JPH04144902A - Reforming of methanol - Google Patents

Reforming of methanol

Info

Publication number
JPH04144902A
JPH04144902A JP2263177A JP26317790A JPH04144902A JP H04144902 A JPH04144902 A JP H04144902A JP 2263177 A JP2263177 A JP 2263177A JP 26317790 A JP26317790 A JP 26317790A JP H04144902 A JPH04144902 A JP H04144902A
Authority
JP
Japan
Prior art keywords
methanol
catalyst
mixture
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2263177A
Other languages
Japanese (ja)
Other versions
JP2738975B2 (en
Inventor
Takuya Moriga
卓也 森賀
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2263177A priority Critical patent/JP2738975B2/en
Publication of JPH04144902A publication Critical patent/JPH04144902A/en
Application granted granted Critical
Publication of JP2738975B2 publication Critical patent/JP2738975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To improve the conversion of methanol using a catalyst having excellent heat-conducting function by contacting methanol or a mixture of methanol and water with a specific catalyst. CONSTITUTION:The catalyst to be used in the present process is produced by kneading (A) 20-95wt.% of a mixture obtained by mixing one or more kinds of oxide selected from Cu, Zn and Cr oxides with Ni oxide at molar ratios CuO/NiO, ZnO/NiO and Cr2O3/NiO of 10/90-90/10 each, (B) 80-5wt.% of multiple oxides consisting of Zr and an oxide selected from alumina, titania and silica and (C) water, a binder and a deflocculant, spray-drying the kneaded mixture and spray-coating the obtained powder or granule to a metal or alloy material. The catalyst is filled in a reactor, hydrogenated by passing a gas containing 3-100% hydrogen at 200-500 deg.C and made to contact with methanol or a mixture of methanol and water under 0-30kg/cm<2>G pressure at 200-700 deg.C to obtain a hydrogen-containing gas containing >=50% H2, <=35% CO and <=25% CO2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノールの改質方法に関するもので、更に詳
しくは、メタノール又はメタノールと水の混合物から水
素含有ガスを改質して製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for reforming methanol, and more particularly, to a method for reforming and producing hydrogen-containing gas from methanol or a mixture of methanol and water. .

〔従来の技術〕[Conventional technology]

燃料の多様化が指向されて、原油以外の化石燃料から合
成され得るメタノールが注目されている。またメタノー
ルはナフサよりはるかに低温で水素含有ガスに分解され
るので、メタノール分解反応、水蒸気改質反応の熱源と
して廃熱の利用が可能であるという優位性をもっている
In an effort to diversify fuels, methanol, which can be synthesized from fossil fuels other than crude oil, is attracting attention. Furthermore, since methanol is decomposed into hydrogen-containing gas at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for methanol decomposition reactions and steam reforming reactions.

メタノール分解反応は次の(1)、 (2’)式のとお
りである。
The methanol decomposition reaction is as shown in the following equations (1) and (2').

CH,DH−Co + 2H2 ΔH25℃= 21.7kcal/mol    ・(
1)CHsOtl  +  ntl*o  −(2+n
)Ha+(1−n)CD+nC口。
CH, DH-Co + 2H2 ΔH25℃= 21.7kcal/mol ・(
1) CHsOtl + ntl*o −(2+n
)Ha+(1-n)CD+nCmouth.

・(2) ここで0<n<1 メタノール水蒸気改質反応は次の(3)式のとおりであ
る。
-(2) where 0<n<1 The methanol steam reforming reaction is as shown in the following equation (3).

