JPS59189935A - Ethanol reforming catalyst - Google Patents

Ethanol reforming catalyst

Info

Publication number
JPS59189935A
JPS59189935A JP58064499A JP6449983A JPS59189935A JP S59189935 A JPS59189935 A JP S59189935A JP 58064499 A JP58064499 A JP 58064499A JP 6449983 A JP6449983 A JP 6449983A JP S59189935 A JPS59189935 A JP S59189935A
Authority
JP
Japan
Prior art keywords
carrier
catalyst
ethanol
platinum
type titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58064499A
Other languages
Japanese (ja)
Inventor
Tetsuya Imai
哲也 今井
Kozo Iida
耕三 飯田
Hiroshi Fujita
浩 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58064499A priority Critical patent/JPS59189935A/en
Publication of JPS59189935A publication Critical patent/JPS59189935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain an ethanol reforming catalyst developing high activity and high selectivity at a low temp., free from carbon precipitation and having long life, by allowing a carrier containing rutile type titania to support one or more of a metal selected from a group consisting of platinum and Pd. CONSTITUTION:A rutile type titania-containing carrier is allowed to support one or more of a metal selected from a group consisting of platinum and Pd. The above mentioned carrier is easily obtained by baking anatase type titania or one prepared by coating alumina with titania at 600 deg.C or more. In the next step, the noble metal is supported by the carrier according to such a method that the carrier is immersed in an aqueous solution containing a compound, for example, a noble metal nitrate and, after baking, the baked supported carrier is further subjected to hydrogen reducing treatment. Thus obtained catalyst is excellent in reaction for reforming ethanol to gas containing H and CO and shows high activity and high selectivity at a low temp., for example, at 300 deg.C while prevented from carbon precipitation and develops long life.

Description

【発明の詳細な説明】 本発明は、エタノール改質用触媒に関するものである・
[Detailed Description of the Invention] The present invention relates to an ethanol reforming catalyst.
.

更に詳しくは、エタノールを水素及び−酸化炭素を含む
ガスに改質する触媒として低温で高活性、高選択性を発
揮し、かつカーボン析出のない長寿命の触媒を提供する
ものでちる。
More specifically, the present invention provides a catalyst for reforming ethanol into a gas containing hydrogen and carbon oxide, which exhibits high activity and selectivity at low temperatures, and has a long life without carbon deposition.

現在では、発電用ボイラ、内燃機関などに用いられる液
体燃料や気体燃料及び還元ガス製造用原料には原油及び
それからN製された石油類が使用されているが、最近の
原油価格の高騰のため燃料の多様化が指向されて、天然
のバイオマス資源の発酵反応により、また原油以外の化
石燃料から合成され得るエタノールが注目宴れている。
Currently, crude oil and petroleum products made from it are used as raw materials for producing liquid fuel, gaseous fuel, and reducing gas used in power generation boilers, internal combustion engines, etc., but due to the recent rise in crude oil prices, As fuels become more diversified, ethanol, which can be synthesized from fermentation reactions of natural biomass resources or from fossil fuels other than crude oil, is attracting attention.

またエタノールはナフサよシはるかに低温で水素、−酸
化炭素を含むガスに改質されるので、反応熱のための熱
源として、廃熱の適用が可能であると云う優位性をもっ
ている。
Furthermore, since ethanol is reformed into a gas containing hydrogen and carbon oxide at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for reaction heat.

この際、生成した改質ガスは、改質反応の吸熱量相当分
(約13 Kcal/mob )だけ、改質ガスの発熱
量が増加するという利点と、さらにこの生成した改質ガ
スは、高オクタン価で、高出力設計の内燃機関に適用す
ると、圧縮比をあげて、熱効率を改善することや、エタ
ノール燃焼時アルデヒド類などの排出もなく、クリーン
燃焼が可能などの利点がある。
At this time, the generated reformed gas has the advantage that the calorific value of the reformed gas increases by the amount equivalent to the endothermic amount of the reforming reaction (approximately 13 Kcal/mob). When applied to an internal combustion engine with an octane rating and high output design, it has the advantages of increasing the compression ratio, improving thermal efficiency, and eliminating emissions of aldehydes when ethanol is burned, resulting in clean combustion.

