JPS6241063B2 - - Google Patents

Info

Publication number
JPS6241063B2
JPS6241063B2 JP14276680A JP14276680A JPS6241063B2 JP S6241063 B2 JPS6241063 B2 JP S6241063B2 JP 14276680 A JP14276680 A JP 14276680A JP 14276680 A JP14276680 A JP 14276680A JP S6241063 B2 JPS6241063 B2 JP S6241063B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
platinum
methanol
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14276680A
Other languages
Japanese (ja)
Other versions
JPS5768140A (en
Inventor
Takashi Haruki
Hiroshi Fujita
Tetsuya Imai
Kozo Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14276680A priority Critical patent/JPS5768140A/en
Publication of JPS5768140A publication Critical patent/JPS5768140A/en
Publication of JPS6241063B2 publication Critical patent/JPS6241063B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタノール改質用触媒に関するもので
ある。更に詳しくは、メタノールを水素および一
酸化炭素を含むガスに改質する触媒として、アル
ミナをあらかじめアルカリ土類金属の酸化物、又
はアルカリ土類金属の酸化物およびジルコニアで
被覆した担体上に白金、パラジウムからなる群の
一種以上の金属を担持させた触媒を用いる事を特
徴としており、低温において高活性で水素および
一酸化炭素への反応選択性に優れ、かつ長寿命の
触媒を提供するものである。 現在では、発電用ボイラ、内燃機関などに用い
られる液体燃料や気体燃料及び還元ガス製造用原
料には原油及びそれから精製された石油類が使用
されているが、最近の原油価格の高騰のため燃料
の多様化が指向されて、原油以外の化石燃料から
合成され得るメタノールが注目されている。また
メタノールはナフサよりはるかに低温で水素、一
酸化炭素を含むガスに改質されるので、反応熱の
ための熱源として、廃熱の適用が可能であると云
う優位性をもつている。 この際、生成した改質ガスは改質反応の吸熱量
相当分(約22kcal/mol)だけ改質ガスの発熱量
が増加するという利点と、さらに、この生成した
改質ガスは高オクタン価で高出力設計の内燃機関
に適用すると圧縮比をあけて熱効率を改善するこ
とや、メタノール燃焼時のようにアルデヒド類な
どの排出もなくクリーン燃焼が可能などの利点が
ある。 メタノールの主分解、改質反応は次に示すよう
に吸熱反応であり、改質により燃料発熱量は約20
%増加する。 しかし実際にはいくつかの副反応(発熱反応)
を伴い、メタン(CH4)、二酸化炭素(CO2)、水
(H2O)、遊離炭素(C)、ジメチルエーテル
(CH3OCH3)などの副生成物を生じる。 これらの副反応を抑制し主反応のみを起らしめ
る選択性に優れた触媒が必要である。 内燃機関の排気ガス熱を利用してメタノールの
改質反応を行わす場合、排ガス温度は周知のごと
く200℃から800℃程度の温度まで変化するため、
幅広い温度範囲にわたつて内燃機関に塔載できる
程度の少量の触媒で改質でき、かつ、例えば上記
の800℃程度の高温下におかれていても、主反応
の選択性に優れ、かつ改質性能が劣化しない安定
した触媒が必要である。 従来、メタノールを改質する触媒としては、ア
ルミナ(以下Al2O3と記す。)などの担体に白金
などの白金属元素、又は銅、ニツケル、クロム、
亜鉛などの卑金属元素及びその酸化物などを担持
した触媒が提案されているが、これらの触媒は低
温活性に乏しい、耐熱性がないなど、現在までの
ところ多くの問題点を残している。 上記従来の触媒の中で、例えばγ―Al2O3に白
金を担持した触媒については低温で活性が低く、
単なるγ―Al2O3に白金を分散させるだけでは活
性の向上が難しいとされている。また、内燃機関
での最高使用温度の800℃程度の高温下で、例え
ば100時間以上使用すると、γ―Al2O3の表面上
に分散している白金粒子の凝集をきたし、白金の
活性表面積が低下し、活性が低下するという問題
がある。 更に選択性の面では、上記のような副反応が起
りやすく、この反応はいずれも発熱反応であるた
め発熱量相当分だけ、分解ガスの発熱量が減少し
熱効率の面からはむしろ損失となるなど選択性の
面でも問題がある。 本発明者らは上記の問題を解決すべく、アルミ
ナと活性金属との間に第三物質を介在せしめる事
によつて、即ち、アルミナをあらかじめアルカリ
土類金属の酸化物、あるいはアルカリ土類金属の
酸化物およびジルコニアで被覆することによつ
て、アルミナの結晶形における変態が起りにくい
事および高温下でアルミナ(γ―Al2O3)の表面
上に分散している白金粒子の凝集が起りにくい事
更には、通常酸性触媒として作用するγ―Al2O3
を塩基性の性質に変換させ脱水素反応を起させれ
ば副反応が抑制されるという、即ち酸性触媒の場
合は2CH3OH→CH3OCH3+H2Oなる脱水反応を
生起して、エーテルを生成する。これに対し、塩
基性の場合は斯る脱水反応は生ぜず、CH3OH→
HCHO+H2なる脱水素反応を生起して該反応で
生成されたアルデヒドが引続いてHCHO→H2
COなる反応により分解することの知見に注目
し、種々の実験検討を行つた結果、アルミナにあ
らかじめ副反応を抑制する能力のあるアルカリ土
類金属の酸化物あるいはアルカリ土類金属の酸化
物およびジルコニアで被覆した担体上に白金、パ
ラジウムなどの貴金属を担持させた触媒がメタノ
ール改質反応において高活性で耐熱性に優れ、か
つ水素および一酸化炭素への主反応の選択性に優
れている事を見い出し、本発明を完成させるに致
つた。 本発明はメタノール改質触媒としてあらかじめ
例えばアルカリ土類金属(Mg、Ca、Baなど)な
どの塩基性物質の酸化物、あるいはアルカリ土類
金属の酸化物およびジルコニアで被覆した担体上
に、白金、パラジウムなどの貴金属を担持させた
事を特徴としている。 ここでアルミナをアルカリ土類金属の酸化物で
被覆するにはアルミナをアルカリ土類金属の硝酸
塩水溶液に浸漬したのち、焼成する事で、またア
ルミナをアルカリ土類金属の酸化物およびジルコ
ニアで被覆するにはアルミナをアルカリ土類金属
の硝酸塩水溶液およびジルコニア硝酸塩水溶液の
混合液に浸漬したのち焼成する事で容易に得られ
る。 次にこのようにして得られた担体に貴金属を担
持させる方法は、従来から用いられている方法で
問題なく、例えば貴金属の硝酸塩水溶液に担体を
浸漬した後、焼成し、さらにそれを水素還元処理
すれば貴金属が担持された触媒が得られる。 以上のようにして得られた触媒はメタノールを
水素、一酸化炭素を含むガスに改質する反応に対
し、主反応の選択性に優れ、300℃という低温で
も高活性を示し、さらに800℃という高温下でも
活性の劣化が小さくかつ高い触媒活性を示すもの
である。 以下、実施例に基づいて本発明を具体的に説明
する。 〔実施例 1〕 粒径2〜4mmのγ―Al2O3からなるペレツトを
硝酸マグネシウム、又は硝酸カルシウム又は硝酸
バリウム水溶液に各々浸漬後、乾燥し550℃で3
時間焼成してアルミナに対して酸化マグネシウ
ム、又は酸化カルシウム又は酸化バリウムが10重
量%被覆された担体を調整した。このようにして
得られた担体を白金の硝酸塩水溶液に各々浸漬
し、白金が0.3重量%になるように担持した触媒
1,2,5およびパラジウムの硝酸塩水溶液に
各々浸漬し、パラジウムが0.3重量%になるよう
に担持した触媒3,4,6をそれぞれ調整した。 これらの触媒の活性評価を表―1に示す条件で
行い、その結果を表―2に示した。
