JPH0312302A - Methanol reformer - Google Patents

Methanol reformer

Info

Publication number
JPH0312302A
JPH0312302A JP1143052A JP14305289A JPH0312302A JP H0312302 A JPH0312302 A JP H0312302A JP 1143052 A JP1143052 A JP 1143052A JP 14305289 A JP14305289 A JP 14305289A JP H0312302 A JPH0312302 A JP H0312302A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
pipe
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1143052A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujita
浩 藤田
Tetsuya Imai
哲也 今井
Takuya Moriga
卓也 森賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1143052A priority Critical patent/JPH0312302A/en
Publication of JPH0312302A publication Critical patent/JPH0312302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To simultaneously impart a catalytic function and a heat transfer function to the reformer by arranging a finned pipe coated with the titanium carrying a platinum-based catalyst in a reaction vessel for reforming methanol to produce a hydrogen-contg. gas. CONSTITUTION:A film of rutile-type titania (having 0.01-0.5mm thickness) is formed on the outer surface of a finned pipe, and the metal such as Pt and Pd is deposited on the film. The catalyst-coated finned pipe is arranged in the reaction vessel, a heating medium is passed through the pipe, and methanol or water-contg. methanol is brought into contact with the catalyst on the outside of the pipe to obtain a hydrogen-contg. gas (contg. >=50% H2, <=35% CO and <=25% CO2). The reaction temp. is preferably controlled to 300-600 deg.C, the pressure is adjusted to 0-15kg/cm<2>G, and the molar ratio of the supplied water to methanol is controlled to <=5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノ−〃改質装置に関し、更に詳しくはメタ
ノール又はメタノ−μと水の混合物を触媒と接触させ水
素含有ガスに改質するメタノール改質装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a methanol reformer, and more specifically, a methanol reformer for reforming methanol or a mixture of methanol and water into a hydrogen-containing gas by contacting it with a catalyst. Regarding a reformer.

〔従来の技術〕[Conventional technology]

現在、発電用ボイラ、内燃機関などに用いられる液体燃
料や気体燃料及び還元ガス製造用には、原油及びそれか
ら精製された石油類が使用されているが、最近の原油価
格の高騰のため燃料の多様化が指向され原油以外の化石
燃料から合成され得るメタノ−〜が注目されている。
Currently, crude oil and petroleum products refined from it are used to produce liquid fuel, gaseous fuel, and reducing gas used in power generation boilers, internal combustion engines, etc., but due to the recent rise in crude oil prices, fuel Methanol, which can be synthesized from fossil fuels other than crude oil, is attracting attention due to diversification.

又、メタノ−μはナフサよシはるかに低温で水素含有ガ
スに分解されるので、メタノ−μ分解反応、水蒸気改質
反応の熱源として廃熱の利用が可能であるという優位性
をもっている。メタノ−μ分解反応は次の(1) 、 
f2)式のとおシである。
Furthermore, since methano-μ is decomposed into hydrogen-containing gas at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for the methano-μ decomposition reaction and steam reforming reaction. The methano-μ decomposition reaction is as follows (1),
f2) is the result of the formula.

CH,OH+CO+2E[! ムJ!25”(”=2t
7kcaA/mot  ・・・(1)CH,OH+n馬
0−+(2+n)H,+(1−n)CO+nCO,=1
2)ここでOくnく1 メタノ−μ水蒸気改質反応は次の(3)式のとおルであ
る。
CH,OH+CO+2E[! Mu J! 25”(”=2t
7kcaA/mot...(1) CH, OH+n horse 0-+(2+n)H,+(1-n)CO+nCO,=1
2) Here, the methanol-μ steam reforming reaction is expressed by the following equation (3).