CH30H+ l(、[l→CO2+382Δ825℃
= 11.8kcal/mol    ・(3)従来の
メタノールを改質する触媒としては、アルミナなどの担
体に白金などの白金属元素又は銅、ニッケル、クロム、
亜鉛などの卑金属元素及びその酸化物などを担持した触
媒が提案されている。又上述した金属担持法による触媒
とは別に沈殿法による調製法があり、この方法で調製さ
れる触媒の代表例としては、亜鉛、クロムさらには銅を
含有してなるメタノールの改質触媒がある。
CH30H+ l(, [l→CO2+382Δ825℃
= 11.8 kcal/mol ・(3) Conventional catalysts for reforming methanol include platinum metal elements such as platinum, copper, nickel, chromium, etc. on a carrier such as alumina.
Catalysts supporting base metal elements such as zinc and their oxides have been proposed. In addition to the above-mentioned metal support method, there is also a precipitation method, and a typical example of a catalyst prepared by this method is a methanol reforming catalyst containing zinc, chromium, and even copper. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、エンジン、ガスタービンなどの排ガスの顕熱を熱
源として利用し、メタノール又はメタノールと水の混合
物を原料として分解又は水蒸気改質反応を行なわせる場
合、排ガス温度は周知のごとく200℃から700℃程
度まで変化するため、幅広い温度範囲にわたって内燃機
関に搭載できる程度の少量の触媒で改質でき、かつ例え
ば、上記の700℃程度の高温下におかれていても改質
性能を劣化しない改質方法並びに安定した触媒が必要で
ある。
Conventionally, when decomposition or steam reforming reactions are carried out using methanol or a mixture of methanol and water as a raw material using the sensible heat of exhaust gas from engines, gas turbines, etc. as a heat source, the exhaust gas temperature ranges from 200°C to 700°C, as is well known. This is a reformer that can be reformed over a wide temperature range with a small amount of catalyst that can be installed in an internal combustion engine, and that does not deteriorate the reforming performance even if it is exposed to high temperatures of about 700°C as mentioned above. A method and a stable catalyst are needed.

従来のメタノールを改質する触媒は、先に述べた金属担
持法や沈殿法によって調製される触媒が提案されている
が、これらの触媒は低温活性に乏しく、熱的劣化を起こ
しやすいなど現在のところ多くの問題点を残している。
As conventional catalysts for reforming methanol, catalysts prepared by the metal support method or precipitation method described above have been proposed, but these catalysts lack low-temperature activity and are prone to thermal deterioration. However, many problems remain.

また、反応器としては、シェルアンドチューブ型の熱交
換器型式となっており、チューブ内に触媒を充填し、原
料のメタノール蒸気又はメタノールと水の混合蒸気は触
媒との接触反応により水素含有ガスに改質される。この
改質反応は大きな吸熱反応があり、必要な反応熱はシェ
ル側の熱媒から供給されるが、伝熱速度があまり大きく
ないため、触媒層内の温度が反応熱により低くなり、反
応速度を大きくすることが難しいという問題がある。
In addition, the reactor is a shell-and-tube heat exchanger type, and the tube is filled with a catalyst, and the raw material methanol vapor or mixed vapor of methanol and water is converted into hydrogen-containing gas through a catalytic reaction with the catalyst. It is reformed into. This reforming reaction has a large endothermic reaction, and the necessary reaction heat is supplied from the heating medium on the shell side, but since the heat transfer rate is not very high, the temperature in the catalyst layer is lowered by the reaction heat, and the reaction rate is The problem is that it is difficult to make it large.

本発明は上記技術水準に鑑み、伝熱機能及び触媒機能の
双方を同時に併せもった触媒を使用してメタノールの改
質反応を合目的に行い得る方法を提供しようとするもの
である。
In view of the above-mentioned state of the art, the present invention aims to provide a method for purposefully carrying out a methanol reforming reaction using a catalyst that has both a heat transfer function and a catalytic function.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、メタノール又はメタノールと水の混合物から
水素含有ガスを製造する方法において、銅、亜鉛、クロ
ムからなる群の一種以上の酸化物及びニッケルの酸化物
をジルコニアを含有する複合酸化物に含有させた粉末又
は造粒物を金属又は合金材料に溶射被覆させた触媒を用
いることを特徴とするメタノールの改質方法である。
The present invention provides a method for producing hydrogen-containing gas from methanol or a mixture of methanol and water, in which a composite oxide containing zirconia contains one or more oxides of the group consisting of copper, zinc, and chromium, and an oxide of nickel. This is a methanol reforming method characterized by using a catalyst prepared by thermally spraying powder or granules obtained by spraying on a metal or alloy material.

