JPH0455301A - Method for reforming methanol - Google Patents

Method for reforming methanol

Info

Publication number
JPH0455301A
JPH0455301A JP2161330A JP16133090A JPH0455301A JP H0455301 A JPH0455301 A JP H0455301A JP 2161330 A JP2161330 A JP 2161330A JP 16133090 A JP16133090 A JP 16133090A JP H0455301 A JPH0455301 A JP H0455301A
Authority
JP
Japan
Prior art keywords
methanol
catalyst
metal
powder
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2161330A
Other languages
Japanese (ja)
Inventor
Takuya Moriga
卓也 森賀
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2161330A priority Critical patent/JPH0455301A/en
Publication of JPH0455301A publication Critical patent/JPH0455301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To effectively reform methanol with a catalyst having heat transferring function and catalytic function by converting the methanol into hydrogen- contg. gas with the catalyst obtd. by coating a metal with powder of a porous carrier contg. copper oxide by thermal spraying. CONSTITUTION:When hydrogen-contg. gas is produced from methanol or a methanol-water mixture, a catalyst obtd. by coating a metal or alloy material with powder of a porous carrier contg. copper oxide by thermal spraying optionally after granulation for thermal spraying is used. Since the catalytic component is supported on the metal or alloy material, high heat transferring function is ensured. Especially when the catalytic component is supported on a heat exchanger tube and methanol is reformed on the catalytic surface of the tube, heat transferring function and catalytic function can simultaneously be ensured and the methanol is effectively reformed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノールの改質方法に関するもので、更に詳
しくは、メタノール又はメタノールと水の混合物から水
素含有ガスを改質して製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for reforming methanol, and more particularly, to a method for reforming and producing hydrogen-containing gas from methanol or a mixture of methanol and water. .

〔従来の技術〕[Conventional technology]

燃料の多様化が指向されて、原油以外の化石燃料から合
成され得るメタノールが注目されている。またメタノー
ルはナフサよりはるかに低温で水素含有ガスに分解され
るので、メタノール分解反応、水蒸気改質反応の熱源と
して廃熱の利用が可能であるという優位性をもっている
In an effort to diversify fuels, methanol, which can be synthesized from fossil fuels other than crude oil, is attracting attention. Furthermore, since methanol is decomposed into hydrogen-containing gas at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for methanol decomposition reactions and steam reforming reactions.

メタノール分解反応は次の(1)、(2)式のとおりで
ある。
The methanol decomposition reaction is as shown in the following formulas (1) and (2).

CH3[IH−+CD +282 Δ825℃= 21.7kcal/mol   ・・(
1)CtlsOH+nH2O−(2+n)Ha十(1−
n)CO+nCO2・(2) ここでO<n<1 メタノール水蒸気改質反応は次の(3)式のとおりであ
る。
CH3[IH-+CD +282 Δ825℃= 21.7kcal/mol ・・(
1) CtlsOH+nH2O-(2+n)Ha(1-
n) CO+nCO2·(2) where O<n<1 The methanol steam reforming reaction is as shown in the following equation (3).

