JPS6247578B2 - - Google Patents

Info

Publication number
JPS6247578B2
JPS6247578B2 JP56059158A JP5915881A JPS6247578B2 JP S6247578 B2 JPS6247578 B2 JP S6247578B2 JP 56059158 A JP56059158 A JP 56059158A JP 5915881 A JP5915881 A JP 5915881A JP S6247578 B2 JPS6247578 B2 JP S6247578B2
Authority
JP
Japan
Prior art keywords
catalyst
methanol
nickel
chromium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56059158A
Other languages
Japanese (ja)
Other versions
JPS57174139A (en
Inventor
Shigeo Yokoyama
Tetsuya Imai
Hiroshi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5915881A priority Critical patent/JPS57174139A/en
Publication of JPS57174139A publication Critical patent/JPS57174139A/en
Publication of JPS6247578B2 publication Critical patent/JPS6247578B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタノール改質用触媒に関するもので
ある。 現在では、発電用ボイラ、内燃機関などに用い
られる液体燃料や気体燃料及び還元ガス製造用原
料には原油及びそれら精製された石油類が使用さ
れているが、最近の原油価格の高騰のため、燃料
の多様化が指向されて、原油以外の化石燃料から
合成され得るメタノールが注目されている。ま
た、メタノールはナフサよりはるかに低温で水
素、一酸化炭素を含むガスに改質されるので、反
応熱のための熱源として廃熱の適用が可能である
という優位性をもつている。 この際生成した改質ガスは改質反応の吸熱量相
当分(約22Kcal/mol)だけ改質ガスの発熱量が
増加するという利点と、さらにこの生成した改質
ガスは高オクタン価で、高出力設計の内燃機関に
適用すると圧縮比をあげて熱効率を改善すること
や、メタノール燃焼時、アルデヒド類などの排出
もなくクリーン燃焼が可能などの利点がある。 内燃機関の排気ガス熱を利用してメタノールの
改質反応を行わせる場合、排ガス温度は周知のご
とく室温から700℃程度の温度まで変化するため
幅広い温度範囲にわたつて内燃機関に搭載できる
程度の少量の触媒で、かつ、例えば上記の700℃
程度の高温下におかれていても改質性能が劣化し
ない安定した触媒が必要である。 従来、メタノールを改質する触媒としてはアル
ミナ(以下、Al2O3と記す)などの担体に白金な
どの白金属元素又は銅、ニツケル、クロム、亜鉛
などの卑金属元素及びその酸化物などを担持した
触媒が提案されているが、これらの触媒は低温活
性に乏しい。耐熱性がないなど、現在までのとこ
ろ多くの問題点を残している。 上記従来の触媒の中で、例えば単にアルミナ担
体に、銅、亜鉛、クロム、ニツケルからなる群の
一種以上の金属又はその酸化物を担持させた触媒
は、比較的低温でもメタノールは反応するが、水
素又は一酸化炭素に改質する選択性が低く、メタ
ン、炭酸ガス、ジメチルエーテルなどの生成する
副反応が起こりやすく、かつ触媒寿命が短いとい
う問題がある。特にアルミナ担体にニツケルある
いは銅を担持した触媒については、高温下でNiO
−Al2O3あるいはCuO−Al2O3のスピネル結晶の
生成と同時に触媒比表面積の低下をひきおこすと
いう問題がある。 また、上述した含浸担持法による触媒調製法と
は別に、沈殿法による触媒調製法があり、後者の
方法により調製される触媒の代表例としては、亜
鉛、クロムさらには銅を含有することからなるメ
タノール合成用触媒がある。このメタノール合成
用触媒は、一般にメタノールを水素と一酸化炭素
を含むガスに改質する反応に対応しても有効であ
るということは知られているが、低温で活性が低
く、副反応が起こりやすいという問題がある。 本発明者らは、上記の問題を解決すべく、鋭意
実験検討を重ねた結果、銅、亜鉛、クロムからな
る群の1種以上の酸化又はその水酸化物からなる
担体にニツケルを担持させた触媒が、高活性、高
選択性であることを見出し、別途同日付けで特許
出願した。しかし、この触媒を調製するには、担
体の調製とニツケルの担持という2段の工程が必
要であり、触媒の製造コストの低減のためには、
触媒活性成分のニツケルを担体調製時にあらかじ
め混合しておく方法がより好ましいと考えられ
る。そこで本発明者らは、1段の工程で触媒を調
製する方法についてさらに実験検討を重ねた結
果、銅、亜鉛、クロムからなる群の一種以上の酸
化物又はその水酸化物とニツケルの酸化物又は水
酸化物とを組み合わせた触媒が、メタノール改質
反応に対し、高活性でかつ選択性に非常に優れて
おり、さらにはカーボン析出がないため長寿命で
あることを見出し、本発明に至つた。 メタノール改質用触媒として選択性が重要視さ
れるのは、メタノールの水素と一酸化炭素への分
解反応は吸熱反応であり、燃料の発熱量が増加す
るというメリツトがあるが、メタン、炭酸ガス、
ジメチルエーテルなどが生成する副反応は発熱反
応であり、副反応の反応熱分だけ、発熱量が低下
するという問題があるからである。 本発明は、銅、亜鉛、クロムからなる群の一種
以上の酸化物又はその水酸化物と、ニツケルの酸
化物又はその水酸化物とを組み合わせたメタノー
ル改質用触媒を特徴とするものである。 ここで、銅、亜鉛、クロムからなる群の一種以
上の酸化物又はその水酸化物と、ニツケルの酸化
物又はその水酸化物とを組み合わせた触媒を調製
するには市販の銅、亜鉛、クロム、ニツケルの酸
化物又は水酸化物をそのまま用いてもよいし、上
記金属の化合物の水溶液に沈殿剤として、アルカ
リ金属元素又はアルカリ土類金属元素の水酸化物
又は炭酸塩をそのままあるいは水溶液にしたも
の、又はアンモニア水等を混合し、沈殿を作るこ
とにより調製してもよい。さらにはこれらを焼成
することにより酸化物に変えてから触媒として用
いてもよい。 具体的には、例えば酸化ニツケル−酸化クロム
系の触媒を調製する方法としては、下記の方法が
ある。 (1) 粉末あるいはペースト状酸化ニツケルと酸化
クロムに適量の水を加え、よく混合した後、乾
燥する。 (2) 硝酸ニツケルの水溶液に、重クロム酸ソーダ
とアンモニア水との混合水溶液を加え、よく混
合して沈殿をつくつた後、洗浄、乾燥する。 (3) 硝酸ニツケル、硝酸クロムの水溶液に水酸化
バリウムの水溶液を加え、よく混合して沈殿を
つくつた後、洗浄、乾燥する。 以上、示したのは一例であつて、本発明を特に