CH,OH+H,O−+COt+3H1」2ダ−11,
8kcaA/mO2・−(3) 上記反応で生成したガスは反応の吸熱量(ΔH)相当分
だけ生成ガスの発熱量が増加するという利点と、さらに
この生成ガスは高オクタン価で高出力設計の内燃機関に
適用すると圧縮比をあげて熱効率を改善することやメタ
ノ−μ燃焼時のアルデヒド類などの排出もなく、クリー
ン燃焼が可能などの利点があシ、自動車用さらには発電
用無公害燃料としての利用が可能である。
CH, OH+H, O-+COt+3H1" 2 da-11,
8 kcaA/mO2・-(3) The gas produced in the above reaction has the advantage that the calorific value of the produced gas increases by the amount of heat absorption (ΔH) of the reaction, and furthermore, this produced gas has a high octane number and is suitable for internal combustion with a high output design. When applied to engines, it has the advantages of increasing the compression ratio to improve thermal efficiency, and eliminating emissions of aldehydes and other substances during methanol combustion, resulting in clean combustion.It can also be used as a non-polluting fuel for automobiles and power generation. is available.

さらに上記反応(1)〜(3)により生成したガスから
水素を分離し、この水素を石油精製、化学工業における
各種有機化合物の水素化反応などの水素源として利用で
きるし、また反応(1) 、 !21よシ生成したガス
から一酸化炭素を分離し一酸化次素源として利用できる
Furthermore, hydrogen can be separated from the gas produced by the above reactions (1) to (3) and used as a hydrogen source for petroleum refining, hydrogenation reactions of various organic compounds in the chemical industry, etc. , ! Carbon monoxide can be separated from the gas produced in 21 and used as a source of primary monoxide.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、エンジン、ガスタービンなどの排ガスの頭熱を熱
源として利用し、メタノ−y又はメタノ−μと水の混合
物を原料として分解又は水蒸気改質反応を行なわせる場
合、排ガス温度は周知の如く200℃から700℃まで
変化するため幅広い温度範囲にわたって内燃機関に搭載
できる程度の少量の触媒で改質でき、かつ例えば上記の
700℃程度の高温下におかれていても、改質性能の低
下しない改質方法並びに安定し九触媒が必要である。
Conventionally, when the head heat of exhaust gas from an engine, gas turbine, etc. is used as a heat source and a mixture of methano-y or methano-μ and water is used as a raw material for decomposition or steam reforming reaction, the exhaust gas temperature is 200% as is well known. Since it changes from ℃ to 700℃, it can be reformed over a wide temperature range with a small amount of catalyst that can be installed in an internal combustion engine, and the reforming performance will not deteriorate even if it is exposed to high temperatures of about 700℃ as mentioned above. A reforming method and a stable catalyst are required.

従来のメタノ−yを改質する触媒としては、アμミナ(
以下人40s と記す)などの担体に白金などの白金属
元素又は銅、ニッケ〃、クロム、亜鉛などの卑金属元素
及びその酸化物などを担持した触媒が提案されているが
、これらの触媒は低温活性に乏しい、熟的劣化を起しや
すいなど現在のところ多くの問題点を残している。
Ammina (
Catalysts have been proposed in which platinum metal elements such as platinum, base metal elements such as copper, nickel, chromium, zinc, and their oxides are supported on carriers such as 40s, but these catalysts are At present, many problems remain, such as lack of activity and a tendency to deteriorate over time.

又、上述した金属担持法による触媒調製法とは別に沈殿
法による調製法があυ、この方法で調製される触媒の代
表例としては亜鉛、クロム更に唸銅を含有してなるメタ
ノールの合成用の触媒がある。このメタノール合成用触
媒も、−般にメタノ−μを水素と一酸化炭素を含むガス
に改質する反応に有効なことは知られているが熱的劣化
を起しやすい。
In addition to the above-mentioned catalyst preparation method using the metal support method, there is also a preparation method using the precipitation method.A typical example of a catalyst prepared by this method is one for the synthesis of methanol containing zinc, chromium, and copper. There is a catalyst. Although this catalyst for methanol synthesis is generally known to be effective in the reaction of reforming methanol-μ into a gas containing hydrogen and carbon monoxide, it is susceptible to thermal deterioration.