CH3DH+ HJ→ CO2+  3LΔH25℃=
 11.8kcal/+ol      ・(3)従来
のメタノールを改質する触媒としては、アルミナなどの
担体に白金などの白金属元素又は銅、ニッケル、クロム
、亜鉛などの卑金属元素及びその酸化物などを担持した
触媒が提案されている。又上述した金属担持法による触
媒とは別に沈殿法による調製法があり、この方法で調製
される触媒の代表例としては、亜鉛、クロムさらには銅
を含有してなるメタノールの改質触媒がある。
CH3DH+ HJ→ CO2+ 3LΔH25℃=
11.8kcal/+ol ・(3) As a conventional catalyst for reforming methanol, platinum metal elements such as platinum or base metal elements such as copper, nickel, chromium, zinc, and their oxides are supported on a carrier such as alumina. A catalyst has been proposed. In addition to the above-mentioned metal support method, there is also a precipitation method, and a typical example of a catalyst prepared by this method is a methanol reforming catalyst containing zinc, chromium, and even copper. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、エンジン、ガスタービンなどの排ガスの顕熱を熱
源として利用し、メタノール又はメタノールと水の混合
物を原料として分解又は水蒸気改質反応を行なわせる場
合、排ガス温度は周知のごとく200℃から700℃程
度まで変化するため、幅広い温度範囲にわたって内燃機
関に搭載できる程度の少量の触媒で改質でき、かつ例え
ば、上記の700℃程度の高温下におかれていても改質
性能を劣化しない改質方法並びに安定した触媒が必要で
ある。
Conventionally, when decomposition or steam reforming reactions are carried out using methanol or a mixture of methanol and water as a raw material using the sensible heat of exhaust gas from engines, gas turbines, etc. as a heat source, the exhaust gas temperature ranges from 200°C to 700°C, as is well known. This is a reformer that can be reformed over a wide temperature range with a small amount of catalyst that can be installed in an internal combustion engine, and that does not deteriorate the reforming performance even if it is exposed to high temperatures of about 700°C as mentioned above. A method and a stable catalyst are needed.

従来のメタノールを改質する触媒は、先に述べた金属担
持法や沈殿法によって調製される触媒が提案されている
が、これらの触媒は低温活性に乏しく、熱的劣化を起こ
しやすいなど現在のところ多くの問題点を残している。
As conventional catalysts for reforming methanol, catalysts prepared by the metal support method or precipitation method described above have been proposed, but these catalysts lack low-temperature activity and are prone to thermal deterioration. However, many problems remain.

また、反応器としては、シェルアンドチューブ型の熱交
換器型式となっており、チューブ内に触媒を充填し、原
料のメタノ−・ル蒸気又はメタノールと水の混合蒸気は
触媒との接触反応により水素含有ガスに改質される。こ
の改質反応は大きな吸熱反応があり、必要な反応熱はシ
ェル側の熱媒から供給されるが、伝熱速度があまり大き
くないため、触媒層内の温度が反応熱により低くなり、
反応速度を大きくすることが難しいという問題がある。
In addition, the reactor is a shell-and-tube heat exchanger type, and the tube is filled with a catalyst, and the raw material methanol vapor or mixed vapor of methanol and water undergoes a catalytic reaction with the catalyst. Reformed to hydrogen-containing gas. This reforming reaction has a large endothermic reaction, and the necessary reaction heat is supplied from the heat medium on the shell side, but the heat transfer rate is not very high, so the temperature inside the catalyst layer is lowered by the reaction heat.
There is a problem in that it is difficult to increase the reaction rate.

本発明は上記技術水準に鑑み、伝熱機能及び触媒機能の
双方を同時に併せもった触媒を使用してメタノールの改
質反応を合目的に行い得る方法を提供しようとするもの
である。
In view of the above-mentioned state of the art, the present invention aims to provide a method for purposefully carrying out a methanol reforming reaction using a catalyst that has both a heat transfer function and a catalytic function.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は (1)メタノール又はメタノールと水の混合物から水素
含有ガスを製造する方法において、酸化銅を多孔質担体
に含有させた粉末を金属又は合金材料に、そのま\又は
溶射用に造粒した後、溶射被覆してなる触媒を用いるこ
とを特徴とするメタノールの改質方法。
The present invention provides (1) a method for producing hydrogen-containing gas from methanol or a mixture of methanol and water, in which a powder containing copper oxide in a porous carrier is applied to a metal or alloy material as is or granulated for thermal spraying. A method for reforming methanol, which comprises using a catalyst that is thermally spray coated after the above treatment.