限定するものではない。 又、本発明の触媒組成としては、CuO、ZnO、
Cr2O3の各々1種との組合せにおいては、酸化物
形態のモル比、すなわちCuO/NiO、ZnO/
NiO、Cr2O3/NiOで2/8〜6/4の範囲が適
当であり、特に3/7〜4/6の範囲が好ましい
が、更に好ましくはCuO、ZnO、Cr2O3の2種又
は3種を含む複合系がよく、例えばCuO、ZnO、
NiOの3成分では、CuO:ZnO:NiOの割合
(mol%)が50〜20:10〜40:20〜60の範囲が適
当であり、特にNiOの割合としては30〜50mol%
となる範囲が好ましい。 以上のようにして得られた触媒は、メタノール
を水素、一酸化炭素を含むガスに改質する反応に
対し、300℃という低温で高活性を示し、さらに
改質ガス中の水素と一酸化炭素の割合が90%以上
という非常に選択性に優れた触媒活性を示すもの
である。 以下、実施例により本発明を具体的に説明す
る。 実施例 1 1〔mol/〕の銅又は亜鉛の硝酸塩水溶液又
は2〔mol/〕のクロムの硝酸塩水溶液各々
200c.c.に1〔mol/〕の硝酸ニツケル水溶液200
c.c.を予め混合し、これらの水溶液に1〔mol/
〕の水酸化バリウム水溶液200c.c.を加えよく混
合して沈殿を作つたのち、洗浄し、粒径2〜4mm
のペレツトにしてから乾燥、焼成を行つた。以上
のようにしてNiO−CuOの触媒(No.1)、NiO−
ZnOの触媒(No.2)、NiO−Cr2O3の触媒(No.3)
を調製した。 これらの触媒の活性評価を表1に示す条件で実
施し、その結果を表2に示した。また上記触媒を
500℃で3時間、水素還元処理した触媒について
も同様の活性評価を行い、その結果を表2にまと
めた。更に前記同様の操作で各々組成の異なる触
媒4、5、6、7、8、9を調製しこの触媒の活
性評価を表1に示す条件で実施しこの結果を表3
に示した。
The present invention relates to a methanol reforming catalyst. Currently, crude oil and refined petroleum products are used as raw materials for producing liquid fuel, gaseous fuel, and reducing gas used in power generation boilers, internal combustion engines, etc. However, due to the recent rise in crude oil prices, In an effort to diversify fuels, methanol, which can be synthesized from fossil fuels other than crude oil, is attracting attention. Furthermore, since methanol is reformed into a gas containing hydrogen and carbon monoxide at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for reaction heat. The reformed gas generated at this time has the advantage that the calorific value of the reformed gas increases by the amount equivalent to the endothermic amount of the reforming reaction (approximately 22 Kcal/mol), and furthermore, the generated reformed gas has a high octane number and has a high output. When applied to designed internal combustion engines, it has the advantage of increasing the compression ratio and improving thermal efficiency, and enables clean combustion without emitting aldehydes when burning methanol. When carrying out a methanol reforming reaction using the exhaust gas heat of an internal combustion engine, the temperature of the exhaust gas varies from room temperature to about 700℃, so it is difficult to use a device that can be installed in an internal combustion engine over a wide temperature range. With a small amount of catalyst and for example at 700℃ as above
There is a need for a stable catalyst that does not deteriorate its reforming performance even when exposed to moderately high temperatures. Conventionally, as a catalyst for reforming methanol, platinum metal elements such as platinum or base metal elements such as copper, nickel, chromium, zinc, and their oxides are supported on a carrier such as alumina (hereinafter referred to as Al 2 O 3 ). However, these catalysts have poor low-temperature activity. Until now, many problems remain, such as lack of heat resistance. Among the conventional catalysts mentioned above, for example, catalysts in which one or more metals from the group consisting of copper, zinc, chromium, and nickel or their oxides are simply supported on an alumina carrier react with methanol even at relatively low temperatures; There are problems in that the selectivity for reforming to hydrogen or carbon monoxide is low, side reactions that produce methane, carbon dioxide, dimethyl ether, etc. are likely to occur, and the catalyst life is short. In particular, for catalysts with nickel or copper supported on alumina supports, NiO