また反応器としてはV工μ・アンド・チューブ型の熱交
換器型式となっておシ、チューブ内に触媒を充填し、原
料のメタノ−〜蒸気又はメタノ−μと水の混合蒸気は触
媒との接触反応により水素含有ガスに改質される。この
改質反応は大きな吸熱反応であシ、必要な反応熱はV工
〃側の熱媒から供給されるが、伝熱速度があまシ大きく
ないため触媒層内の温度が反応熱によシ低くなシ反応速
度を大きくすることが難しいという問題がある。
In addition, the reactor is a V-type μ-and-tube heat exchanger type, and the tube is filled with a catalyst, and the raw material methanol to steam or the mixed vapor of methanol and water is mixed with the catalyst. It is reformed into a hydrogen-containing gas through a catalytic reaction. This reforming reaction is a large endothermic reaction, and the necessary reaction heat is supplied from the heating medium on the V-section side, but since the heat transfer rate is not very high, the temperature in the catalyst layer is not affected by the reaction heat. There is a problem in that it is difficult to increase the low reaction rate.

〔課題を解決するための手段〕[Means to solve the problem]

そζで、本発明者らは反応器の伝熱速度を大きくするこ
とを目的にメタノ−〜改質反応器としてフィン付パイプ
を用い、該パイプの外表面に触媒を担持させこれを反応
容器内に複数個配置することによシ触媒機能及び伝熱機
能の双方を同時に合せもたせうろことを見出し、この知
見に基いて本発明を完成するに至った。すなわち本発明
は、メタノ−μ又はメタノ−μと水の混合物を触媒と接
触させ水素を含有ガスに改質する装置として、フィン付
きパイプの外表面に、μチル型のチタニアを含有するI
jl膜が形成され、該皮膜上に白金、パラジウムからな
る群の一環以上の金属が担持された触媒担持フィン付パ
イプを反応容器内に配置してなるメタノ−〃改質装置で
ある。
Therefore, in order to increase the heat transfer rate of the reactor, the present inventors used a finned pipe as a methanol-reforming reactor, carried a catalyst on the outer surface of the pipe, and attached it to the reaction vessel. The inventors have discovered that by arranging a plurality of scales within a container, it is possible to have both a catalytic function and a heat transfer function at the same time, and based on this knowledge, the present invention has been completed. That is, the present invention provides an apparatus for reforming methano-μ or a mixture of methano-μ and water into a hydrogen-containing gas by bringing it into contact with a catalyst.
This is a methano-reforming apparatus in which a finned pipe carrying a catalyst is disposed in a reaction vessel, on which a metal of at least one member of the group consisting of platinum and palladium is supported.

(発明の詳細な説明〕 以下、本発明を添付図面を参照して更に詳細に説明する
(Detailed Description of the Invention) The present invention will now be described in further detail with reference to the accompanying drawings.

第1図は触媒担持フィン付パイプを一部切欠して示す斜
視図で、パイプ1の外側にはフィン2が取付けられ、該
フィン付パイプの外表面にはμチル型のチタニアを含有
する皮膜が形成され、更にその上に触媒が担持されてい
て触媒担持フィン付パイプ3の触媒素子が構成されてい
る。
FIG. 1 is a partially cutaway perspective view of a catalyst-carrying finned pipe, in which fins 2 are attached to the outside of the pipe 1, and the outer surface of the finned pipe is coated with a film containing μ-chill type titania. is formed, and a catalyst is further supported thereon to constitute the catalyst element of the catalyst-carrying finned pipe 3.

ことに使用するチタニアは〃チル型の結晶形態をもつも
のであってこのものは固体酸をもつアナターゼ型のチタ
ニアと違って塩基性の性質をもつため、水、エーテル類
及びカーボン生成などの副反応が抑制され、メタノ−〃
改質反応の触媒として好ましく適用できるものである。
The titania used in particular has a chill-type crystal form, and unlike anatase-type titania, which has a solid acid, this titania has basic properties, so it is free from by-products such as water, ethers, and carbon formation. The reaction is suppressed and methanol
It can be preferably applied as a catalyst for reforming reactions.