(2) メタノール又はメタノールと水の混合物から水
素含有ガスを製造する方法において、銅、亜鉛、クロム
からなる群のうちの2種以上の酸化物を多孔質担体に含
有させた粉末を金属又は合金材料に、そのま−又は溶射
用に造粒した後、溶射被覆してなる触媒を用いることを
特徴とするメタノールの改質方法。
(2) In a method for producing hydrogen-containing gas from methanol or a mixture of methanol and water, powder containing two or more oxides from the group consisting of copper, zinc, and chromium in a porous carrier is used as a metal or alloy. A method for reforming methanol, characterized in that a catalyst is used as a material as it is or after being granulated for thermal spraying and then thermally spray coated.

である。It is.

本発明の上記構成における金属又は合金材料として伝熱
管そのものを使用することを好ましい態様とするもので
あり、また金属又は合金材料に被覆してなる触媒を還元
処理して用いることも好ましい態様とするものである。
In the above structure of the present invention, it is a preferable embodiment to use the heat exchanger tube itself as the metal or alloy material, and it is also a preferable embodiment to use a catalyst formed by coating the metal or alloy material after reduction treatment. It is something.

〔作用〕[Effect]

金属又は合金材料に触媒成分が担持されているので伝熱
機能がよい。特に、触媒成分を担持した伝熱管を用い該
伝熱管の触媒面でメタノール改質を行うと、伝熱機能と
触媒機能の双方を同時に合わせせることかでき、メタノ
ール改質方法として極めて合目的である。
Since the catalyst component is supported on the metal or alloy material, it has a good heat transfer function. In particular, if methanol reforming is carried out on the catalytic surface of the heat transfer tube using a heat transfer tube carrying a catalyst component, both the heat transfer function and the catalyst function can be combined at the same time, making it extremely useful as a methanol reforming method. be.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明でいう水素含有ガスとは、水素を50%以上、−
酸化炭素を35%以下、二酸化炭素を25%以下含有す
るガスである。
The hydrogen-containing gas referred to in the present invention refers to hydrogen containing 50% or more, -
It is a gas containing 35% or less carbon oxide and 25% or less carbon dioxide.

素地金属材料としては、鉄、銅、アルミニウム、亜鉛、
コバルト、ニッケルまたはそれらの合金を用いることが
でき、これらの表面に酸化銅又は銅、亜鉛、クロムから
なる群のうちの2種以上の酸化物を多孔質担体に含有さ
せた粉末を、そのまま又は溶射用に造粒した後、溶射被
覆によって溶着させる。
Base metal materials include iron, copper, aluminum, zinc,
Cobalt, nickel, or an alloy thereof can be used, and a porous carrier containing copper oxide or two or more oxides from the group consisting of copper, zinc, and chromium on the surface of these powders can be used as is or After granulation for thermal spraying, it is welded by thermal spray coating.

銅、亜鉛、クロムからなる群のうちの2種以上の酸化物
を多孔質担体に含有させた粉末とは次のとおりである。
The powder in which a porous carrier contains two or more oxides from the group consisting of copper, zinc, and chromium is as follows.

まず触媒成分の組成は銅、亜鉛、クロムからなる群のう
ちの2種以上の酸化物の組合せにおいては、ZnO/C
r20a 、 Zn[]/CuD 、 CrJs/Cu
Oで10/90〜90/10の範囲(以下、モル比で表
示)が適当であり、特に20/80〜80/20の範囲
が好ましい。
First, the composition of the catalyst component is ZnO/C in the combination of two or more oxides from the group consisting of copper, zinc, and chromium.
r20a, Zn[]/CuD, CrJs/Cu
A suitable range for O is 10/90 to 90/10 (hereinafter expressed as a molar ratio), particularly preferably a range of 20/80 to 80/20.

CuO、ZnO、Crabsの3種の組合わせにおいて
は、ZnO・CrzLとCuDとの比で、10:90〜
90:10の範囲が適当であり、特に20/80〜80
/20の範囲が好ましい。
In the three combinations of CuO, ZnO, and Crabs, the ratio of ZnO・CrzL to CuD is 10:90 to
A range of 90:10 is suitable, especially 20/80 to 80
A range of /20 is preferred.