There is a problem in that the specific surface area of the catalyst decreases at the same time as spinel crystals of -Al 2 O 3 or CuO-Al 2 O 3 are formed. In addition to the catalyst preparation method using the impregnating support method described above, there is also a catalyst preparation method using the precipitation method.A typical example of a catalyst prepared by the latter method is one containing zinc, chromium, and even copper. There is a catalyst for methanol synthesis. This catalyst for methanol synthesis is generally known to be effective in the reaction of reforming methanol into a gas containing hydrogen and carbon monoxide, but its activity is low at low temperatures and side reactions occur. The problem is that it is easy. In order to solve the above problem, the present inventors have carried out extensive experimental studies, and have found that nickel is supported on a carrier made of one or more oxides or hydroxides of one or more of the group consisting of copper, zinc, and chromium. They discovered that the catalyst had high activity and high selectivity, and filed a separate patent application on the same day. However, preparing this catalyst requires two steps: preparing a carrier and supporting nickel, and in order to reduce the manufacturing cost of the catalyst,
It is considered more preferable to mix nickel as a catalytically active component in advance when preparing the carrier. As a result of further experimental studies on a method for preparing a catalyst in one step, the inventors of the present invention discovered that the oxides of one or more oxides of the group consisting of copper, zinc, and chromium, or their hydroxides, and the oxide of nickel. It was discovered that a catalyst in combination with a hydroxide has high activity and excellent selectivity for the methanol reforming reaction, and also has a long life as there is no carbon precipitation, leading to the present invention. Ivy. Selectivity is important as a methanol reforming catalyst because the decomposition reaction of methanol into hydrogen and carbon monoxide is an endothermic reaction, which has the advantage of increasing the calorific value of the fuel. ,
This is because the side reaction in which dimethyl ether and the like are produced is an exothermic reaction, and there is a problem in that the calorific value decreases by the reaction heat of the side reaction. The present invention is characterized by a methanol reforming catalyst that combines one or more oxides of the group consisting of copper, zinc, and chromium or their hydroxides with nickel oxides or their hydroxides. . Here, in order to prepare a catalyst in which one or more oxides or hydroxides thereof from the group consisting of copper, zinc, and chromium are combined with nickel oxides or hydroxides, commercially available copper, zinc, and