR)4
−n(ここでXはハロゲン、Rはアルキル基、nは0〜
4)の酸化分解生成物を主成分とする膜を一体に有して
成る。
That is, the far-infrared heater of the present invention has alkoxytin halide SnXn (OR)4 on the surface of the ceramic molded body.
-n (where X is halogen, R is alkyl group, n is 0-
It integrally has a membrane whose main component is the oxidative decomposition product of 4).

更に本発明は、上記の発熱体ヒーターを容易且つ経済的
に得られるその製造法を提供するもので、セラミック成
形体を加熱した表面にアルコキシハロゲン化スズSnX
n(OR)4−Hの溶液または、これにアルコキシハロ
ゲン化アンチモン5bX7(OR)、 −y (ここで
Xはハロゲン、Rはアルキル基、yは0〜3)をドープ
した溶液を均一に付着させるとともに加熱酸化分解反応
を行ない、その酸化物を主体とする焼付膜を一体に生成
せしめることを特徴とする。
Furthermore, the present invention provides a method for producing the above-mentioned heating element heater easily and economically, in which alkoxytin halide Sn
A solution of n(OR)4-H or a solution doped with alkoxyantimony halide 5bX7(OR), -y (where X is a halogen, R is an alkyl group, and y is 0 to 3) is uniformly deposited. The oxidative decomposition reaction is carried out at the same time as the oxidation reaction is carried out, and a baked film mainly composed of the oxide is formed integrally.

(実施例〕 セラミック材としては、従来公知の各種のセラミック材
を使用できるが、好ましくは、酸化アルミニウムAl、
○、、酸化ジルコニウムZ r O!の単独又はこれを
主成分とする複合セラミック材を使用する。本発明によ
れば、か−るセラミック材の成形体、例えば、板状の成
形体を、電気炉などにより加熱しその加熱した表面に、
SnXn(OR)4−、H(ここでXはハロゲン、Rは
アルキルMr nは0〜4)の組成のアルコキシハロゲ
ン化スズ溶液又はこれに5bxy (OR) s −y
 (ココでXはハロゲン、Rはアルキル基、yは0〜3
)の組成のアルコキシハロゲン化アンチモンをドープし
た溶液を噴霧や塗布などでその全面に均一に付着させる
。その溶剤としては水、アルコール系、エステル系、芳
香族系などの有機系溶剤の単独又はこれらの混合が使用
できる。その成形体の加熱温度は、該溶液が加熱酸化分
解反応をおこし酸化スズ又は酸化スズに酸化アンチモン
の複合酸化物を主体とした数10Ω/口以上の導電性の
焼成膜となるに足る300℃以上好ましくは450’C
程度を要する。かくして一般に数10Q/ロ以上数10
00/ロ以下の発熱抵抗体膜を得る。その焼成膜の厚さ
は数μ〜数百オングストロームの薄膜が一般に得られ、
その成形体表面に強固に密着した安定堅牢な製品が得ら
れ、従来の真空蒸着法等による如き高価な設備や面倒な
作業を要せず、製造コストの低減した発熱体膜が得られ
、又その焼成膜は透明で外観上体裁がよい。尚、溶液の
成形体表面への付着は、噴霧による場合には、その吹付
量の調整が容易で直ちに焼成膜を均一に得られ、且つ導
電度の調製が容易で所定の各種の導電性をもつセラミッ
ク成形体を得ることができ有利である。
(Example) As the ceramic material, various conventionally known ceramic materials can be used, but preferably aluminum oxide, Al,
○,, Zirconium oxide Z r O! Either alone or a composite ceramic material containing this as a main component is used. According to the present invention, a molded body of such a ceramic material, for example, a plate-shaped molded body, is heated in an electric furnace or the like, and on the heated surface,
SnXn(OR) 4-, H (where X is halogen, R is alkyl Mr n is 0 to 4) or an alkoxy tin halide solution with a composition of 5bxy (OR) s -y
(Here, X is halogen, R is alkyl group, y is 0-3
A solution doped with alkoxyantimony halide having the composition shown in ) is applied uniformly to the entire surface by spraying or coating. As the solvent, water, alcohol-based, ester-based, aromatic and other organic solvents can be used alone or in combination. The heating temperature of the molded body is 300°C, which is sufficient to cause the solution to undergo a thermal oxidative decomposition reaction and to form a fired film with conductivity of several tens of Ω/mouth or more, which is mainly composed of tin oxide or a composite oxide of tin oxide and antimony oxide. or more preferably 450'C
It takes a certain degree. Thus, in general, the number 10 Q/ro or more number 10
To obtain a heat generating resistor film of 00/ro or less. The thickness of the fired film is generally a few microns to several hundred angstroms,
A stable and robust product that firmly adheres to the surface of the molded body can be obtained, and a heating element film with reduced manufacturing costs can be obtained without the need for expensive equipment or troublesome work as required by conventional vacuum evaporation methods. The fired film is transparent and has a good appearance. In addition, when the solution is applied to the surface of the molded body by spraying, the amount of spraying can be easily adjusted, and a fired film can be obtained immediately and uniformly, and the conductivity can be easily adjusted, so that a predetermined variety of conductivities can be obtained. It is advantageous to be able to obtain a ceramic molded body with