本発明の上記構成における金属又は合金材料として伝熱
管そのものを使用することを好ましい態様とするもので
あり、また金属又は合金材料に被覆してなる触媒を還元
処理して用いることも好ましい態様とするものである。
In the above structure of the present invention, it is a preferable embodiment to use the heat exchanger tube itself as the metal or alloy material, and it is also a preferable embodiment to use a catalyst formed by coating the metal or alloy material after reduction treatment. It is something.

〔作用〕[Effect]

金属又は合金材料に触媒成分が担持されているので伝熱
機能がよい。特に、触媒成分を担持した伝熱管を用い該
伝熱管の触媒面でメタノール改質を行うと、伝熱機能と
触媒機能の双方を同時に併せもたせることができ、メタ
ノール改質方法として極めて合目的である。
Since the catalyst component is supported on the metal or alloy material, it has a good heat transfer function. In particular, if methanol reforming is carried out on the catalytic surface of the heat transfer tube using a heat transfer tube carrying a catalyst component, both the heat transfer function and the catalytic function can be achieved at the same time, making it extremely useful as a methanol reforming method. be.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明でいう水素含有ガスとは、水素を50%以上、−
酸化炭素を35%以下、二酸化炭素を25%以下含有す
るガスである。
The hydrogen-containing gas referred to in the present invention refers to hydrogen containing 50% or more, -
It is a gas containing 35% or less carbon oxide and 25% or less carbon dioxide.

素地金属材料としては、鉄、銅、アルミニウム、亜鉛、
コバルト、ニッケルまたはそれらの合金を用いることが
でき、これらの表面に銅、亜鉛、クロムからなる群の一
種以上の酸化物及びニッケルの酸化物をジルコニアを含
有する複合酸化物に含有させた粉末又は造粒物を溶射被
覆することによって溶着させる。
Base metal materials include iron, copper, aluminum, zinc,
Cobalt, nickel, or an alloy thereof can be used, and powder or composite oxide containing zirconia containing one or more oxides of the group consisting of copper, zinc, and chromium and nickel oxide on the surface thereof. The granules are welded by thermal spray coating.

銅、亜鉛、クロムからなる群の一種以上の酸化物及びニ
ッケルの酸化物をジルコニアを含有する複合酸化物に含
有させた粉末とは、次のとおりのものである。まず触媒
成分の組成は、銅、亜鉛、クロムからなる群の一種の酸
化物とニッケル酸化物の組合せにおいては、Cu口/N
iO。
The powder in which a composite oxide containing zirconia contains one or more oxides of the group consisting of copper, zinc, and chromium and an oxide of nickel is as follows. First, the composition of the catalyst component is Cu/N in the combination of an oxide of the group consisting of copper, zinc, and chromium and nickel oxide.
iO.

ZnO/NiO、Crz口、/N iロ で 10/9
0〜90/10の範囲(以下、モル比で表示)が適当で
あり、特に20/80〜60/40の範囲が好ましイ。
ZnO/NiO, Crz mouth, /NiRO on 10/9
A range of 0 to 90/10 (hereinafter expressed as molar ratio) is appropriate, and a range of 20/80 to 60/40 is particularly preferred.

CuO、ZnO、CrJ3の二種との組合わせにおいて
は、CuO−2nO、CuO−Cr2L 、 Zn[1
−Cr2LとNiOとの比で、10/90〜90/10
の範囲が好ましく、また、CuO、ZnO、Cr*Oa
の三種との組合わせにおいては、NiOとの比で、10
/90〜90/10の範囲が好ましい。次に触媒の組成
は、上記触媒成分(CuO、ZnO。
In combination with two types of CuO, ZnO, and CrJ3, CuO-2nO, CuO-Cr2L, Zn[1
-The ratio of Cr2L to NiO is 10/90 to 90/10
The range is preferably CuO, ZnO, Cr*Oa
In combination with three types, the ratio with NiO is 10
The range of /90 to 90/10 is preferable. Next, the composition of the catalyst is the above catalyst components (CuO, ZnO.