chromium , oxides or hydroxides of nickel may be used as they are, or hydroxides or carbonates of alkali metal elements or alkaline earth metal elements may be used as they are or in an aqueous solution as a precipitant in an aqueous solution of the above-mentioned metal compound. It may also be prepared by mixing ammonia or aqueous ammonia to form a precipitate. Furthermore, these may be converted into oxides by firing and then used as catalysts. Specifically, for example, the following method can be used to prepare a nickel oxide-chromium oxide catalyst. (1) Add an appropriate amount of water to powder or paste nickel oxide and chromium oxide, mix well, and then dry. (2) Add a mixed aqueous solution of sodium dichromate and aqueous ammonia to the aqueous solution of nickel nitrate, mix well to form a precipitate, and then wash and dry. (3) Add an aqueous solution of barium hydroxide to an aqueous solution of nickel nitrate and chromium nitrate, mix well to form a precipitate, and then wash and dry. What has been shown above is an example, and does not particularly limit the present invention. In addition, the catalyst composition of the present invention includes CuO, ZnO,
In combination with each one of Cr 2 O 3 , the molar ratio of the oxide form, i.e. CuO/NiO, ZnO/
For NiO, Cr 2 O 3 /NiO, a range of 2/8 to 6/4 is appropriate, and a range of 3/7 to 4/6 is particularly preferred, and more preferably 2 of CuO, ZnO, Cr 2 O 3 Composite systems containing one species or three species are preferred, such as CuO, ZnO,
For the three components of NiO, it is appropriate that the ratio (mol%) of CuO:ZnO:NiO is in the range of 50 to 20:10 to 40:20 to 60, and in particular the ratio of NiO is 30 to 50 mol%.
The preferred range is . The catalyst obtained as described above exhibits high activity at a low temperature of 300°C for the reaction of reforming methanol into a gas containing hydrogen and carbon monoxide, and also It exhibits highly selective catalytic activity with a ratio of over 90%. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 1 [mol/] copper or zinc nitrate aqueous solution or 2 [mol/] chromium nitrate aqueous solution, respectively.
1 [mol/] nickel nitrate aqueous solution 200 c.c.
cc in advance and add 1 [mol/
] Add 200c.c. of barium hydroxide aqueous solution and mix well to form a precipitate, then wash and obtain a particle size of 2 to 4 mm.
After turning into pellets, they were dried and calcined. As described above, NiO−CuO catalyst (No. 1), NiO−
ZnO catalyst (No. 2), NiO-Cr 2 O 3 catalyst (No. 3)
was prepared. The activity of these catalysts was evaluated under the conditions shown in Table 1, and the results are shown in Table 2. In addition, the above catalyst
Similar activity evaluations were performed on catalysts subjected to hydrogen reduction treatment at 500° C. for 3 hours, and the results are summarized in Table 2. Furthermore, catalysts 4, 5, 6, 7, 8, and 9 having different compositions were prepared using the same procedure as described above, and the activity of these catalysts was evaluated under the conditions shown in Table 1. The results are shown in Table 3.
It was shown to.