次に本発明の具体的な実施例として、人体に有用な5μ
m〜15μmの波長の遠赤外線を特に大量に発生し得る
遠赤外線ヒーターにつき説明する。
Next, as a specific example of the present invention, 5μ, which is useful for the human body, will be described.
A far-infrared heater capable of generating a particularly large amount of far-infrared rays having a wavelength of m to 15 μm will be explained.

メタノールに、5nOlx(OR)4−x (但しRは
アルキル基、Xは0〜4ンをj、OOmol/l  更
にこのアルフキシ塩化スズに対し2 mo1%に相当す
る0、02mol/lのSbO,dn(OR)3−n 
(但しRはアルキル基、nは0〜5)を添加溶解した溶
液を、予め電気炉などで、105(HI X 105(
nB X 5mm (厚さ)の板状の酸化アルミニウム
成形体を500℃に加熱したその加熱表面にスプレーガ
ンを使用し、空気圧力1 kg/ cnfでその全面に
均一に付着させた。噴霧圧力は、0.4ゆ/cr?r〜
2.0匈/c%の範囲が一般であるが、”9 / c品
前後が好ましく良好な霧粒子で吹付けることができた。
In methanol, 5nOlx(OR)4-x (where R is an alkyl group, dn(OR)3-n
(where R is an alkyl group and n is 0 to 5) was added and dissolved in a solution containing 105 (HI
A plate-shaped aluminum oxide molded body of nB x 5 mm (thickness) was heated to 500°C, and a spray gun was used to uniformly adhere it to the entire surface at an air pressure of 1 kg/cnf. The spray pressure is 0.4yu/cr? r~
Generally, the range is 2.0/c%, but around 9/c is preferable and it was possible to spray with good mist particles.