このNf−μ型のチタニアは通常触媒担体として用いら
れるアナターゼ型の酸化チタンを600℃以上、好まし
くは、800〜1000°Cで焼成することによシ容易
に得られる。
This Nf-μ type titania can be easily obtained by calcining anatase type titanium oxide, which is usually used as a catalyst carrier, at 600°C or higher, preferably 800 to 1000°C.

フィン付パイプの外表面には、このチタニアの皮膜がα
01〜α5−の厚さに被覆される。
This titania film is coated on the outer surface of the finned pipe.
It is coated to a thickness of 01 to α5-.

皮膜の形成方法としては、上述のようKして得られ九μ
千だ型のチタニアを湿式ボールミ〃などで微細化スラリ
ーとし、該スラリーを浸漬法によシ塗布し、乾燥焼成す
る方法又はチタニア粉末を溶射する方法などが用いられ
る。皮膜の厚さは伝熱性を考慮すると、できるだけ薄い
方が好ましいが、触媒としての機能を考えると有効な厚
み範囲があシ種々検討した結果厚み101〜[15■の
範囲が適していることが判った。又、フィン付パイプと
チタニア皮膜との良好な接合状態を得るためには、フィ
ン付パイプの外表面を予めサンドブラストなどで凹凸状
にした上に塗布するのがよく、こうすることによりe着
性の優れた強固な皮膜を得ることができる。
The method for forming the film is as described above.
A method is used in which milled-shaped titania is made into a fine slurry using a wet ball mill, the slurry is coated by dipping, and then dried and fired, or titania powder is thermally sprayed. Considering the heat conductivity, it is preferable that the thickness of the film be as thin as possible, but considering the function as a catalyst, there is an effective thickness range.As a result of various studies, it was found that a thickness in the range of 101 to [15] is suitable. understood. In addition, in order to obtain a good bond between the finned pipe and the titania coating, it is best to apply the coating after making the outer surface of the finned pipe uneven by sandblasting etc. It is possible to obtain an excellent and strong film.

このμチμ型チタニアの皮膜上にはさらに、白金、バヲ
ジウムからなる群の一種以上の金属が担持されている。
Further, one or more metals from the group consisting of platinum and baodium are supported on the μ-chi μ-type titania film.

担持の方法としては白金、パラジウムの塩化物又は白金
のアンミン錯体水溶液中に上記方法で得たμチμ型チタ
ニアが被覆されたフィン付パイプを浸漬し、乾燥、焼成
するととKよシ得ることができる。
The supporting method is to immerse the finned pipe coated with μ-type titania obtained by the above method in an aqueous solution of platinum, palladium chloride, or ammine complex of platinum, then dry and sinter it to obtain K. I can do it.

このようにして得られた触媒担持フィン付パイプ3の管
内には熱媒体を流して触媒を活性温度に制御する。この
ような触媒素子はそれ自体連続し九一体品でも、あるい
はいくつかの独立した素子の集合体であってもよく、温
度制御の容易さ加工、製作のしやすさ等を考慮して適宜
使い分ければよい。
A heat medium is passed through the thus obtained catalyst-carrying finned pipe 3 to control the catalyst to an active temperature. Such a catalyst element itself may be a continuous nine-piece piece, or it may be an assembly of several independent elements, and may be selected as appropriate in consideration of ease of temperature control, ease of processing, manufacturing, etc. Just use it properly.

第2図は触媒担持フィン付パイプ3の触媒素子を組込ん
だ態様の概略図で、触媒担持フィン付パイプ3を反応容
器4の中に複数個配置したものである。
FIG. 2 is a schematic view of a catalyst-carrying finned pipe 3 in which a catalyst element is incorporated, in which a plurality of catalyst-carrying finned pipes 3 are arranged in a reaction vessel 4.