【表】【table】

【表】【table】

【表】 なお分解ガス中の水素と一酸化炭素で占める割
合は90%以上であつた。 実施例 2 実施例1と同じ方法で表4に示した触媒10、
11、12、13をそれぞれ調製した。これらの触媒の
活性評価を実施例1と同じ条件で実施し、その結
果を表4に併せて示した。分解ガス中の水素と一
酸化炭素とで占める割合は95%以上であつた。
[Table] The ratio of hydrogen and carbon monoxide in the cracked gas was over 90%. Example 2 Catalyst 10 shown in Table 4 was prepared in the same manner as in Example 1,
11, 12, and 13 were prepared respectively. The activity of these catalysts was evaluated under the same conditions as in Example 1, and the results are also shown in Table 4. The ratio of hydrogen and carbon monoxide in the cracked gas was 95% or more.

【表】 なお触媒10、11、12は、銅、亜鉛については1
〔mol/〕の硝酸塩水溶液、クロムについては
2〔mol/〕の硝酸塩水溶液を各々調製し、こ
のうち各々2種類の水溶液を60c.c.ずつ混合して、
120c.c.にし、さらに1〔mol/〕の硝酸ニツケ
ルの水溶液を80c.c.混合したもの、又触媒13は、前
記それぞれに調製した銅、亜鉛、クロムの硝酸塩
水溶液を80c.c.混合したものにそれぞれ1〔mol/
〕の水酸化バリウム水溶液200c.c.を加えたほか
は実施例1と同じ操作を繰返した。 実施例 3 実施例2のうちメタノール反応率の高いCuO
−ZnO−NiO及びCuO−Cr2O3−ZnO−NiO系の
触媒について組成を変化させ、実施例1とほぼ同
じ方法で触媒14、15、16、17、18、19を調製し、
各々について実施例1と同じ条件で活性評価を行
いこの結果を表5に示した。
[Table] Catalysts 10, 11, and 12 are 1 for copper and zinc.
For chromium, prepare a nitrate aqueous solution of [mol/] and a 2 [mol/] nitrate aqueous solution for chromium, and mix 60 c.c. of each of the two types of aqueous solutions.
120 c.c., and further mixed with 80 c.c. of an aqueous solution of 1 [mol/] nickel nitrate.Catalyst 13 is a mixture of 80 c.c. of copper, zinc, and chromium nitrate aqueous solutions prepared respectively above. 1 [mol/mol/
] The same operation as in Example 1 was repeated except that 200 c.c. of barium hydroxide aqueous solution was added. Example 3 Among Example 2, CuO has a high methanol reaction rate.
-Catalysts 14, 15, 16 , 17, 18 , 19 were prepared in almost the same manner as in Example 1 by changing the composition of -ZnO-NiO and CuO- Cr2O3 -ZnO-NiO-based catalysts,
The activity of each was evaluated under the same conditions as in Example 1, and the results are shown in Table 5.