次に触媒の組成は、上記触媒成分(CuO、ZnO、C
r、0.の2種以上の酸化物又は酸化銅)と多孔質担体
の重量比で20:80〜95:5の範囲が好ましく、特
に30ニア0〜80:20の範囲が好ましい。ここで多
孔質担体ではケイソウ土、アルミナ、シリカ、チタニア
、ゼオライトなどであり、比表面積が0.1〜500m
2/gのものをさす。
Next, the composition of the catalyst is determined by the above catalyst components (CuO, ZnO, C
r, 0. The weight ratio of two or more oxides or copper oxide) to the porous carrier is preferably in the range of 20:80 to 95:5, particularly preferably in the range of 30:0 to 80:20. Here, porous carriers include diatomaceous earth, alumina, silica, titania, zeolite, etc., and have a specific surface area of 0.1 to 500 m
2/g.

本発明の銅、亜鉛、クロムからなる群のうちの2種以上
の酸化物又は酸化銅を多孔質担体に含有させた粉末を調
製するには、上記金属化合物と多孔質担体の水溶液に沈
殿剤としてアルカリ金属元素又はアルカリ土類金属元素
の水酸化物又は炭酸塩をそのまま、あるいは水溶液にし
たもの、又はアンモニア水等を混合し、沈殿を生成させ
、乾燥、焼成する方法などが用いられる。
To prepare a powder containing two or more oxides of the group consisting of copper, zinc, and chromium or copper oxide in a porous carrier according to the present invention, a precipitating agent is added to an aqueous solution of the metal compound and the porous carrier. As a method, a method is used in which a hydroxide or carbonate of an alkali metal element or an alkaline earth metal element is used as it is or in an aqueous solution, or by mixing with ammonia water or the like to form a precipitate, followed by drying and calcining.

又、本発明でいう溶射用に造粒とは、上述のように調製
した粉末を溶射機の粉末供給管中での流動性を高めるた
め、所定量の水、バインダ、解こう剤を加えて混練し、
スプレードライ法で造粒することをさす。
Furthermore, granulation for thermal spraying in the present invention refers to adding a predetermined amount of water, a binder, and a peptizer to the powder prepared as described above in order to improve its fluidity in the powder supply pipe of a thermal spraying machine. Knead,
Refers to granulation using the spray drying method.

溶射被覆の手段としては粉末式火炎溶射及びプラズマ溶
射などがある。
Examples of thermal spray coating methods include powder flame spraying and plasma spraying.

また、本発明で触媒反応を行わせる前処理として、水素
を3%以上100%以下含有するガス(不活性ガスバラ
ンス)を、200〜500℃で触媒上を流通させ金属複
合酸化物を還元する処理を行うのが好ましい。
In addition, as a pretreatment for carrying out the catalytic reaction in the present invention, a gas containing 3% to 100% hydrogen (inert gas balance) is passed over the catalyst at 200 to 500°C to reduce the metal composite oxide. Preferably, the treatment is carried out.

本発明のメタノール改質方法にける好ましい反応条件は
次のとおりである。
Preferred reaction conditions in the methanol reforming method of the present invention are as follows.

反応温度=200〜700℃ 特に好ましくは200〜500℃ 反応圧カニ〇〜30kg/cnfG 特に好ましくは0〜15kg/cdG メタノール1モルに対する水の供給モル比:10以下、
特に好ましくは3以下 〔実施例〕 以下、実施例により本発明を具体的に説明する。
Reaction temperature = 200 to 700°C, particularly preferably 200 to 500°C, reaction pressure 0 to 30 kg/cnfG, particularly preferably 0 to 15 kg/cdG, molar ratio of water supplied to 1 mole of methanol: 10 or less,
Particularly preferably 3 or less [Examples] The present invention will be specifically described below with reference to Examples.