このような反応装置を用い触媒担持フィン付パイプ3の
管内に熱媒体を流し、その外側に形成された触媒とメタ
ノ−〃又はメタノ−μと水との混合物を接触させ、触媒
を活性温度に制御することによシ目的の改質反応を行わ
せることができる。
Using such a reaction device, a heat medium is passed through the catalyst-carrying finned pipe 3, and the catalyst formed on the outside is brought into contact with methanol or a mixture of methanol μ and water to bring the catalyst to an activation temperature. Through control, the desired reforming reaction can be carried out.

なお、本発明でいう水素含有ガスとは水素を50%以上
、−酸化炭素を35X以下、二酸化炭素を25X以下含
有するガスを意味する。
Note that the hydrogen-containing gas in the present invention means a gas containing 50% or more of hydrogen, 35X or less of -carbon oxide, and 25X or less of carbon dioxide.

また、本発明のメタノ−p改質方法における好ましい反
応条件は次の通シである。
Further, preferred reaction conditions in the methano-p reforming method of the present invention are as follows.

反応温度=200〜700℃、特に好ましくは300〜
600°C反応圧カニ O〜3 owaia 、特に好
’! しく はO〜15viGメタノ−μmモ〃に対す
る水の供給七〃比:10以下、特に好ましくは3以下 以下、実施例によシ本発明を具体的に説明する。
Reaction temperature = 200-700°C, particularly preferably 300-700°C
600°C reaction pressure crab O~3 owaia, especially good! Preferably, the ratio of water supply to 0 to 15 μm methanol is 10 or less, particularly preferably 3 or less.The present invention will be specifically explained with reference to Examples.

〔実施例1〕 外径IAφIIIIq)ステンレスパイプに、予めサン
ドプラスト処理された厚さ1■t、輻10m。
[Example 1] A stainless steel pipe with an outer diameter of IAφIIIq) was previously sandblasted to a thickness of 1 t and a diameter of 10 m.

長さ300■の短冊型フィンをパイプの円周に等ピッチ
で16枚取付はフィン付パイプを製作した。このフィン
付パイプの全外表面に〜チ〃型のチタニアスフリーを平
均厚みCL2■tに浸漬塗布した後、乾燥して500°
Cで3時間焼成した。次いでテトラアンミン二塩化白金
〔化学式Pt(Nも)4C4)の水溶液に浸漬し乾燥後
500℃で3時間焼成してl 5 wt%の白金が担持
された第1図に示すような触媒担持フィン付パイプ3を
調製した。
A pipe with fins was manufactured by attaching 16 strip-shaped fins with a length of 300 mm at equal pitches around the circumference of the pipe. After coating the entire outer surface of this finned pipe with ~C type titanium asfree to an average thickness of CL2■t, dry it and heat it to 500°.
It was baked at C for 3 hours. Next, it was immersed in an aqueous solution of tetraammineplatinum dichloride (chemical formula: Pt(N)4C4), dried, and then calcined at 500°C for 3 hours to form a catalyst-carrying fin with 5 wt% of platinum supported on it, as shown in Figure 1. Pipe 3 was prepared.

この触媒担持フィン付パイプ3を、第2図に示すように
反応容器4の中に5本組込み、熱媒体として約350℃
の熱媒をパイプ内に流しながら反応容器内4に矢印方向
から4%の水素ガスを5時間流して還元処理した。
Five catalyst-carrying finned pipes 3 are installed in a reaction vessel 4 as shown in FIG.
4% hydrogen gas was flowed into the reaction vessel 4 in the direction of the arrow for 5 hours while a heating medium of 1 was flowed into the pipe for reduction treatment.