内燃機関の排気ガス熱を利用して、エタノールの改質反
応を行わす場合、排ガス温度は周知のごとく室温から8
0ρ℃程度の温度まで変化するため、幅広い温鹸範囲に
わたって内燃機関に塔載できる程度の少量の触媒で改質
でき、かつ例えば上記の800℃程度の高温下におかれ
ていても、改質性能が劣化しない安定した触媒が必要で
ある。
When carrying out a reforming reaction of ethanol using exhaust gas heat from an internal combustion engine, the exhaust gas temperature ranges from room temperature to 8.
Since the temperature changes to about 0ρ℃, reforming can be carried out over a wide temperature range with a small amount of catalyst that can be installed in an internal combustion engine, and even if the temperature is at a high temperature of about 800℃, for example, the reforming can be carried out. A stable catalyst that does not deteriorate in performance is required.

従来、エタノールを改質する触媒として(存、アルミナ
(以下Az2o3 と記す)などの担体に、白金などの
白金属元素又は、銅、ニッケル、クロム、亜鉛などの卑
金属元素及びその酸化物などを担持した触媒が提案され
ているが、これらの触媒は、低温活性に乏しい、耐熱性
がない、など現在までのところ多くの問題点を残してい
る。
Conventionally, platinum metal elements such as platinum, base metal elements such as copper, nickel, chromium, zinc, and their oxides are supported on a carrier such as alumina (hereinafter referred to as Az2O3) as a catalyst for reforming ethanol. However, to date, these catalysts still have many problems, such as poor low-temperature activity and lack of heat resistance.

上記従来の触媒の中で、例えばγ−Atzo3又はアナ
ターゼ型のチタニア等をそのまま担体として用い、白金
を担持した触媒については、目的の反応■のみが起こる
選択性が低く、エテVン、エーテル、アルデヒド等の生
成する副反応■が起こりやすいという問題がある。
Among the above-mentioned conventional catalysts, catalysts in which platinum is supported using γ-Atzo3 or anatase-type titania as a carrier have low selectivity in which only the desired reaction (2) occurs, and ethene, ether, There is a problem in that side reactions (2), which generate aldehydes and the like, are likely to occur.

反応■ C2H50H−+ C○ + H2−1−C!H4副反
応■ 本発明者らは、上記の問題を解決すべく、従来触媒の担
体として用いられている比表面積の大きい酸性作用のあ
るアナターゼ型のチタニア担体を高温で熱処理すること
によシルチル型に結晶転移させると比表面積は小さくな
るが、酸性作用が殆んどなくなる事、及び担体の表面上
に分散している白金粒子の凝集が起こシにくい事に注目
し、種々の実験検討を行った結果、副反応を抑制する能
力のあるルチル型のチクニアを含有する担体上に白金、
パラジウムなどの貴金属を担持芯せた触媒がエタノール
改質反応において活性、選択性とも非常に優れている事
を見い出し、本発明を完成するに至った。
Reaction ■ C2H50H-+ C○ + H2-1-C! H4 Side Reaction■ In order to solve the above problem, the present inventors have developed a siltyl-type titania support by heat-treating at high temperature anatase-type titania support, which has a large specific surface area and has an acidic action, which has been conventionally used as a catalyst support. Although the specific surface area becomes smaller when crystallization transition occurs, the acidic effect is almost eliminated and the platinum particles dispersed on the surface of the carrier are less likely to agglomerate, and various experimental studies were conducted. As a result, platinum,
The present inventors discovered that a catalyst supported on a core of a noble metal such as palladium has excellent activity and selectivity in an ethanol reforming reaction, leading to the completion of the present invention.

本発明方法はエタノール改質用触媒としてルチル型のチ
タニアを含有する担体上に白金、パラジウムなどの貴金
属を担持させた触媒を用いることを特徴としている。
The method of the present invention is characterized in that a catalyst in which a noble metal such as platinum or palladium is supported on a carrier containing rutile-type titania is used as an ethanol reforming catalyst.

ここでルチル型のチタニアを含有する担体は、アナター
ゼ型のチタニア又はアルミナ担体にチタニアをコーティ
ングしたもの等を600℃以上の温度好ましくは800
〜1000℃の温度範囲で焼成することで容易に得られ
る。
Here, the carrier containing rutile-type titania is anatase-type titania or an alumina carrier coated with titania, etc. at a temperature of 600°C or higher, preferably 800°C.
It can be easily obtained by firing at a temperature range of ~1000°C.