【表】 なお分解ガス中の水素と一酸化炭素とで占める
割合は95%以上であつた。 実施例 4 実施例2で調製した触媒13について、反応温度
以外は表1と同じ条件で、反応温度を300℃から
500℃まで変えて、メタノール反応率及び分解ガ
スの組成を測定し、その結果を表6に示す。
[Table] The ratio of hydrogen and carbon monoxide in the cracked gas was 95% or more. Example 4 Regarding catalyst 13 prepared in Example 2, the reaction temperature was changed from 300°C under the same conditions as in Table 1 except for the reaction temperature.
The methanol reaction rate and the composition of the cracked gas were measured by changing the temperature up to 500°C, and the results are shown in Table 6.

【表】【table】

【表】 なお、本触媒を反応温度500℃に一定にして、
液空間速度6hr-1で50hr連続運転したところ、触
媒上へのカーボンの析出は殆んどみられなかつ
た。 比較例 酸化ニツケルの粉末を粒径2〜4mmφのペレツ
トにした触媒20及び実施例1、2において酸化ニ
ツケルを含有していない触媒1′、2′、3′、10′、
11′、12′、13′(実施例1、2の触媒No.と対応して
いる)について活性評価を実施例1と同じ条件で
実施し、その結果を表7に示す。
[Table] In addition, when using this catalyst and keeping the reaction temperature constant at 500℃,
When the catalyst was operated continuously for 50 hours at a liquid hourly space velocity of 6 hr -1 , almost no carbon was deposited on the catalyst. Comparative Examples Catalyst 20 made of nickel oxide powder made into pellets with a particle size of 2 to 4 mmφ, and catalysts 1', 2', 3', 10', which did not contain nickel oxide in Examples 1 and 2,
Activity evaluation was carried out for 11', 12', and 13' (corresponding to the catalyst numbers of Examples 1 and 2) under the same conditions as in Example 1, and the results are shown in Table 7.

【表】 以上の実施例および比較例から判るように、本
発明の触媒が従来の触媒に比べて、低温で高活性
かつ選択性のよいことを示している。 以上、実施例で示したごとく、本発明における
触媒は、メタノールを水素と一酸化炭素を含むガ
スに改質する反応に対し、低温で高活性、高選択
性かつ長寿命の触媒である。 なお、実施例においては、粒状触媒について記
述してあるが、触媒の形状を特に限定するもので
なく、ハニカム状、板状などの触媒形状で用いて
よいことは言うまでもない。 また実施例においては担体及び触媒の原料とし
て銅、亜鉛、クロム又はニツケルの硝酸塩を用い
ているが、上記金属の他の化合物を用いてもよい
ことは言うまでもなく、また沈殿剤についても実
施例で使用している水酸化バリウム以外の他のア
ルカリ金属元素又はアルカリ土類金属元素の水酸
化物又は炭酸塩を用いてもよいことは言うまでも
ない。 また実施例においては、メタノール単独につい
て記述してあるが、水蒸気、空気などを含有した
ガスとの共存下でメタノール改質反応を行わせて
も何ら支障はない。
[Table] As can be seen from the above Examples and Comparative Examples, the catalyst of the present invention has higher activity and better selectivity at low temperatures than conventional catalysts. As shown in the Examples above, the catalyst of the present invention has high activity, high selectivity, and long life at low temperatures for the reaction of reforming methanol into a gas containing hydrogen and carbon monoxide. In the examples, a granular catalyst is described, but the shape of the catalyst is not particularly limited, and it goes without saying that catalyst shapes such as a honeycomb shape and a plate shape may be used. Further, in the examples, copper, zinc, chromium, or nitrate of nickel is used as the raw material for the carrier and catalyst, but it goes without saying that other compounds of the above metals may also be used, and the precipitants are also used in the examples. It goes without saying that hydroxides or carbonates of alkali metal elements or alkaline earth metal elements other than the barium hydroxide used may be used. Further, in the examples, methanol alone is described, but there is no problem in carrying out the methanol reforming reaction in the coexistence with a gas containing water vapor, air, or the like.