Cr2O3の一種以上とNiOの混合物)とジルコニア
を含有する複合酸化物の重量比で20/80〜9515
の範囲が好ましく、特に40/60〜80/20の範囲
が好ましい。ここで、ジルコニアを含有する複合酸化物
とは、アルミナ、チタニア、シリカからなる群の一種以
上及びジルコニアを含有する複合酸化物であり、通常そ
れぞれの金属の塩の混合水溶液をアンモニア水で加水分
解したものを焼成して調製するものであり、比表面積が
0.1〜500m’/gのものを指す。また本発明のジ
ルコニアを含有する複合酸化物の組成はアルミナ、チタ
ニア、シリカからなる群の一種及びジルコニアとの組合
わせにおいては、Al2O5/ZrO2,T+02/Z
rO2、Si口z/ZrO2で10/90〜90/10
の範囲が適当であり、Al20a 、 Ti口、 、 
Sin、の二種との組合わせにおいては、Al2O3・
TlO2、Al2O3・5ins 。
A mixture of one or more types of Cr2O3 and NiO) and a composite oxide containing zirconia in a weight ratio of 20/80 to 9515
A range of 40/60 to 80/20 is particularly preferred. Here, the complex oxide containing zirconia is a complex oxide containing zirconia and one or more of the group consisting of alumina, titania, and silica. Usually, a mixed aqueous solution of salts of each metal is hydrolyzed with aqueous ammonia. It is prepared by firing the product and has a specific surface area of 0.1 to 500 m'/g. In addition, the composition of the composite oxide containing zirconia of the present invention is one of the group consisting of alumina, titania, and silica, and in combination with zirconia, Al2O5/ZrO2, T+02/Z
rO2, Si mouth z/ZrO2 10/90 to 90/10
The appropriate range is Al20a, Ti, ,
In combination with two types of Sin, Al2O3・
TlO2, Al2O3・5ins.

TlO2・SiO□ とZ「0.との比で、10/90
〜90/10の範囲が好ましく、また、^120− 。
The ratio between TlO2・SiO□ and Z"0. is 10/90
A range of ~90/10 is preferred, and ^120-.

TlO2、Sin□の三種との組合わせにおいては、Z
rO2との比で10/90〜90/10の範囲が好まし
い。
In combination with TlO2 and Sin□, Z
The ratio to rO2 is preferably in the range of 10/90 to 90/10.

本発明の銅、亜鉛、クロムからなる群の一種以上の酸化
物をニッケルの酸化物をジルコニアを含有する複合酸化
物に含有させた粉末を調製するには、上記金属化合物と
ジルコニアを含有する複合酸化物の水溶液に沈殿剤とし
てアルカリ金属元素又はアルカリ土類金属元素の水酸化
物又は炭酸塩をそのまま、あるいは水溶液にしたもの又
はアンモニア水等を混合し、沈殿を生成して乾燥、焼成
する方法などが用いられる。
To prepare a powder in which one or more oxides of the group consisting of copper, zinc, and chromium of the present invention are contained in a composite oxide containing nickel oxide and zirconia, a composite oxide containing the above metal compound and zirconia is prepared. A method in which a hydroxide or carbonate of an alkali metal element or an alkaline earth metal element is mixed as a precipitant with an aqueous solution of an oxide, or an aqueous solution, or aqueous ammonia, etc. is mixed to form a precipitate, which is then dried and calcined. etc. are used.

又本発明でいう溶射用に造粒とは、上述のように調製し
た粉末を溶射機の粉末供給管中での流動性を高めるため
、所定量の水、バインダ、解こう剤を加えて混練し、ス
プレードライ法で造粒することをさす。
Furthermore, in the present invention, granulation for thermal spraying refers to mixing the powder prepared as described above with a predetermined amount of water, a binder, and a peptizer added to improve fluidity in the powder supply pipe of a thermal spraying machine. It refers to granulation using the spray drying method.