その付着霧粒子は、そのセラミック成形体の500℃付
近の高温の加熱面のため直ちに酸化分解反応を起こして
スズ酸化物に夕景のアンチモン酸化物の混入した複合酸
化物を主体とした厚さ1μm程度で抵抗体200〜30
0Ω/口の範囲の導電性薄膜として得られた。かくして
その常温に放冷されたものは、セラミック成形体の表面
に強固に安定堅牢に密着した良好な発熱抵抗体膜を有す
るセラミック遠赤外線ヒーターとして得られた。これに
遠赤外線ヒーターとしての性能を検ぺるため、その板の
両端縁に焼付けによって銀電極を設けこれに通電し、成
形体の温度が150℃の時のその焼成膜の遠赤外線等の
発生量を測定した所、第1図に示すように、特に人体に
有効な5〜15μmの波長の遠赤外線の発生量が著しく
大きいが、やけどを与えるおそれのある近赤外線の波長
では発生量が小さくなる特性のものが得られることが判
明した。
The adhering mist particles immediately undergo an oxidative decomposition reaction due to the heated surface of the ceramic molded body, which is heated to a high temperature of around 500°C, and become 1 μm thick, mainly consisting of a composite oxide containing tin oxide and antimony oxide as seen in the evening scene. Resistor 200 to 30
It was obtained as a conductive thin film in the range of 0 Ω/mouth. After being allowed to cool to room temperature in this manner, a ceramic far-infrared heater having a good heating resistor film firmly, stably and firmly adhered to the surface of the ceramic molded body was obtained. In order to check its performance as a far-infrared heater, silver electrodes were baked on both edges of the plate and electricity was applied to it. As shown in Figure 1, the amount of far-infrared rays generated is particularly large at wavelengths of 5 to 15 μm, which are particularly effective for the human body, but the amount generated is small at near-infrared wavelengths, which can cause burns. It has been found that certain characteristics can be obtained.

第2図は、セラミック成形体としてhl、o、の代りに
、酸化ジルコニウムZrO,を使用した以外は、前記の
具体例と同様にして作成した導電性セラミックを同様の
遠赤外線放射性の試験を行なったその測定結果を示し、
上記と同様に特に遠赤外線ヒーターとして有利な製品で
あることが認められた。
Figure 2 shows a conductive ceramic prepared in the same manner as in the previous example except that zirconium oxide, ZrO, was used instead of hl and o as the ceramic molded body, and was subjected to the same far-infrared radiation test. Showing the measurement results,
Similarly to the above, it was recognized that this product is especially advantageous as a far-infrared heater.

空気圧を1#/c++!と一定にした場合の溶液の噴霧
時間と、溶液の濃度との関係を調べたが、アルフキシ塩
化スズの濃度0.65 mol / l〜5 mol 
/ 1の範囲では2〜10秒の範囲で変わるが、いづれ
も短詩の吹付作業ですむ。噴霧圧力はo、4kg/cm
l〜2. OklI/C己の範囲を一般とする。
Air pressure 1#/c++! We investigated the relationship between the spraying time of the solution and the concentration of the solution at a constant value of 0.65 mol/l to 5 mol of alphoxytin chloride.
/ In the range of 1, the time varies from 2 to 10 seconds, but in all cases, it is enough to spray short poems. Spray pressure is o, 4kg/cm
l~2. OklI/C's own range is general.

次に、そのアルフキシ塩化スズ単独及びこれにアルフキ
シ塩化アンチモンを添加する量を色色に変えた溶液と抵
抗性との関係を調べた新築5図示のような結果を得た。
Next, we investigated the relationship between resistance and alkoxytin chloride alone and solutions in which the amount of alphoxyantimony chloride was added in different colors, and the results shown in Shinkei 5 were obtained.

第3図に示す如く、その抵抗値はドーパントの添加量に
よって変わる。一般に、そのsb添加量は10 mo1
%までが好ましい。
As shown in FIG. 3, the resistance value changes depending on the amount of dopant added. Generally, the amount of sb added is 10 mo1
% is preferred.

かくして、その用途に応じ、抵抗値の異なる発熱抵抗膜
を得るに当り、上記のように、ドーパントの添加量をコ
ントロールすることにより得られる。
Thus, heat generating resistive films having different resistance values can be obtained depending on the application by controlling the amount of dopant added as described above.

成形体の加熱温度は第4図示の如く300℃以上とする
ときは、導電性が得られ、赤外線ヒーターの場合は、数
百Ω/口が望ましいので、これを得るために450℃程
度以上が好ましい。
When the heating temperature of the molded body is set to 300°C or higher as shown in Figure 4, conductivity can be obtained.In the case of an infrared heater, it is desirable to have several hundred Ω/hole, so in order to obtain this, the heating temperature is about 450°C or higher. preferable.