The present invention relates to a methanol reforming catalyst. More specifically, as a catalyst for reforming methanol into a gas containing hydrogen and carbon monoxide, alumina is coated with an alkaline earth metal oxide or an alkaline earth metal oxide and zirconia on a carrier coated with platinum, It is characterized by the use of a catalyst that supports one or more metals from the group consisting of palladium, and provides a catalyst that is highly active at low temperatures, has excellent reaction selectivity to hydrogen and carbon monoxide, and has a long life. be. Currently, crude oil and petroleum products refined from it are used as raw materials for producing liquid fuel, gaseous fuel, and reducing gas used in power generation boilers, internal combustion engines, etc., but due to the recent rise in crude oil prices, Methanol, which can be synthesized from fossil fuels other than crude oil, is attracting attention. Furthermore, since methanol is reformed into a gas containing hydrogen and carbon monoxide at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for reaction heat. At this time, the generated reformed gas has the advantage that the calorific value of the reformed gas increases by the amount equivalent to the endothermic amount of the reforming reaction (approximately 22 kcal/mol). When applied to an internal combustion engine with a high output design, it has the advantage of increasing the compression ratio to improve thermal efficiency, and enables clean combustion without emitting aldehydes, unlike methanol combustion. The main decomposition and reforming reaction of methanol is an endothermic reaction as shown below, and the fuel calorific value due to reforming is approximately 20
%To increase. However, in reality, some side reactions (exothermic reactions)
This produces by-products such as methane (CH 4 ), carbon dioxide (CO 2 ), water (H 2 O), free carbon (C), and dimethyl ether (CH 3 OCH 3 ). There is a need for a catalyst with excellent selectivity that suppresses these side reactions and allows only the main reaction to occur. When carrying out a methanol reforming reaction using exhaust gas heat from an internal combustion engine, the exhaust gas temperature varies from 200℃ to about 800℃, so
It can be reformed over a wide temperature range with a small amount of catalyst that can be mounted on an internal combustion engine, and it has excellent selectivity of the main reaction and can be reformed even at high temperatures of about 800°C, as mentioned above. A stable catalyst that does not deteriorate in quality is required. Conventionally, as a catalyst for reforming methanol, a platinum metal element such as platinum , copper, nickel, chromium,
Catalysts supporting base metal elements such as zinc and their oxides have been proposed, but these catalysts still have many problems to date, such as poor low-temperature activity and lack of heat resistance. Among the conventional catalysts mentioned above, for example, catalysts in which platinum is supported on γ-Al 2 O 3 have low activity at low temperatures;
It is said that it is difficult to improve activity simply by dispersing platinum in γ-Al 2 O 3 . Furthermore, if it is used for more than 100 hours at a high temperature of about 800°C, which is the maximum operating temperature in an internal combustion engine, the platinum particles dispersed on the surface of γ-Al 2 O 3 will aggregate, and the active surface area of platinum will decrease. There is a problem that the activity decreases. Furthermore, in terms of selectivity, the side reactions mentioned above are likely to occur, and since all of these reactions are exothermic reactions, the calorific value of the cracked gas decreases by the amount equivalent to the calorific value, which is rather a loss in terms of thermal efficiency. There are also problems in terms of selectivity. In order to solve the above-mentioned problem, the present inventors have developed a method of interposing a third substance between alumina and an active metal. By coating with oxide and zirconia, transformation of the crystal form of alumina is difficult to occur, and platinum particles dispersed on the surface of alumina (γ-Al 2 O 3 ) are agglomerated at high temperatures. In addition, γ-Al 2 O 3 , which normally acts as an acidic catalyst,