次に、このようにして得られた担体に貴金属を担持させ
る方法は、従来から用いられている方法で問題なく、例
えば貴金属の硝酸塩又は壇化物などの化合物の水溶液に
担体を浸漬した後、焼成しさらにそれを水素還元処理す
れば貴金属が担持された触媒が得られる。
Next, the method of supporting the noble metal on the carrier obtained in this way is a conventionally used method without any problem, for example, the carrier is immersed in an aqueous solution of a compound such as a nitrate or a danide of a noble metal, and then calcined. If it is further subjected to hydrogen reduction treatment, a catalyst on which precious metals are supported can be obtained.

以上のようにして得られた触媒はエタノールを水素、−
酸化炭素を含むガスに改質する反応に対し、目的の反応
の選択性に優れ300℃という低温で高活性、高選択性
を示すものである。
The catalyst obtained as described above converts ethanol into hydrogen, −
It has excellent selectivity for the desired reaction in the reaction of reforming gas containing carbon oxide, and exhibits high activity and selectivity at a low temperature of 300°C.

以下、実施例により、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例1〕 粒径2〜4箪のアナターゼ型のチタニア担体(ベレット
)を800℃で20時間焼成を行いルチル型のチタニア
担体を得た。なお、ルチル型に結晶転移していることは
X線回析により同定した。
[Example 1] An anatase type titania carrier (bellet) having a particle size of 2 to 4 mm was calcined at 800°C for 20 hours to obtain a rutile type titania carrier. The crystal transition to rutile type was identified by X-ray diffraction.

上記ルチル型のチタニア担体を白金及ヒバラジウムの硝
酸塩水溶液に各々浸漬し、水素還元処理を行い、白金及
びパラジウムが各々[L3重量%になるように担持した
触媒1,2をそれぞれ調製した。
The rutile-type titania support was immersed in an aqueous solution of platinum and hibaradium nitrates and subjected to hydrogen reduction treatment to prepare catalysts 1 and 2 each carrying platinum and palladium at a concentration of 3% by weight.

また上記触媒1と同じ方法で、白金濃度が0.5,0.
1重量%の触媒3,4をそれぞれ調製した。
In addition, using the same method as for Catalyst 1 above, the platinum concentration was 0.5, 0.
1% by weight of catalysts 3 and 4 were prepared, respectively.

これらの触媒の活性評価を表1に示す条件で行い、その
結果を表2に示した。なお、表2には比較触媒としてア
ナターゼ型のチタニア担体を用いた白金([133重量
%の触媒の評価も併せて示した。
The activity of these catalysts was evaluated under the conditions shown in Table 1, and the results are shown in Table 2. Table 2 also shows the evaluation of a catalyst containing platinum (133% by weight) using an anatase-type titania carrier as a comparative catalyst.

表  1゜ 表  2 〔実施例2〕 比較触媒として、従来のアナターゼ型のチタニア担体に
白金をa3重重量相持した触媒を調製した。この触媒と
実施例1VCおける触媒について、反応温度を500℃
に変えた以外は表1と同じ条件で活性評価を行ったとこ
ろ、表6のような結果が得られた。
Table 1 Table 2 [Example 2] As a comparative catalyst, a catalyst was prepared in which platinum was supported on a conventional anatase-type titania carrier by weight of a3. For this catalyst and the catalyst in Example 1VC, the reaction temperature was set at 500°C.
When the activity was evaluated under the same conditions as in Table 1 except that the conditions were changed, the results shown in Table 6 were obtained.

表  3 尚、触媒1を反応温度500℃に一定にして、L、H,
S、V、  2.5h−1で20時間連続運転したとこ
ろ、触媒上へのカーボンの析出は殆んどみられなかった
Table 3 In addition, the reaction temperature of catalyst 1 was kept constant at 500°C, and L, H,
When the catalyst was operated continuously for 20 hours at S, V, and 2.5 h-1, almost no carbon was observed to be deposited on the catalyst.

実施例においては、粒状触媒について記述しであるが、
触媒の形状を特に限定するものではなく、・・ニカム状
、板状などの触媒形状で用いて良いことは言うまでもな
い。
In the examples, granular catalysts are described, but
It goes without saying that the shape of the catalyst is not particularly limited, and that catalyst shapes such as nicomb shape and plate shape may be used.

又、実施例ではエタノール単独の場合について記述しで
あるが、水蒸気、9気などを含有したガスとの共存下で
エタノール改質を行わせても良い。
Further, in the embodiment, the case where ethanol alone is used is described, but ethanol reforming may be carried out in the coexistence with a gas containing water vapor, 9 gas, etc.