溶液の吹付量は、前記の具体的な実施例における溶液を
使用した場合は第5図示の通りであつた。
The amount of solution sprayed was as shown in Figure 5 when the solution in the above specific example was used.

このように、加熱温度、吹付量の調製によっても、種々
の特性の発熱抵抗体膜が得られる。
In this way, heating resistor films with various characteristics can be obtained by adjusting the heating temperature and spraying amount.

本発明の該焼成膜の組成は現在定かでないが、純粋な酸
化物ではないことから判断して、発熱抵抗体になり得る
理由は、結晶構造欠陥による金属スズ等の金属原子イオ
ン、塩素イオンが電子供与体及び受容体として働くため
と推測される。
Although the composition of the fired film of the present invention is currently unknown, judging from the fact that it is not a pure oxide, the reason why it can become a heat generating resistor is that metal atomic ions such as metal tin and chlorine ions due to crystal structure defects. It is presumed that this is because it functions as an electron donor and acceptor.

このように本発明によるときは、セラミック成形体を加
熱しその加熱面に、アルフキジノ・ロゲン化スズ溶液又
はこれにアルコキシハロゲン化アンチモンを混入した溶
液を付着させると共に加熱酸化分解反応させるので、そ
のセラミック成形体の表面に強固に密着した堅牢なスズ
酸化物単独又はスズ酸化物とアンチモン酸化物の複合酸
化物を主体とした発熱抵抗体膜が得られ、その製造コス
トは安価であり、遠赤外線ヒーターとして優れた材料を
提供する効果を有する。
As described above, according to the present invention, a ceramic molded body is heated, and an alfuquidino-tin halogenide solution or a solution containing antimony alkoxyhalide is applied to the heated surface of the ceramic body, and a heating oxidative decomposition reaction is caused. A robust heating resistor film based on tin oxide alone or a composite oxide of tin oxide and antimony oxide that adheres tightly to the surface of the molded body can be obtained, and its production cost is low, making it suitable for far-infrared heaters. It has the effect of providing an excellent material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明製品の遠赤外線放射特性を示すグラフ
、第2図は他側のグラフ、第3図乃至第5図は夫々sb
/snの配合量、成形体の加熱温度、溶液の吹付量と得
られる製品の導電性との関係を示すグラフである。 特許出願人  株式会社河合楽器製作所代  理  人
   北   村   欣   二(、、−”、:”t
j、。 外2名 第1図 第3図        第4図 ””15.  (md”/−)       基、i;
A″(穎第2図 第5図 1年菫゛吟、2
Fig. 1 is a graph showing the far-infrared radiation characteristics of the product of the present invention, Fig. 2 is a graph on the other side, and Figs. 3 to 5 are each sb
1 is a graph showing the relationship between the blending amount of /sn, the heating temperature of the molded body, the spraying amount of the solution, and the conductivity of the obtained product. Patent applicant: Kawai Musical Instruments Co., Ltd. Agent: Kinji Kitamura (,,-”,:”t
j. 2 people Figure 1 Figure 3 Figure 4 15. (md”/-) group, i;
A''

Claims (1)