By converting to basic properties and causing a dehydrogenation reaction, side reactions are suppressed. In other words, in the case of an acidic catalyst, a dehydration reaction of 2CH 3 OH → CH 3 OCH 3 + H 2 O occurs, and ether is produced. generate. On the other hand, in the case of basicity, such dehydration reaction does not occur, and CH 3 OH→
A dehydrogenation reaction of HCHO + H 2 occurs, and the aldehyde produced in this reaction is subsequently converted into HCHO → H 2 +
Focusing on the knowledge that CO decomposes through a reaction, we conducted various experiments and found that alumina contains alkaline earth metal oxides or alkaline earth metal oxides and zirconia, which have the ability to suppress side reactions in advance. The catalyst, which has precious metals such as platinum and palladium supported on a carrier coated with , has high activity and excellent heat resistance in methanol reforming reactions, and has excellent selectivity in the main reaction to hydrogen and carbon monoxide. This heading led to the completion of the present invention. In the present invention, as a methanol reforming catalyst, platinum, It is characterized by supporting precious metals such as palladium. To coat alumina with an alkaline earth metal oxide, the alumina is immersed in an aqueous alkaline earth metal nitrate solution and then fired, and the alumina is coated with an alkaline earth metal oxide and zirconia. can be easily obtained by immersing alumina in a mixed solution of an alkaline earth metal nitrate aqueous solution and a zirconia nitrate aqueous solution and then firing it. Next, the method of supporting the noble metal on the carrier obtained in this way can be carried out using conventional methods, such as immersing the carrier in an aqueous solution of noble metal nitrate, calcining it, and then subjecting it to hydrogen reduction treatment. Then, a catalyst on which precious metals are supported can be obtained. The catalyst obtained as described above has excellent selectivity for the main reaction in the reaction of reforming methanol into a gas containing hydrogen and carbon monoxide, and exhibits high activity even at a low temperature of 300°C, and even at a temperature of 800°C. It exhibits high catalytic activity with little deterioration in activity even at high temperatures. Hereinafter, the present invention will be specifically explained based on Examples. [Example 1] Pellets made of γ-Al 2 O 3 with a particle size of 2 to 4 mm were immersed in an aqueous solution of magnesium nitrate, calcium nitrate, or barium nitrate, and then dried at 550°C for 30 minutes.
A carrier was prepared in which alumina was coated with 10% by weight of magnesium oxide, calcium oxide, or barium oxide by firing for a period of time. The supports thus obtained were each immersed in an aqueous solution of platinum nitrate, and catalysts 1, 2, and 5 supporting platinum at a concentration of 0.3% by weight were immersed in an aqueous nitrate solution of palladium. Catalysts 3, 4, and 6 were each adjusted to have the following properties. The activity of these catalysts was evaluated under the conditions shown in Table 1, and the results are shown in Table 2.