〔実施例1〕 15UX 70mx 2+am (厚さ)のSO330
4板を十分に清浄にした後、粉末式火炎溶射機に表1に
示す9種の粉末を粉末供給管に供給して上記SO330
4板上に粉末式火炎溶射を行い、触媒1〜9を!II製
した。
[Example 1] SO330 of 15UX 70mx 2+am (thickness)
After thoroughly cleaning the four plates, the 9 types of powder shown in Table 1 were supplied to the powder supply pipe of the powder flame spraying machine, and the above SO330
Perform powder flame spraying on 4 plates and apply catalysts 1 to 9! II.

上記触媒1〜9を反応器に充填して200〜350℃で
、12〜16時間水素還元処理を行った後、下記第2表
に示す条件で触媒活性評価を行った。結果を第3表に示
す。
After filling a reactor with the catalysts 1 to 9 and performing hydrogen reduction treatment at 200 to 350°C for 12 to 16 hours, catalytic activity was evaluated under the conditions shown in Table 2 below. The results are shown in Table 3.

第  1  表 第 表 第 表 純度 99% H20/CH30H= 1.5 (0101/lTl0
I)なお、生成ガスの組成(rno1%−ドライベース
でH,0、CH,011を除外した組成、以下同じ)は
次の通りであった。
Table 1 Purity 99% H20/CH30H= 1.5 (0101/lTl0
I) The composition of the generated gas (composition excluding H,0 and CH,011 on rno1%-dry basis, same hereinafter) was as follows.

(1)メタノール原料 H2:64〜67%、CO:31〜33%、C02:0
.1〜2%、CH,:0.02〜2%(2)メタノール
・水混合液原料 H2:69〜74%、CD= 5〜25%、Co、:6
〜21%、CH,:0.01〜1%〔実施例2〕 実施例1と同じ方法で第4表に示す4種の粉末を、粉末
式火炎溶射機に供給して、粉末式火炎溶射を行い触媒1
0〜13を調製した。これらの触媒を反応器に充填して
、200〜350℃で、12〜16時間水素還元処理を
行った後、第5表に示す条件で触媒活性評価を行った。
(1) Methanol raw material H2: 64-67%, CO: 31-33%, CO2: 0
.. 1-2%, CH,: 0.02-2% (2) Methanol/water mixture raw material H2: 69-74%, CD=5-25%, Co,: 6
~21%, CH,: 0.01~1% [Example 2] In the same manner as in Example 1, the four types of powders shown in Table 4 were supplied to a powder flame spraying machine, and powder flame spraying was carried out. Do catalyst 1
0 to 13 were prepared. These catalysts were filled in a reactor and subjected to hydrogen reduction treatment at 200 to 350°C for 12 to 16 hours, and then the catalyst activity was evaluated under the conditions shown in Table 5.

結果を第6表に示す。The results are shown in Table 6.

第  4  表 第 表 第 表 なお、各温度での生成ガスの組成は次の通りであった。Table 4 No. table No. table The composition of the generated gas at each temperature was as follows.

(1)反応温度  250℃、300℃H2ニア4〜7
4.5%、CO:1〜5%、co、  : 21〜24
%、CH,:0.01〜1%(2)反応温度  350
℃ H2ニア0〜73%、CO:8〜21%、CO,:9〜
19%、CH,:0.01〜0.2%さらに、上記触媒
を、第5表に示す反応条件(反応温度350℃)で10
00時間連続試験を行った結果、メタノール転イヒ率は
100%で一定であった。
(1) Reaction temperature 250°C, 300°C H2 near 4-7
4.5%, CO: 1-5%, co: 21-24
%, CH,: 0.01-1% (2) Reaction temperature 350
°C H2 near 0-73%, CO: 8-21%, CO,: 9-
19%, CH,: 0.01-0.2% Furthermore, the above catalyst was added under the reaction conditions shown in Table 5 (reaction temperature 350°C) for 10%
As a result of continuous testing for 00 hours, the methanol conversion rate was constant at 100%.