溶射被覆の手段としては粉末式火炎溶射及びプラズマ溶
射などがある。
Examples of thermal spray coating methods include powder flame spraying and plasma spraying.

また、本発明で触媒反応を行わせる前処理として、水素
を3%以上100%以下含有するガス(不活性ガスバラ
ンス)を、200〜500℃で触媒上を流通させ金属複
合酸化物を還元する処理を行うのが好ましい。
In addition, as a pretreatment for carrying out the catalytic reaction in the present invention, a gas containing 3% to 100% hydrogen (inert gas balance) is passed over the catalyst at 200 to 500°C to reduce the metal composite oxide. Preferably, the treatment is carried out.

本発明のメタノール改質方法にける好ましい反応条件は
、次のとおりである。
Preferred reaction conditions in the methanol reforming method of the present invention are as follows.

反応温度:200〜700℃ 特に好ましくは200〜500℃ 反応圧カニ 0〜30 kg/cjG 特に好ましくは0〜15 kg/ cofGメタノール
1モルに対する水の供給モル比:10以下、特に好まし
くは3以下 〔実施例〕 以下、実施例により本発明を具体的に説明する。
Reaction temperature: 200 to 700°C, particularly preferably 200 to 500°C Reaction pressure: 0 to 30 kg/cjG, particularly preferably 0 to 15 kg/cofG Molar ratio of water supplied to 1 mole of methanol: 10 or less, particularly preferably 3 or less [Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例1〕 15+amX 70aumX 2m+ (厚さ)の5I
JS 304板を十分に清浄にした後、粉末式火炎溶射
機に表1に示す9種の粉末を粉末供給管に供給して上記
SO3304板上に粉末式火炎溶射を行い、触媒1〜9
を調製した。
[Example 1] 5I of 15+amX 70aumX 2m+ (thickness)
After thoroughly cleaning the JS 304 plate, powder flame spraying was performed on the SO3304 plate by supplying the nine types of powder shown in Table 1 to the powder supply pipe into a powder flame spraying machine, and then spraying catalysts 1 to 9.
was prepared.

上記触媒1〜9を反応器に充填して200〜350℃で
、12〜16時間水素還元処理を行った後、下記第2表
に示す条件で触媒活性評価を行った。結果を第1表に併
せて示す。
After filling a reactor with the catalysts 1 to 9 and performing hydrogen reduction treatment at 200 to 350°C for 12 to 16 hours, catalytic activity was evaluated under the conditions shown in Table 2 below. The results are also shown in Table 1.

表 第 表 純度 99% 申”   H20/CHaOH=1.5  [mol/
moi〕なお、生成ガスの組成(mo1%−乾燥ベース
でoao 、 CH308を除外した組成、以下同じ)
は、次の通りであった。
Table Purity 99% Mon”H20/CHaOH=1.5 [mol/
moi] The composition of the produced gas (mo1% - composition excluding oao and CH308 on a dry basis, the same below)
was as follows.

(1)メタノール原料 H2:64〜67%、(’0:31〜33%、C02:
0.1〜2%、CH,:0.02〜2%(2)メタノー
ル・水混合液原料 H,:66〜71%、CO:14〜33%、C02:0
.5〜14%、CH,:0.01〜1%〔実施例2〕 実施例1と同じ方法で第3表に示す4種の粉末を、粉末
式火炎溶射機に供給して触媒10〜13を調製した。こ
れらの触媒を反応器に充填して、200〜350℃で、
12〜16時間水素還元処理を行った後、第4表に示す
条件で触媒活性評価を行った。結果を第3表に併せて示
す。
(1) Methanol raw material H2: 64-67%, ('0: 31-33%, C02:
0.1-2%, CH: 0.02-2% (2) Methanol/water mixture raw material H: 66-71%, CO: 14-33%, CO2: 0
.. 5-14%, CH,: 0.01-1% [Example 2] In the same manner as in Example 1, the four types of powder shown in Table 3 were fed to a powder flame spraying machine to form catalysts 10-13. was prepared. These catalysts were charged into a reactor and heated at 200 to 350°C.
After performing the hydrogen reduction treatment for 12 to 16 hours, the catalyst activity was evaluated under the conditions shown in Table 4. The results are also shown in Table 3.