【表】【table】

〔実施例 2〕[Example 2]

粒径2〜4mmのγ―Al2O3からなるペレツトを
硝酸マグネシウムおよび硝酸ジルコニウム水溶
液、又は硝酸カルシウムおよび硝酸ジルコニウム
水溶液に各々浸漬後、乾燥し、550℃で3時間焼
成してアルミナに対して酸化マグネシウムおよび
ジルコニアが各々10重量%、又は酸化カルシウム
およびジルコニアが各々10重量%被覆された担体
を調整した。このようにして得られた担体を白金
の硝酸塩水溶液に浸漬し、白金が0.3重量%にな
るように担持した触媒1,2,およびパラジウム
の硝酸塩水溶液に各々浸漬し、パラジウムが0.3
重量%になるように担持した触媒3,4を各々調
整した。 これらの触媒の活性評価を表―1に示す条件で
行い、その結果を表―3に示した。
Pellets consisting of γ-Al 2 O 3 with a particle size of 2 to 4 mm are immersed in an aqueous solution of magnesium nitrate and zirconium nitrate, or an aqueous solution of calcium nitrate and zirconium nitrate, dried, and calcined at 550°C for 3 hours to form alumina. A carrier coated with 10% by weight each of magnesium oxide and zirconia, or 10% by weight each of calcium oxide and zirconia was prepared. The support obtained in this way was immersed in an aqueous solution of platinum nitrate, and catalysts 1 and 2 were immersed in an aqueous solution of nitrate of palladium.
Catalysts 3 and 4 were each adjusted to have a weight percentage of 1.5% by weight. The activity of these catalysts was evaluated under the conditions shown in Table 1, and the results are shown in Table 3.