Claims (1)

【特許請求の範囲】[Claims] 1 銅、亜鉛、クロムからなる群の一種以上の酸
化物又はその水酸化物と、ニツケルの酸化物又は
その水酸化物とからなるメタノール改質用触媒。
1. A methanol reforming catalyst comprising one or more oxides or hydroxides of the group consisting of copper, zinc, and chromium, and nickel oxides or hydroxides.
JP5915881A 1981-04-21 1981-04-21 Catalyst for modification of methanol Granted JPS57174139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5915881A JPS57174139A (en) 1981-04-21 1981-04-21 Catalyst for modification of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5915881A JPS57174139A (en) 1981-04-21 1981-04-21 Catalyst for modification of methanol

Publications (2)

Publication Number Publication Date
JPS57174139A JPS57174139A (en) 1982-10-26
JPS6247578B2 true JPS6247578B2 (en) 1987-10-08

Family

ID=13105272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5915881A Granted JPS57174139A (en) 1981-04-21 1981-04-21 Catalyst for modification of methanol

Country Status (1)

Country Link
JP (1) JPS57174139A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161637A (en) * 1984-09-04 1986-03-29 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst
JPS61286203A (en) * 1985-06-14 1986-12-16 Mitsubishi Heavy Ind Ltd Reforming method for methanol
JPS6249947A (en) * 1985-08-26 1987-03-04 Mitsubishi Gas Chem Co Inc Catalyst for decomposing methanol

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2010427A (en) * 1933-01-14 1935-08-06 Carbide & Carbon Chem Corp Dehydrogenation of methanol
JPS5168488A (en) * 1974-12-11 1976-06-14 Nippon Soken
JPS5227085A (en) * 1975-08-27 1977-03-01 Nippon Soken Inc Catalyst for reforming of hydrocarbon fuel
JPS5228494A (en) * 1975-08-29 1977-03-03 Nippon Soken Inc Hydrocarbon fuel reforming catalyst
JPS52129705A (en) * 1976-04-24 1977-10-31 Nissan Motor Co Ltd Methanol-reforming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2010427A (en) * 1933-01-14 1935-08-06 Carbide & Carbon Chem Corp Dehydrogenation of methanol
JPS5168488A (en) * 1974-12-11 1976-06-14 Nippon Soken
JPS5227085A (en) * 1975-08-27 1977-03-01 Nippon Soken Inc Catalyst for reforming of hydrocarbon fuel
JPS5228494A (en) * 1975-08-29 1977-03-03 Nippon Soken Inc Hydrocarbon fuel reforming catalyst
JPS52129705A (en) * 1976-04-24 1977-10-31 Nissan Motor Co Ltd Methanol-reforming apparatus

Also Published As

Publication number Publication date
JPS57174139A (en) 1982-10-26

Similar Documents

Publication Publication Date Title
US4780300A (en) Process for reforming methanol
JPS61501827A (en) Catalyst for methanol conversion and method of using the same
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JPS6247578B2 (en)
JPS6241063B2 (en)
JP2535760B2 (en) Method for producing catalyst for steam reforming of methanol
JPH0211303B2 (en)
JPH0425064B2 (en)
JP2851406B2 (en) Methanol reforming catalyst
JPH0576341B2 (en)
JPH0211301B2 (en)
JPS61232201A (en) Method for decomposing methanol
JPH03249943A (en) Methanol reforming catalyst
JPS63182033A (en) Ethanol reforming catalyst
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method
JPS6235814B2 (en)
JPH0211302B2 (en)
JPS58193737A (en) Catalyst for production of gas enriched with hydrogen
JPH0361494B2 (en)
JPS59189935A (en) Ethanol reforming catalyst
JPS6236001A (en) Reforming method for methanol
JPS60122038A (en) Catalyst for reforming methanol
Kumar et al. Promotional effect of Au on γ-Al2O3 supported cobalt based catalyst for total oxidation of methane
JPS63182034A (en) Ethanol reforming catalyst