第 表 ”  HJ/CHsOH= 1.5  [mol/m]
なお、各温度での生成ガスの組成は次の通りであった。
Table “HJ/CHsOH= 1.5 [mol/m]
The composition of the generated gas at each temperature was as follows.

(1)反応温度  250℃、300℃H,:66〜7
2%、CO:13〜33%、CD、  : 1〜15 
%、 CH,:0.01 〜1 %(2)反応温度  
350℃ H,:66〜73%、CO:8〜33%、CL:1〜1
9%、CH,:0.01〜1%さらに、上記触媒を第3
表に示す反応条件・(反応温度350℃)で1000時
間連続試験を行った結果、メタノール転化率は100%
で一定であった。
(1) Reaction temperature 250℃, 300℃H,: 66-7
2%, CO: 13-33%, CD: 1-15
%, CH,: 0.01 to 1% (2) Reaction temperature
350°C H: 66-73%, CO: 8-33%, CL: 1-1
9%, CH,: 0.01-1% Furthermore, the above catalyst was added to the third
As a result of continuous testing for 1000 hours under the reaction conditions shown in the table (reaction temperature 350°C), the methanol conversion rate was 100%.
was constant.

〔実施例3〕 実施例1の触媒6の粉末調製工程で、ジルコニアを含有
する複合酸化物として、^l3口s/Zr口。
[Example 3] In the powder preparation process of catalyst 6 in Example 1, ^l3s/Zr was used as the composite oxide containing zirconia.

の代わりに、第5表に示す種々の組成のものを用いた以
外は同じ方法で、触媒14〜18(NiO:Cu0=7
0:30モル比、触媒中のジルコニアを含有する複合酸
化物の含有量20重量%)を調製した。これらの触媒を
実施例1と同じ方法で水素還元後、活性評価を行った。
Catalysts 14 to 18 (NiO:Cu0=7
A 0:30 molar ratio and a content of the zirconia-containing composite oxide in the catalyst of 20% by weight) were prepared. These catalysts were subjected to hydrogen reduction in the same manner as in Example 1, and then their activity was evaluated.

結果を第5表に示す。The results are shown in Table 5.

なお生成ガスの組成は、次の通りであった。The composition of the generated gas was as follows.

(1)メタノール原料 Ha:63〜67%、CO:30〜32%、CO,i:
0.5〜3%、C1,:0.1〜3%(2)メタノール
・水混合原料 Ha:64〜71%、CO:14〜32%、CD、 :
 1〜14%、CHa:0.05〜2%〔実施例4〕 予め十分に清浄にした外径10.5 M、長さ100闘
、触媒外表面積33 ci(7)SOS 304管の管
外壁に、下記第6表に示す粉末を粉末式火炎溶射機に供
給して、触媒19を調製した。
(1) Methanol raw material Ha: 63-67%, CO: 30-32%, CO,i:
0.5-3%, C1: 0.1-3% (2) Methanol/water mixed raw material Ha: 64-71%, CO: 14-32%, CD:
1 to 14%, CHa: 0.05 to 2% [Example 4] Pipe outer wall of SOS 304 pipe with outer diameter 10.5 M, length 100 mm, catalyst outer surface area 33 ci (7) and thoroughly cleaned in advance Next, catalyst 19 was prepared by supplying the powder shown in Table 6 below to a powder flame spraying machine.