〔実施例 3〕[Example 3]

実施例1で調整した触媒1と同じ方法で白金濃
度が0.1、0.2、0.5重量%の触媒を調整し、これら
の触媒について表―1と同じ条件で評価試験を実
施したところメタノール反応率が各々89,92,96
%、主反応の割合が各々90,93,95%であつた。 〔実施例 4〕 実施例1で調整した触媒1および実施例2で調
整した触媒1について反応温度以外は表―1と同
じ条件で反応温度を100℃から800℃まで変えてメ
タノール反応率を測定し、その結果を第1図に示
す。 〔比較例〕 又、従来のアルミナ担体(粒径2〜4mm)に白
金、又はパラジウムをそれぞれ0.3重量%担持し
た触媒について、実施例1と同じ条件で評価試験
を実施したところ、反応温度が300℃でメタノー
ル反応率が各々30%、38%、主反応の割合が各々
65%、62%であり、本発明の触媒が従来の触媒に
比較して低温において高活性で、主反応の選択性
に富んでいる事を示している。 実施例においては粒状触媒について記述してあ
るが、触媒の形状を特に限定するものでなく、ハ
ニカム状、板状などの触媒形状で用いて良いこと
は言うまでもない。 又、実施例ではメタノール単独の場合について
記述してあるが水蒸気、空気などを含有したガス
との共存下でメタノール改質反応を行わせても良
い。 以上実施例で示した如く、本発明における触媒
はメタノールを水素と一酸化炭素を含むガスに改
質する反応において、低温で高活性で、主反応の
選択性に富み、かつ、高温でも活性の低下しない
触媒である。
Catalysts with platinum concentrations of 0.1, 0.2, and 0.5% by weight were prepared in the same manner as Catalyst 1 prepared in Example 1, and evaluation tests were conducted on these catalysts under the same conditions as shown in Table 1. 89, 92, 96
% and the percentage of main reactions were 90, 93, and 95%, respectively. [Example 4] Methanol reaction rate was measured for Catalyst 1 prepared in Example 1 and Catalyst 1 prepared in Example 2 under the same conditions as Table 1 except for the reaction temperature, changing the reaction temperature from 100°C to 800°C. The results are shown in Figure 1. [Comparative Example] In addition, when an evaluation test was conducted under the same conditions as in Example 1 for a catalyst in which 0.3% by weight of each of platinum or palladium was supported on a conventional alumina carrier (particle size 2 to 4 mm), the reaction temperature was 300°C. At ℃, the methanol reaction rate is 30% and 38%, respectively, and the main reaction rate is respectively
65% and 62%, indicating that the catalyst of the present invention has higher activity at lower temperatures and higher selectivity for the main reaction than conventional catalysts. Although granular catalysts are described in the examples, the shape of the catalyst is not particularly limited, and it goes without saying that catalyst shapes such as honeycomb shapes and plate shapes may be used. Furthermore, although the examples describe the case where methanol is used alone, the methanol reforming reaction may be carried out in the coexistence of a gas containing water vapor, air, or the like. As shown in the examples above, the catalyst of the present invention is highly active at low temperatures, has high selectivity for the main reaction, and is active even at high temperatures in the reaction of reforming methanol into a gas containing hydrogen and carbon monoxide. It is a catalyst that does not deteriorate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の触媒の性能を示す特性図であ
る。
FIG. 1 is a characteristic diagram showing the performance of the catalyst of the present invention.