次いで、メタノ−〜を200 CC/ hの供給速度で
予め過熱気化させ、このガスを反応容器4の中に矢印の
方向から流しメタノール分解反応を行つ九ととる、熱媒
温度と反応温度の温度差が10℃以内に維持することが
できメタノ−〃反応率も90x1分解ガス組成としては
ほぼ理論量の14: 66moLN 、 Co: 33
 motXco、 :cL2 mOL N 、 CH4
:α2 mot%、その他=α6motNであった。
Next, methanol is preheated and vaporized at a supply rate of 200 CC/h, and this gas is flowed into the reaction vessel 4 from the direction of the arrow to perform a methanol decomposition reaction. The temperature difference can be maintained within 10℃, and the methanol reaction rate is almost the theoretical amount for a 90x1 cracked gas composition of 14: 66 moLN, Co: 33
motXco, :cL2 mOL N, CH4
: α2 mot%, others = α6 motN.

〔実箆例2〕 テFラアミンニ塩化白金の替〕に塩化パラジウムの水溶
液を用いた以外は実施例1と同じ方法でパラジウム(L
 5 vtXを担持したフィン付パイプ3を調製した。
[Practical example 2] Palladium (L
A finned pipe 3 carrying 5vtX was prepared.

これを実施例1と同じ方法で反応容器4の中に組込み、
水素還元処理したのち、実施例1と同様のメタノール分
解反応を行ったところ、メタノ−〃反応率、88Xで分
解ガス組成も、白金担持フィン付パイプ触媒を用いた時
と同じ組成であった。
This was incorporated into the reaction vessel 4 in the same manner as in Example 1,
After the hydrogen reduction treatment, a methanol decomposition reaction similar to that in Example 1 was performed, and the methanol reaction rate was 88X, and the cracked gas composition was the same as when the platinum-supported finned pipe catalyst was used.

〔実施例3〕 実施例1の白金担持フィン付パイプを組込んだ反応器を
用いパイプ内に流す熱媒の温度を520℃にしたこと及
び反応容器4にメタノ−μm00W/h、水100 c
c/ hの過熱蒸気を供給したこと以外は、実施例1と
同じ方法でメタノ−μ改質反応を行った。この結果熱g
温度と度広温度との温度差は5°C以内に維持すること
ができ、この時のメタノ−だ反応率は85%でH,: 
 74 rnoLN 、 Co:  5 moA%、 
CH4:  (jmoA%、 Co、 : 23 n0
1%のガス組成を有する性能が得られた。
[Example 3] Using the reactor incorporating the platinum-carrying finned pipe of Example 1, the temperature of the heat medium flowing into the pipe was set to 520°C, and the reaction vessel 4 was charged with methanol 00 W/h and water 100 c.
A methanol-μ reforming reaction was carried out in the same manner as in Example 1, except that superheated steam of c/h was supplied. As a result, the heat g
The temperature difference between the temperature and the heating temperature can be maintained within 5°C, and the methanol reaction rate at this time is 85%.
74 rnoLN, Co: 5 moA%,
CH4: (jmoA%, Co, : 23 n0
Performance with a gas composition of 1% was obtained.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば伝熱機能及び触媒機能の双方
を同時に合せもたせることができるため、リアクター自
体もコンパクト化できさらに触媒を最適な活性温度にコ
ントロー〃することが容易となる。
As described above, according to the present invention, both the heat transfer function and the catalytic function can be provided at the same time, so the reactor itself can be made compact, and furthermore, it becomes easy to control the catalyst at the optimum activation temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は触媒担持フィン付パイプの一部を切欠した斜視
図でちゃ、第2図は第1図の触媒担持フィン付パイプを
反応容器内に組込んだ触媒反応装置の概略図である。
FIG. 1 is a partially cutaway perspective view of a catalyst-supporting finned pipe, and FIG. 2 is a schematic diagram of a catalytic reaction apparatus in which the catalyst-supporting finned pipe of FIG. 1 is assembled into a reaction vessel.