−加′−Add′

Claims (1)

【特許請求の範囲】[Claims] ルチル型のチタニアを含有する担体に白金、パラジウム
からなる群の一種以上の金属を担持させたことを特徴と
するエタノール改質用触媒。
An ethanol reforming catalyst characterized in that one or more metals from the group consisting of platinum and palladium are supported on a carrier containing rutile-type titania.
JP58064499A 1983-04-14 1983-04-14 Ethanol reforming catalyst Pending JPS59189935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064499A JPS59189935A (en) 1983-04-14 1983-04-14 Ethanol reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064499A JPS59189935A (en) 1983-04-14 1983-04-14 Ethanol reforming catalyst

Publications (1)

Publication Number Publication Date
JPS59189935A true JPS59189935A (en) 1984-10-27

Family

ID=13259950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064499A Pending JPS59189935A (en) 1983-04-14 1983-04-14 Ethanol reforming catalyst

Country Status (1)

Country Link
JP (1) JPS59189935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182033A (en) * 1987-01-21 1988-07-27 Mitsubishi Heavy Ind Ltd Ethanol reforming catalyst
US5292704A (en) * 1989-05-01 1994-03-08 Allied-Signal Inc. Catalyst for destruction of organohalogen compounds
GR1003235B (en) * 1998-05-22 1999-10-13 Process for the production of hydrogen and electricity generation by bio-ethanol reforming with the use of fuel cells and without emission of pollutants
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182033A (en) * 1987-01-21 1988-07-27 Mitsubishi Heavy Ind Ltd Ethanol reforming catalyst
US5292704A (en) * 1989-05-01 1994-03-08 Allied-Signal Inc. Catalyst for destruction of organohalogen compounds
GR1003235B (en) * 1998-05-22 1999-10-13 Process for the production of hydrogen and electricity generation by bio-ethanol reforming with the use of fuel cells and without emission of pollutants
WO1999061369A1 (en) * 1998-05-22 1999-12-02 Kadmos Ae Ependytikon Protovoulion Process for the production of hydrogen and electrical energy from reforming of bio-ethanol
EA002382B1 (en) * 1998-05-22 2002-04-25 Ксенофон Верикиос Process for the production of hydrogen and electrical energy from reforming of bio-ethanol with zero emission of pollutants
US6387554B1 (en) * 1998-05-22 2002-05-14 Xenophon Verykios Process for the production of hydrogen and electrical energy from reforming of bio-ethanol with the use of fuel cells and with zero emission of pollutants
US6605376B2 (en) 1998-05-22 2003-08-12 Helbio S.A. Hydrogene And Energy Production Systems Process for the production of hydrogen and electrical energy from reforming of bio-ethanol
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide

Similar Documents

Publication Publication Date Title
CN110479280B (en) CO low-temperature selective methanation Ni-ZrO 2 /NiAl 2 O 4 Catalyst, preparation method and application thereof
Kikuchi et al. Partial oxidation of CH4 and C3H8 over hexaaluminate-type oxides
WO2021134034A1 (en) Naphta reforming on ni/ gadolinium-doped cerium oxide reforming catalyst
Corro et al. Performance of Pt/Cr2O3, Pt/ZrO2, and, Pt/γ-Al2O3 catalysts in total oxidation of methane: effect of metal–support interaction
JPS59189935A (en) Ethanol reforming catalyst
JPS6234417B2 (en)
JP2010017707A (en) Oxidation catalyst
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JPS59112835A (en) Catalyst for reforming methanol
JPH0211303B2 (en)
JPS6241063B2 (en)
JPH0312302A (en) Methanol reformer
JPH01139911A (en) Method of catalytic combustion of combustible gas
JPS63182033A (en) Ethanol reforming catalyst
JP2000342968A (en) Catalyst and producing method
JPH0352642A (en) Production of catalyst for combustion
JPH0211302B2 (en)
JPS63182034A (en) Ethanol reforming catalyst
JPS6235814B2 (en)
JPH03249943A (en) Methanol reforming catalyst
JP2002121007A (en) Hydrogen generating device
JPH0424099B2 (en)
CN107537513B (en) Ni-Co based bimetallic catalyst for preparing methane and Co-producing oil products from synthesis gas, and preparation and application methods thereof
JPS6247578B2 (en)
JPH02141402A (en) Method for reforming methanol