Claims (1)

【特許請求の範囲】 1 アルミナをあらかじめアルカリ土類金属の酸
化物で被覆した担体上に白金、パラジウムからな
る群の一種以上の金属を担持させた事を特徴とす
るメタノール改質用触媒。 2 アルミナをあらかじめアルカリ土類金属の酸
化物および、ジルコニアで被覆した担体上に白
金、パラジウムからなる群の一種以上の金属を担
持させた事を特徴とするメタノール改質用触媒。 3 アルカリ土類金属が、Mg、又はCa又はBaで
ある前記特許請求の範囲第1項又は第2項記載の
メタノール改質用触媒。
[Scope of Claims] 1. A catalyst for methanol reforming, characterized in that one or more metals from the group consisting of platinum and palladium are supported on a carrier in which alumina is coated in advance with an oxide of an alkaline earth metal. 2. A methanol reforming catalyst characterized in that one or more metals from the group consisting of platinum and palladium are supported on a carrier coated with alumina and an alkaline earth metal oxide and zirconia. 3. The methanol reforming catalyst according to claim 1 or 2, wherein the alkaline earth metal is Mg, Ca, or Ba.
JP14276680A 1980-10-13 1980-10-13 Catalyst for modification of methanol Granted JPS5768140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14276680A JPS5768140A (en) 1980-10-13 1980-10-13 Catalyst for modification of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14276680A JPS5768140A (en) 1980-10-13 1980-10-13 Catalyst for modification of methanol

Publications (2)

Publication Number Publication Date
JPS5768140A JPS5768140A (en) 1982-04-26
JPS6241063B2 true JPS6241063B2 (en) 1987-09-01

Family

ID=15323081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14276680A Granted JPS5768140A (en) 1980-10-13 1980-10-13 Catalyst for modification of methanol

Country Status (1)

Country Link
JP (1) JPS5768140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192456U (en) * 1987-05-28 1988-12-12

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112837A (en) * 1982-12-20 1984-06-29 Mitsubishi Heavy Ind Ltd Catalyst for reforming ethanol
JPS59199043A (en) * 1983-04-27 1984-11-12 Mitsubishi Heavy Ind Ltd Catalyst for reforming methanol
JPS59199042A (en) * 1983-04-28 1984-11-12 Nissan Motor Co Ltd Catalyst for reforming methanol
JPS6082136A (en) * 1983-10-14 1985-05-10 Mitsubishi Heavy Ind Ltd Reforming catalyst of methanol
JPS60202739A (en) * 1984-03-22 1985-10-14 Mitsubishi Heavy Ind Ltd Catalyst for reforming methanol
JPS62250948A (en) * 1986-04-24 1987-10-31 Agency Of Ind Science & Technol Catalyst for steam reforming of methanol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192456U (en) * 1987-05-28 1988-12-12

Also Published As

Publication number Publication date
JPS5768140A (en) 1982-04-26

Similar Documents

Publication Publication Date Title
Takeishi et al. Steam reforming of dimethyl ether
US4780300A (en) Process for reforming methanol
KR101365787B1 (en) Process conditions for pt-re bimetallic water gas shift catalysts
JPS61501827A (en) Catalyst for methanol conversion and method of using the same
JPS6241063B2 (en)
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JPH0211303B2 (en)
JPS6234417B2 (en)
JPS6082137A (en) Reforming catalyst of methanol
JP5494910B2 (en) Hydrogen production catalyst and production method thereof
JP2000153157A (en) Methanol reforming catalyst and methanol reforming catalyst device using the same
JPH0211301B2 (en)
JP2005044651A (en) Method of manufacturing hydrogen rich gas
JPH0419901B2 (en)
JPS6247578B2 (en)
JPS6082136A (en) Reforming catalyst of methanol
JPS58193737A (en) Catalyst for production of gas enriched with hydrogen
JPH0312302A (en) Methanol reformer
JPH0425064B2 (en)
JPS63182033A (en) Ethanol reforming catalyst
JP3996378B2 (en) Catalyst production method
JPS6235814B2 (en)
JPS59189935A (en) Ethanol reforming catalyst
JPH0347894B2 (en)