〔実施例3〕 実施例1の触媒1の粉末調製工程で、多孔質担体として
ゼオライトの代わりに、アルミナ、シリカ、チタニア又
はケイソウ土粉末を用いた以外は同じ方法で、触媒14
〜16 (CuO−ZrO=50:50モル比、触媒の
粉末中の多孔質担体の含有量50重量%)を調製した。
[Example 3] Catalyst 14 was prepared in the same manner as in Example 1 except that alumina, silica, titania, or diatomaceous earth powder was used instead of zeolite as the porous carrier in the powder preparation step of Catalyst 1.
~16 (CuO-ZrO = 50:50 molar ratio, content of porous carrier in catalyst powder 50% by weight) was prepared.

これらの触媒を実施例1と同じ方法で水素還元後、活性
評価を行った。結果を第7表に示す。
These catalysts were subjected to hydrogen reduction in the same manner as in Example 1, and then their activity was evaluated. The results are shown in Table 7.

第  7  表 なお生成ガスの組成は、次の通りであった。Table 7 The composition of the generated gas was as follows.

(1)メタノール原料 H2:64〜67%、CO:31〜33%、C02:0
.1〜2%、CH,:0.02〜1%(2)メタノール
・水混合原料 H2:69〜74%、CO:5〜25%、C02:6〜
21%、CHa:0.01〜0.1%〔実施例4〕 予め十分に清浄にした外径10.5111m、長さ10
0mm、触媒外表面積33ca!のSO3304管の管
外壁に、下記第8表に示す粉末を粉末式火炎溶射機に供
給して粉末式火炎溶射を行い、触媒18を調製した。
(1) Methanol raw material H2: 64-67%, CO: 31-33%, CO2: 0
.. 1-2%, CH,: 0.02-1% (2) Methanol/water mixed raw material H2: 69-74%, CO: 5-25%, CO2: 6-
21%, CHa: 0.01-0.1% [Example 4] External diameter 10.5111 m, length 10 which was sufficiently cleaned in advance
0mm, catalyst outer surface area 33ca! A catalyst 18 was prepared by supplying the powder shown in Table 8 below to the outer wall of the SO3304 pipe and performing powder flame spraying on the outer wall of the SO3304 tube.

第  8  表 上記触媒18を反応管として、反応管の内側を熱媒で加
熱することにより昇温し、熱媒温度を200〜350℃
にし、反応管外表面に水素30%(窒素バランス)ガス
を供給して還元処理を行った後、熱媒を昇温し熱媒温度
を350℃に一定にした後、反応管外表面に、350℃
のメタノールと水の混合蒸気(8,0/CH,OH〜1
、5 (mol/mol))を15 [:cc/h]の
流量で供給した結果、メタノール反応率は98%であっ
た。
Table 8 Using the above catalyst 18 as a reaction tube, the inside of the reaction tube is heated with a heat medium to raise the temperature, and the temperature of the heat medium is 200 to 350°C.
After the reduction treatment was performed by supplying 30% hydrogen (nitrogen balance) gas to the outer surface of the reaction tube, the heating medium was heated to a constant temperature of 350°C, and then on the outer surface of the reaction tube, 350℃
Mixed vapor of methanol and water (8,0/CH,OH~1
, 5 (mol/mol)) at a flow rate of 15 [:cc/h], the methanol reaction rate was 98%.

一方、同じ触媒外表面積になるように、従来のペレット
型触媒を二重管の外側に充填し、内側と熱媒を通すよう
な反応管として同じように反応させた結果、メタノール
反応率は90%以下であった。
On the other hand, when a conventional pellet type catalyst was packed on the outside of a double tube so that the outside surface area of the catalyst was the same, and the reaction tube was conducted in the same way as a reaction tube through which a heat medium was passed between the inside and the inside, the methanol reaction rate was 90. % or less.

結局、本発明による反応管は伝熱速度が大きいため、メ
タノール反応率が大きいことがわかった。
As a result, it was found that the reaction tube according to the present invention has a high heat transfer rate, so that the methanol reaction rate is high.