【特許請求の範囲】 1、セラミック成形体の表面にアルコキシハロゲン化ス
ズSnX_n(OR)_4_−_n(ここでXはハロゲ
ン、Rはアルキル基、nは0〜4〕の酸化分解生成物を
主成分とする膜を一体に有してなる遠赤外線ヒーター。 2、セラミック成形体を加熱した表面にSnX_n(O
R)_4_−_n(ここでXはハロゲン、Rはアルキル
基、nは0〜4)の溶液又はこれにアルコキシハロゲン
化アンチモンSbX_y(OR)_3_−_y(ここで
Xはハロゲン、Rはアルキル基、yは0〜5)をドープ
した溶液を均一に付着させると共に加熱酸化分解反応を
行ない、その酸化物を主体とする焼成膜を一体に生成せ
しめることを特徴とする遠赤外線ヒーターの製造法。 3、該成形体の加熱温度は300℃以上とし、該温度に
加熱された表面に噴霧により該溶液を均一に付着させる
ことを特徴とする特許請求の範囲2項に記載の遠赤外線
ヒーターの製造法。
[Scope of Claims] 1. Mainly contains oxidative decomposition products of alkoxytin halide SnX_n(OR)_4_-_n (where X is a halogen, R is an alkyl group, and n is 0 to 4) on the surface of a ceramic molded body. A far-infrared heater integrally having a film as a component. 2. SnX_n(O
R)_4_-_n (where X is a halogen, R is an alkyl group, n is 0 to 4) or a solution of alkoxyantimony halide SbX_y (OR)_3_-_y (where X is a halogen, R is an alkyl group) , y is 0 to 5) is uniformly deposited and a heating oxidative decomposition reaction is carried out to integrally produce a fired film mainly composed of the oxide. 3. Manufacturing the far-infrared heater according to claim 2, wherein the heating temperature of the molded body is 300°C or higher, and the solution is uniformly adhered to the surface heated to the temperature by spraying. Law.
JP18004885A 1985-08-17 1985-08-17 ENSEKIGAISENHIITAANARABINISONOSEIZOHO Expired - Lifetime JPH0238556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18004885A JPH0238556B2 (en) 1985-08-17 1985-08-17 ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18004885A JPH0238556B2 (en) 1985-08-17 1985-08-17 ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS6241789A true JPS6241789A (en) 1987-02-23
JPH0238556B2 JPH0238556B2 (en) 1990-08-30

Family

ID=16076571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18004885A Expired - Lifetime JPH0238556B2 (en) 1985-08-17 1985-08-17 ENSEKIGAISENHIITAANARABINISONOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0238556B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668959A (en) * 1992-08-19 1994-03-11 Kawai Musical Instr Mfg Co Ltd Heater
JPH0668960A (en) * 1992-08-19 1994-03-11 Kawai Musical Instr Mfg Co Ltd Heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668959A (en) * 1992-08-19 1994-03-11 Kawai Musical Instr Mfg Co Ltd Heater
JPH0668960A (en) * 1992-08-19 1994-03-11 Kawai Musical Instr Mfg Co Ltd Heater

Also Published As

Publication number Publication date
JPH0238556B2 (en) 1990-08-30

Similar Documents

Publication Publication Date Title
JP5138140B2 (en) Method for forming a niobium-doped tin oxide coating on glass
EP0030732B1 (en) Transparent electrically conductive film and process for production thereof
DK166536B1 (en) PRODUCT WITH HIGH TRANSMITTANCE AND LOW EMISSIVITY
JPH0160548B2 (en)
US2772190A (en) Method of increasing the electrical conductivity of tin oxide films
JP2605855B2 (en) Method for producing conductive tin oxide powder
SE462801B (en) PROCEDURE FOR PREPARING A THERMOCROME WINDOW
JPS6241789A (en) Far infrared ray heater and manufacture
JPS59198607A (en) Transparent conductive film having protective film
JPS6241788A (en) Far infrared ray heater and manufacture
US3027277A (en) Method of producing transparent electrically conductive coatings and coated article
JPH0384892A (en) Luminous element
US5725912A (en) Method of manufacturing an electric heating film of semiconductor
US2859131A (en) Method of applying a film comprising chromium oxide on a glass surface
JPH0586605B2 (en)
JPS61279082A (en) Far infrared heater and manufacture thereof
JPS6237894A (en) Far infrared ray heater and manufacture thereof
JPS639327B2 (en)
RU1809846C (en) Solution for preparing of semiconducting films on tin dioxide-base
JPS62228483A (en) Production of resistance heating element
JPS5948865B2 (en) Multicolor coloring method for metal surfaces
JPS5987145A (en) Transparent conductive laminate
JPH02216752A (en) Tube-form glass with transparent conductive oxide thin film and its manufacture
JPH02126520A (en) Formation of transparent conductive film
JPH03211706A (en) Resistor