上記触媒19を反応管として、反応管の内側を熱媒で加
熱することにより昇温し、熱媒温度を200〜350℃
にし、反応管外表面に水素34%(窒素バランス)ガス
を供給して還元処理を行った後、熱媒を昇温し熱媒温度
を350℃に一定にした後、反応管外表面に、350℃
のメタノールと水の混合蒸気()120/CH,OH=
1、5 (mol/mol))を15 [cc/h:l
の流量で供給した結果、メタノール反応率は99%であ
った。
Using the catalyst 19 as a reaction tube, the temperature is raised by heating the inside of the reaction tube with a heat medium, and the temperature of the heat medium is 200 to 350°C.
After the reduction treatment was performed by supplying 34% hydrogen (nitrogen balance) gas to the outer surface of the reaction tube, the heating medium was heated to a constant temperature of 350°C, and then on the outer surface of the reaction tube, 350℃
Mixed vapor of methanol and water ()120/CH,OH=
1,5 (mol/mol)) to 15 [cc/h:l
As a result, the methanol reaction rate was 99%.

一方、同じ触媒外表面積になるように、従来のベレット
型触媒を2重管の外側に充填し、内側と熱媒を通すよう
な反応管として同じように反応させた結果、メタノール
反応率は90%以下であった。
On the other hand, a conventional pellet-type catalyst was packed on the outside of a double tube so that the catalyst had the same external surface area, and the reaction was carried out in the same way as a reaction tube with a heating medium passing through the inside. As a result, the methanol reaction rate was 90%. % or less.

結局、本発明による反応管は伝熱速度が大きいためメタ
ノール反応率が大きいことがわかった。
As a result, it was found that the reaction tube according to the present invention has a high heat transfer rate and therefore a high methanol reaction rate.

〔発明の効果〕〔Effect of the invention〕

以上の実施例からも明らかなように、本発明による伝熱
機能の優れた触媒を用いることにより、メタノールはメ
タノールと水の混合物から水素含有ガスを製造する方法
において極めて合目的に使える方法が提供される。
As is clear from the above examples, by using the catalyst with an excellent heat transfer function according to the present invention, methanol can be used very effectively in a method for producing hydrogen-containing gas from a mixture of methanol and water. be done.

Claims (1)

【特許請求の範囲】[Claims] メタノール又はメタノールと水の混合物から水素含有ガ
スを製造する方法において、銅、亜鉛、クロムからなる
群の一種以上の酸化物及びニッケルの酸化物をジルコニ
アを含有する複合酸化物に含有させた粉末又は造粒物を
金属又は合金材料に溶射被覆させた触媒を用いることを
特徴とするメタノールの改質方法。
In the method of producing hydrogen-containing gas from methanol or a mixture of methanol and water, a powder or composite oxide containing zirconia containing one or more oxides of the group consisting of copper, zinc, and chromium and an oxide of nickel is used. A method for reforming methanol, characterized by using a catalyst in which granules are spray-coated on a metal or alloy material.
JP2263177A 1990-10-02 1990-10-02 Methanol reforming method Expired - Fee Related JP2738975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263177A JP2738975B2 (en) 1990-10-02 1990-10-02 Methanol reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263177A JP2738975B2 (en) 1990-10-02 1990-10-02 Methanol reforming method

Publications (2)

Publication Number Publication Date
JPH04144902A true JPH04144902A (en) 1992-05-19
JP2738975B2 JP2738975B2 (en) 1998-04-08

Family

ID=17385842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263177A Expired - Fee Related JP2738975B2 (en) 1990-10-02 1990-10-02 Methanol reforming method

Country Status (1)