Claims (1)

【特許請求の範囲】[Claims] フィン付パイプの外表面に、ルチル型のチタニアを含有
する皮膜が形成され該皮膜上に白金、パラジウムからな
る群の一種以上の金属が担持された触媒担持フィン付パ
イプを反応容器内に配置してなることを特徴とするメタ
ノール改質装置。
A catalyst-supported finned pipe in which a film containing rutile-type titania is formed on the outer surface of the finned pipe and one or more metals from the group consisting of platinum and palladium is supported on the film is placed in a reaction vessel. A methanol reformer characterized by:
JP1143052A 1989-06-07 1989-06-07 Methanol reformer Pending JPH0312302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143052A JPH0312302A (en) 1989-06-07 1989-06-07 Methanol reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143052A JPH0312302A (en) 1989-06-07 1989-06-07 Methanol reformer

Publications (1)

Publication Number Publication Date
JPH0312302A true JPH0312302A (en) 1991-01-21

Family

ID=15329795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143052A Pending JPH0312302A (en) 1989-06-07 1989-06-07 Methanol reformer

Country Status (1)

Country Link
JP (1) JPH0312302A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128503A (en) * 2000-10-19 2002-05-09 Ishikawajima Harima Heavy Ind Co Ltd Catalyst reactor
CN100364881C (en) * 2006-07-24 2008-01-30 北京工业大学 Methanol catalytically reforming hydrogen producing apparatus utilizing afterheat of internal combustion engine and its control method
JP2010105855A (en) * 2008-10-30 2010-05-13 Rinnai Corp Reformer and power generation plant
US7749465B2 (en) 2003-07-26 2010-07-06 Rolls-Royce Plc Reformer module
JP2016059868A (en) * 2014-09-17 2016-04-25 旭化成ケミカルズ株式会社 Hydrogen generation catalyst, and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128503A (en) * 2000-10-19 2002-05-09 Ishikawajima Harima Heavy Ind Co Ltd Catalyst reactor
JP4617557B2 (en) * 2000-10-19 2011-01-26 株式会社Ihi Catalytic reactor
US7749465B2 (en) 2003-07-26 2010-07-06 Rolls-Royce Plc Reformer module
US8043576B2 (en) 2003-07-26 2011-10-25 Rolls-Royce Plc Reformer module
CN100364881C (en) * 2006-07-24 2008-01-30 北京工业大学 Methanol catalytically reforming hydrogen producing apparatus utilizing afterheat of internal combustion engine and its control method
JP2010105855A (en) * 2008-10-30 2010-05-13 Rinnai Corp Reformer and power generation plant
JP2016059868A (en) * 2014-09-17 2016-04-25 旭化成ケミカルズ株式会社 Hydrogen generation catalyst, and method for producing the same

Similar Documents

Publication Publication Date Title
US6576203B2 (en) Reformer
US11772979B2 (en) Metal-decorated barium calcium aluminum oxide catalyst for NH3 synthesis and cracking and methods of forming the same
KR20050070060A (en) Use of metal supported copper catalysts for reforming alcohols
US7247258B2 (en) Compact partial oxidation reactor assemblage with fast start-up capability
KR100719484B1 (en) Compact Steam Reformer Utilizing Metal-Monolith-Washcoated Catalyst and Preparation Method of Hydrogen Gas Using The Catalyst
JPH0312302A (en) Methanol reformer
RU113729U1 (en) PROCESSOR FOR CONVERSION OF HYDROCARBON FUELS IN SYNTHESIS-GAS FOR APPLICATION IN SOLID-OXIDE FUEL ELEMENTS
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JPS6234417B2 (en)
JP5717993B2 (en) Reforming apparatus and manufacturing method thereof
JPH03196839A (en) Production of methanol reforming catalyst
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JPS6241063B2 (en)
JPH0211303B2 (en)
JP2000007304A (en) Reforming reactor
JPH04144902A (en) Reforming of methanol
JPS59189935A (en) Ethanol reforming catalyst
JP2659836B2 (en) Methanol reforming method
JPS59112835A (en) Catalyst for reforming methanol
JPH07309603A (en) Production of hydrogen-containing gas for fuel cell
JPH02172801A (en) Method for reforming methanol
JPH02141402A (en) Method for reforming methanol
JP2004067454A (en) Fuel reforming apparatus and hydrogen generation method
JPH0450244B2 (en)
JP2000007303A (en) Reforming reactor