〔発明の効果〕〔Effect of the invention〕

以上の実施例からも明らかなように、本発明による伝熱
機能の優れた触媒を用いることにより、メタノール又は
メタノールと水の混合物から水素含有ガスを製造する方
法において、極めて合目的に行える方法が提供される。
As is clear from the above examples, by using the catalyst with an excellent heat transfer function according to the present invention, a method can be carried out very effectively for producing hydrogen-containing gas from methanol or a mixture of methanol and water. provided.

Claims (2)

【特許請求の範囲】[Claims] (1)メタノール又はメタノールと水の混合物から水素
含有ガスを製造する方法において、酸化銅を多孔質担体
に含有させた粉末を金属又は合金材料に、そのまゝ又は
溶射用に造粒した後、溶射被覆してなる触媒を用いるこ
とを特徴とするメタノールの改質方法。
(1) In a method for producing hydrogen-containing gas from methanol or a mixture of methanol and water, a powder containing copper oxide in a porous carrier is applied to a metal or alloy material as it is or after being granulated for thermal spraying. A method for reforming methanol, characterized by using a spray-coated catalyst.
(2)メタノール又はメタノールと水の混合物から水素
含有ガスを製造する方法において、銅、亜鉛、クロムか
らなる群のうちの2種以上の酸化物を多孔質担体に含有
させた粉末を金属又は合金材料に、そのまゝ又は溶射用
に造粒した後、溶射被覆してなる触媒を用いることを特
徴とするメタノールの改質方法。
(2) In a method for producing hydrogen-containing gas from methanol or a mixture of methanol and water, powder containing two or more oxides from the group consisting of copper, zinc, and chromium in a porous carrier is used as a metal or alloy. 1. A method for reforming methanol, which comprises using a catalyst which is formed by using a material as it is or after being granulated for thermal spraying and then coated by thermal spraying.
JP2161330A 1990-06-21 1990-06-21 Method for reforming methanol Pending JPH0455301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161330A JPH0455301A (en) 1990-06-21 1990-06-21 Method for reforming methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161330A JPH0455301A (en) 1990-06-21 1990-06-21 Method for reforming methanol

Publications (1)

Publication Number Publication Date
JPH0455301A true JPH0455301A (en) 1992-02-24

Family

ID=15733037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161330A Pending JPH0455301A (en) 1990-06-21 1990-06-21 Method for reforming methanol

Country Status (1)

Country Link
JP (1) JPH0455301A (en)

Similar Documents

Publication Publication Date Title
AU2003301440B2 (en) Use of metal supported copper catalysts for reforming alcohols
US11772979B2 (en) Metal-decorated barium calcium aluminum oxide catalyst for NH3 synthesis and cracking and methods of forming the same
MX2010014351A (en) Process for operating hts reactor.
WO2022166084A1 (en) Preparation method for and use of solvent coordination metal catalyst
JPS5844646B2 (en) methanation reactor
KR20010089429A (en) Inhibition of carbon deposition on fuel gas steam reformer walls
JPH0426503A (en) Method for reforming methanol
JPH04144902A (en) Reforming of methanol
JPH0455301A (en) Method for reforming methanol
CN102451690A (en) Preparation method of substitute natural gas
JP2659836B2 (en) Methanol reforming method
JPH03196839A (en) Production of methanol reforming catalyst
JPH0427434A (en) Catalyst for reforming methanol
JPH04362001A (en) Methanol reforming catalyst
JP4328941B2 (en) Method for producing hydrogen-containing gas
JPH0312301A (en) Method for reforming methanol
JPH02172801A (en) Method for reforming methanol
JPH0312302A (en) Methanol reformer
JPS62176545A (en) Catalyst for reforming methanol
CN104264123B (en) Atomic layer deposition preparation method of CuNi alloy film for catalytic methanol synthesis reaction
JPH0393601A (en) Reformation of methanol
JPS6150640A (en) Catalyst for preparing methane-containing gas
JPH02279502A (en) Method for reforming methanol
JP4213952B2 (en) Methanol aqueous solution reforming catalyst
JPS60122038A (en) Catalyst for reforming methanol