Country Link
JP (1) JP2738975B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144902A (en) * 1993-08-27 1995-06-06 Haldor Topsoee As Method for steam refoaming of hydrocarbon
FR2795339A1 (en) * 1999-06-24 2000-12-29 Peugeot Citroen Automobiles Sa Process for the production of hydrogen by the catalytic reforming of ethanol with water vapor useful in the functioning of a fuel cell system
JP2010064036A (en) * 2008-09-12 2010-03-25 Japan Energy Corp Reforming catalyst for hydrogen production suitable for producing hydrogen at low temperature and hydrogen production method using the catalyst
JP2011083685A (en) * 2009-10-14 2011-04-28 Jx Nippon Oil & Energy Corp Reforming catalyst for use in producing hydrogen, method of producing the same, and method of producing hydrogen using the same
CN103433041A (en) * 2013-07-29 2013-12-11 太原理工大学 Preparation method of hydrogen production composite catalyst
CN109529851A (en) * 2018-12-26 2019-03-29 大连海事大学 A kind of Supported Nickel Catalyst and utilize its plasma-catalytic CO2Preparing methanol by hydrogenation method
CN110075859A (en) * 2019-05-30 2019-08-02 广西氢朝能源科技有限公司 A kind of hydrogen from methyl alcohol catalyst of low concentration CO and the preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144902A (en) * 1993-08-27 1995-06-06 Haldor Topsoee As Method for steam refoaming of hydrocarbon
FR2795339A1 (en) * 1999-06-24 2000-12-29 Peugeot Citroen Automobiles Sa Process for the production of hydrogen by the catalytic reforming of ethanol with water vapor useful in the functioning of a fuel cell system
JP2010064036A (en) * 2008-09-12 2010-03-25 Japan Energy Corp Reforming catalyst for hydrogen production suitable for producing hydrogen at low temperature and hydrogen production method using the catalyst
JP2011083685A (en) * 2009-10-14 2011-04-28 Jx Nippon Oil & Energy Corp Reforming catalyst for use in producing hydrogen, method of producing the same, and method of producing hydrogen using the same
CN103433041A (en) * 2013-07-29 2013-12-11 太原理工大学 Preparation method of hydrogen production composite catalyst
CN109529851A (en) * 2018-12-26 2019-03-29 大连海事大学 A kind of Supported Nickel Catalyst and utilize its plasma-catalytic CO2Preparing methanol by hydrogenation method
CN109529851B (en) * 2018-12-26 2021-10-01 大连海事大学 Nickel-based supported catalyst and method for catalyzing CO by using plasma of nickel-based supported catalyst2Method for preparing methanol by hydrogenation
CN110075859A (en) * 2019-05-30 2019-08-02 广西氢朝能源科技有限公司 A kind of hydrogen from methyl alcohol catalyst of low concentration CO and the preparation method and application thereof

Also Published As

Publication number Publication date
JP2738975B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US11772979B2 (en) Metal-decorated barium calcium aluminum oxide catalyst for NH3 synthesis and cracking and methods of forming the same
GB2607804A (en) Ultralight hydrogen production reactor comprising high-efficiency composite
JPH04144902A (en) Reforming of methanol
KR100719484B1 (en) Compact Steam Reformer Utilizing Metal-Monolith-Washcoated Catalyst and Preparation Method of Hydrogen Gas Using The Catalyst
JP2734481B2 (en) Methanol reforming method
JPS6045939B2 (en) Methanol decomposition catalyst for hydrogen and carbon monoxide production
JP2659836B2 (en) Methanol reforming method
JPH03196839A (en) Production of methanol reforming catalyst
JPH0427434A (en) Catalyst for reforming methanol
JPH0455301A (en) Method for reforming methanol
JP4328941B2 (en) Method for producing hydrogen-containing gas
JPS62176545A (en) Catalyst for reforming methanol
JPS6021680B2 (en) Method for producing methane-rich gas
JPS6150640A (en) Catalyst for preparing methane-containing gas
JPH04362001A (en) Methanol reforming catalyst
JPH0312302A (en) Methanol reformer
JPH03249943A (en) Methanol reforming catalyst
JPH02172801A (en) Method for reforming methanol
JPS60220143A (en) Catalyst for preparing methane-containing gas
JPH02279502A (en) Method for reforming methanol
JP2659816B2 (en) Methanol reforming method
JP2851406B2 (en) Methanol reforming catalyst
JPS61232201A (en) Method for decomposing methanol
JPS637842A (en) Catalyst for reforming methanol
JP3741877B2 (en) Catalyst and chemical reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees