JPS6082137A - Reforming catalyst of methanol - Google Patents

Reforming catalyst of methanol

Info

Publication number
JPS6082137A
JPS6082137A JP19066983A JP19066983A JPS6082137A JP S6082137 A JPS6082137 A JP S6082137A JP 19066983 A JP19066983 A JP 19066983A JP 19066983 A JP19066983 A JP 19066983A JP S6082137 A JPS6082137 A JP S6082137A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
reaction
zinc oxide
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19066983A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成男
Tetsuya Imai
哲也 今井
Hiroshi Fujita
浩 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19066983A priority Critical patent/JPS6082137A/en
Publication of JPS6082137A publication Critical patent/JPS6082137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a titled catalyst having high activity at low temp. and long life whereby H2 and CO are produced highly selectively by depositing at least one kind of noble metal on the alumina carrier previously covered with zinc oxide and/or chromium oxide. CONSTITUTION:At least one kind of noble metal such as platinium and Pd is deposited on the alumina carrier previously covered with zinc oxide and/or chromium oxide. The amount of zinc oxide and/or chromium oxide covering the alumina carrier is preferably within the range of 0.05-50wt%. The deposited amount of at least one kind of noble metal such as platinium and Pd is preferably within the range of 0.01-10wt%. The catalyst obtained by said process is highly selective for the reaction wherein methanol is decomposed to the gas containing H2 and CO, and is highly active and has extremely excellent durability.

Description

【発明の詳細な説明】 本発明はメタノ−、ル改質用触媒に闇するものである。[Detailed description of the invention] The present invention is directed to a catalyst for reforming methanol and alcohol.

更に詳しくはメタノールを水素と一酸化炭素を含有する
ガスに改質する方法において、水系と一酸化炭素を選択
的に生成させ低温で高活性かつ長寿命の触媒を提供する
ものである。
More specifically, in a method for reforming methanol into a gas containing hydrogen and carbon monoxide, the present invention selectively generates water and carbon monoxide, and provides a highly active and long-life catalyst at low temperatures.

メタノールは石炭、天然ガスなどから合成ガスを経由し
て大規検に製造することができ、しかも楢送が容易であ
ることから、将来、石油に代るエネルギー蝕、あるいは
種々化学工業原料として大きな関心がもたれている。
Methanol can be produced on a large scale from coal, natural gas, etc. via synthetic gas, and is easy to transport, so it is of great interest in the future as an energy source to replace petroleum or as a raw material for various chemical industries. is leaning.

その利用法の一つとして、メタノールを水素と一酸化炭
素をよむガスに分解し、これを自動軍用無公害燃料、あ
るいは還元ガス製造用原料として、ffl用する方法が
ある。
One method of using it is to decompose methanol into a gas containing hydrogen and carbon monoxide, and use this as a non-polluting fuel for automatic military use or as a raw material for producing reducing gas.

一方、この分解ガスから水素を分離し、この水素、t−
燃料電池発電用燃料として、また石油稍裂工菓における
各種有機化合物の氷菓化などの水嵩鴎として利用でき、
−e化炭素についても各種有機化合物のカルボニル化プ
ロセスにfit /I’1できる。
On the other hand, hydrogen is separated from this cracked gas, and this hydrogen, t-
It can be used as a fuel for fuel cell power generation, and as a water molasses for making frozen confectionery from various organic compounds at Sekishu Koka.
-E carbon can also be used in the carbonylation process of various organic compounds.

メタノールの分解反応は熱力学的には比較的低温で起こ
りうるが、これを経済的に行わせるためには触媒の存在
が不可欠である。
Thermodynamically, the decomposition reaction of methanol can occur at relatively low temperatures, but the presence of a catalyst is essential to make it economical.

従来、メタノールを分解する触媒としてはアルミナ(以
下Al2O3と記す)などの担体に白金などの白金属元
素又は銅、ニッケル、クロム、亜鉛などの卑金属元素及
びその酸化物などを担持した触媒が提案されているが、
これらの触媒は低温活性に乏しく、耐熱性がなく、また
寿茄が短いなど、現在までのところ多くの問題点を残し
ている。
Conventionally, catalysts for decomposing methanol have been proposed in which platinum metal elements such as platinum or base metal elements such as copper, nickel, chromium, zinc, and their oxides are supported on a carrier such as alumina (hereinafter referred to as Al2O3). Although,
These catalysts still have many problems to date, such as poor low-temperature activity, lack of heat resistance, and short lifespan.

上記従来の触媒の中で、例えばr −AJ?203に白
金を担持した触媒については、目的の下記反応ののみで
なく、メタン、炭酸ガス、水及びエーテル、アルデヒド
等の生成する下記副反応■が起りやすいという問題があ
る。
Among the above conventional catalysts, for example, r -AJ? A problem with the catalyst in which platinum is supported on 203 is that it tends to cause not only the desired reaction described below, but also the following side reaction (2) in which methane, carbon dioxide, water, ether, aldehyde, etc. are produced.

反応■ OHOH−一→00 + 2H2 反応の CH30H+ H2−−→CH4+H2O0H30H+
C10−−→CH4+0020H30H−一→イaa3
oaH3+34H2゜0H30H−−→C十H2+H2
0 上記反応のうち■はメタノール分解の主反応で、この際
生成した分解ガスは分解反応の吸熱蛍相自分(約22 
Kcal/mol)だけ分解ガスの発熱址が増加すると
いう利点があり、熱効率改善につながる。
Reaction ■ OHOH-1→00 + 2H2 Reaction CH30H+ H2--→CH4+H2O0H30H+
C10--→CH4+0020H30H-1→aa3
oaH3+34H2゜0H30H--→C0H2+H2
0 Of the above reactions, ■ is the main reaction of methanol decomposition, and the decomposition gas generated at this time is the endothermic fluorescent phase of the decomposition reaction (approximately 22
This has the advantage that the exothermic power of the cracked gas increases by Kcal/mol), leading to improved thermal efficiency.

しかし、反応■のような副反応が起ると、この反応はい
ずれも発熱反応であるため、熱効率の面からはむしろ損
失となる。
However, if a side reaction such as reaction (2) occurs, this reaction is an exothermic reaction, and therefore results in a loss in terms of thermal efficiency.

さしに、この分解ガスを各種プロセスの水素諒などに利
用する場合、反応のによって副生ずる水、エーテル類な
どは分離精製を国難にする要因となる。
Indeed, when this cracked gas is used to produce hydrogen in various processes, the water and ethers produced as by-products of the reaction pose a national problem in separation and purification.

また、反応■のうち、カーボン生成反応は、触媒の劣化
あるいはりアクタ−の閉塞などをきたし、長期安定操業
の妨げとなる。
Furthermore, among reactions (2), the carbon production reaction causes deterioration of the catalyst or clogging of the actuator, which impedes long-term stable operation.

そこで本発明者らは、上記の問題を解決すべく、アルミ
ナと活性金属との間に第三物質を介在せしめることによ
って、即ちアルミナにあらかじめ酸化亜鉛又は酸化クロ
ムを担持し、通常酸性触媒として作用するγ−A120
5を塩基性の性質に変換させ、脱水素反応を起こさせれ
ば、副反応が抑制されることに着目し、種々の夾験検討
を行った結果、アルミナをあらかじめ副反応を抑制する
能力のある酸化亜鉛又は酸化クロムで被覆し、この上に
白金、パラジウムなどの貴金属を担持させた触媒が、メ
タノールの分解反応において、活性、選択性とも極めて
優れていることを見出し、本発明を完成するに至った。
Therefore, in order to solve the above problem, the present inventors interposed a third substance between alumina and an active metal. In other words, zinc oxide or chromium oxide was supported on alumina in advance, and it usually acts as an acidic catalyst. γ-A120
Focusing on the fact that side reactions can be suppressed by converting 5 into basic properties and causing a dehydrogenation reaction, we conducted various experimental studies and found that alumina has the ability to suppress side reactions in advance. It was discovered that a catalyst coated with zinc oxide or chromium oxide and on which noble metals such as platinum and palladium are supported has extremely excellent activity and selectivity in the methanol decomposition reaction, and in completing the present invention. It's arrived.

すなわち本発明は、メタノール分解用触媒として、あら
かじめ酸化亜鉛及び/又は酸化クロムで被覆したアルミ
ナ担体上に白金、パラジウムなどの貴金属の一種以上を
担持させたことを特徴とする触媒に関するものである。
That is, the present invention relates to a catalyst for methanol decomposition, characterized in that one or more noble metals such as platinum and palladium are supported on an alumina carrier coated in advance with zinc oxide and/or chromium oxide.

アルミナ担体を被覆する酸化亜鉛及び/又は酸化クロム
の箪は、0.05〜50重量%の範囲が好ましく、白金
、パラジウムなどの貴金属の一種以上の担持量は0.0
1〜10重量%の範囲が好ましい。
The amount of zinc oxide and/or chromium oxide that coats the alumina support is preferably in the range of 0.05 to 50% by weight, and the amount of one or more noble metals such as platinum and palladium supported is 0.0%.
A range of 1 to 10% by weight is preferred.

ここで酸化亜鉛及び/又は酸化クロムをアルミナに被覆
するには、アルミナを亜鉛及び/又はクロムの硝酸塩水
溶液に浸漬したのち、焼成することで容易に得られる。
Here, coating alumina with zinc oxide and/or chromium oxide can be easily obtained by immersing alumina in an aqueous solution of zinc and/or chromium nitrate and then firing.

次に、このようにして得られた担体に貴金属を担持させ
る方法は従来から用いられている方法で問題なく1例え
ば貴金属の硝酸塩、塩化物。
Next, the method of supporting the noble metal on the carrier thus obtained can be any conventional method without any problems, such as nitrate or chloride of the noble metal.

アンミン錯体などの化合物の水溶液に担体を浸漬した後
、焼成し、さらにそれを水素還元処理する方法等が適用
される。
A method is applied in which the carrier is immersed in an aqueous solution of a compound such as an ammine complex, calcined, and then treated with hydrogen reduction.

以上のようにして得られた触媒は、メタノールを水素と
一酸化炭素を含むガスに分解する反応に対し、高選択性
で、かつ活性が高(、耐久性にも極めて優れた性能を有
するものである。
The catalyst obtained as described above has high selectivity and activity (and extremely high durability) for the reaction that decomposes methanol into gases containing hydrogen and carbon monoxide. It is.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例1〕 粒径2へ4■のγ−A/203 からなるペレットを硝
酸亜鉛の水溶液に浸漬後、乾燥し、350℃で6時間焼
成して、アルミナに対してZnOが5重量%担持された
担体を得た。
[Example 1] Pellets made of γ-A/203 with a particle size of 2 to 4 μm were immersed in an aqueous solution of zinc nitrate, dried, and calcined at 350°C for 6 hours to reduce ZnO to 5% by weight based on alumina. A supported carrier was obtained.

このようにして得られた担体をテトラアンミンニ塩化白
金(Pt(NH,)4c/2〕の水溶液に浸漬し。
The carrier thus obtained was immersed in an aqueous solution of tetraammine diplatinum chloride (Pt(NH,)4c/2).

乾燥後500℃で3時間焼成して、0.5重量%の白金
を担持し、しかる後400℃で6時間。
After drying, it was fired at 500°C for 3 hours to support 0.5% by weight of platinum, and then at 400°C for 6 hours.

4%水素気流中で還元して触媒1を調製した。Catalyst 1 was prepared by reduction in a 4% hydrogen stream.

この触媒1につき表1に示す条件で活性評価試験を行い
1表2の結果を得た。
This catalyst 1 was subjected to an activity evaluation test under the conditions shown in Table 1, and the results shown in Table 1 and Table 2 were obtained.

なお比較触媒として、従来のアルミナ411体に白金を
0.5重量%担持した触媒を調製し1表1の条件(ただ
し反応温度400℃のみ)で活性評価試験を行った。こ
の結果を表2に合せて示した。
As a comparative catalyst, a conventional catalyst in which 0.5% by weight of platinum was supported on 411 pieces of alumina was prepared, and an activity evaluation test was conducted under the conditions shown in Table 1 (however, only at a reaction temperature of 400° C.). The results are also shown in Table 2.

表1 表2 〔実施例2〕 実施例1でI!III製した触媒1と同じ方法で、zn
Oの濃度それぞれ0.2.1.0 、5.0%5.0.
10爪蓋%忙なるよう担持し、仁れを塩化口金は水溶液
に決直し、水素還元処理を行って白金が0.3重量%に
なるように担持した触1IX2〜6を調製した。
Table 1 Table 2 [Example 2] In Example 1, I! In the same manner as Catalyst 1 prepared by
The concentration of O is 0.2, 1.0 and 5.0%, respectively.
Samples 1IX2-6 were prepared in which platinum was supported at a concentration of 10% by weight, and platinum was supported at 0.3% by weight by using an aqueous solution of chloride and hydrogen reduction treatment.

これらの触媒について、反応温度を400Cにした以外
は実施例10表1に示す条件で活性評価試験を行い、表
3の結果を得た。
These catalysts were subjected to activity evaluation tests under the conditions shown in Table 1 of Example 10, except that the reaction temperature was 400C, and the results shown in Table 3 were obtained.

表3 〔実施例3〕 5重に%のar2o3を担持したアルミナ−Cr2O3
担体に、白金濃度が0.1.0.3.0.5.1重蓋%
になるよう担持した触媒7〜10、及びパラジウム濃度
が0.1.0.5重量%になるよう担持した触媒11.
12を自製した。また、ZnOと0r203f各々5X
蓋%担持したアルミナ−2,0・Cr2O3担体に白金
一度が0.5重量%になるように担持した触媒13′j
t調製した。
Table 3 [Example 3] Alumina-Cr2O3 carrying 5% ar2O3
The carrier has a platinum concentration of 0.1.0.3.0.5.1%.
Catalysts 7 to 10 were supported so that the palladium concentration was 0.1.0.5% by weight, and Catalyst 11.
I made 12 myself. Also, ZnO and 0r203f each 5X
Catalyst 13'j in which 0.5% by weight of platinum was supported on an alumina-2,0.Cr2O3 carrier supported by a lid%.
t was prepared.

これらの触媒7〜13について、反応源Kを400Cに
した以外は実施例10表1に示す条件で活性評価試験を
行い、表4の結果を得た。
Regarding these catalysts 7 to 13, an activity evaluation test was conducted under the conditions shown in Table 1 of Example 10, except that the reaction source K was changed to 400C, and the results shown in Table 4 were obtained.

表4 〔実施例4〕 実施例1でW・IJ製した触媒1t−ステンレス製の反
応管に5 cc充てんし、400Cでメタノールを5C
C/h連続供柑し、800時間の耐久住試味を行った。
Table 4 [Example 4] 1 ton of catalyst made by W/IJ in Example 1 - 5 cc was filled in a stainless steel reaction tube, and methanol was heated to 5C at 400C.
A continuous test was carried out for 800 hours by continuously serving C/h.

この結果メタノール反応率及び分解ガス組成とも初期と
殆んど変化がなく、触媒表面へのカーボン析出もないこ
とを確認した。
As a result, it was confirmed that there was almost no change in the methanol reaction rate and cracked gas composition from the initial stage, and that there was no carbon precipitation on the catalyst surface.

〔実施例5〕 実施例1の触媒1においてγ−AI!2030代わりに
α−A/203t−用いたほかは同じ方法で0.5重電
%の白金を担持した触媒j4t−調製し、実施例1と同
じ方法で活性評価試験を行った結果、触a1と同じ性能
が得られた。
[Example 5] In catalyst 1 of Example 1, γ-AI! A catalyst j4t supported with 0.5% heavy charge of platinum was prepared in the same manner except that α-A/203t was used instead of 2030, and an activity evaluation test was conducted in the same manner as in Example 1. The same performance was obtained.

以上の実施例は粒状触媒について行ったものであるが、
触媒の形状は特に限定するものではなく、ハニカム状、
板状などの形状で用いて良いことは云うまでもない。
The above examples were conducted using granular catalysts, but
The shape of the catalyst is not particularly limited, and may be honeycomb,
Needless to say, it may be used in a shape such as a plate.

また以上の実施例はメタノール単独の場合について行っ
たものであるが、水蒸気、空気などを含有したガスとの
共存下でメタノール分Mを行うこともできる。
Furthermore, although the above examples were carried out using methanol alone, it is also possible to carry out the methanol fraction M in the coexistence of a gas containing water vapor, air, or the like.

復代理人 内 1) 明 復代理人 萩 原 梶 −Among the sub-agents: 1) Akira Sub-agent Hagi Hara Kaji -

Claims (1)

【特許請求の範囲】[Claims] アルミナをあらかじめ酸化亜鉛及び/又は酸化クロムで
被覆した担体上に貴金属の一徨以上を担持させたことを
%倣とするメタノール改質用触媒。
A catalyst for methanol reforming that is based on a carrier coated with alumina in advance with zinc oxide and/or chromium oxide, with at least one amount of a noble metal supported thereon.
JP19066983A 1983-10-14 1983-10-14 Reforming catalyst of methanol Pending JPS6082137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19066983A JPS6082137A (en) 1983-10-14 1983-10-14 Reforming catalyst of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19066983A JPS6082137A (en) 1983-10-14 1983-10-14 Reforming catalyst of methanol

Publications (1)

Publication Number Publication Date
JPS6082137A true JPS6082137A (en) 1985-05-10

Family

ID=16261920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19066983A Pending JPS6082137A (en) 1983-10-14 1983-10-14 Reforming catalyst of methanol

Country Status (1)

Country Link
JP (1) JPS6082137A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413449B1 (en) 1999-05-22 2002-07-02 Degussa-Huls Aktiengesellschaft Method of using catalyst for steam reforming of alcohols
WO2002066370A2 (en) * 2001-02-16 2002-08-29 Battelle Memorial Institute Reforming catalysts and methods of alcohol steam reforming
EP1312412A2 (en) * 2001-11-20 2003-05-21 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen-containing gas
EP1312413A2 (en) * 2001-11-20 2003-05-21 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen-containing gas
US6936237B2 (en) 1999-08-17 2005-08-30 Battelle Memorial Institute Reforming catalysts and methods of alcohol steam reforming
US7208136B2 (en) 2003-05-16 2007-04-24 Battelle Memorial Institute Alcohol steam reforming catalysts and methods of alcohol steam reforming
JP2007244963A (en) * 2006-03-14 2007-09-27 Ihi Corp Methanol reforming catalyst, its manufacturing method, methanol reforming method and methanol reformer
JP2008307438A (en) * 2007-06-12 2008-12-25 Casio Comput Co Ltd Catalyst layer, reactor and method for manufacturing this reactor
WO2021214955A1 (en) * 2020-04-23 2021-10-28 千代田化工建設株式会社 Eggshell type platinum-loaded alumina catalyst, method for producing same, and use of same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413449B1 (en) 1999-05-22 2002-07-02 Degussa-Huls Aktiengesellschaft Method of using catalyst for steam reforming of alcohols
US6936237B2 (en) 1999-08-17 2005-08-30 Battelle Memorial Institute Reforming catalysts and methods of alcohol steam reforming
WO2002066370A2 (en) * 2001-02-16 2002-08-29 Battelle Memorial Institute Reforming catalysts and methods of alcohol steam reforming
WO2002066370A3 (en) * 2001-02-16 2003-04-03 Battelle Memorial Institute Reforming catalysts and methods of alcohol steam reforming
EP1312412A2 (en) * 2001-11-20 2003-05-21 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen-containing gas
EP1312412A3 (en) * 2001-11-20 2004-04-21 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen-containing gas
EP1312413A3 (en) * 2001-11-20 2004-04-21 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen-containing gas
US6916458B2 (en) 2001-11-20 2005-07-12 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen-containing gas
US6926881B2 (en) 2001-11-20 2005-08-09 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen-containing gas
EP1312413A2 (en) * 2001-11-20 2003-05-21 Mitsubishi Gas Chemical Company, Inc. Process for producing hydrogen-containing gas
US7208136B2 (en) 2003-05-16 2007-04-24 Battelle Memorial Institute Alcohol steam reforming catalysts and methods of alcohol steam reforming
JP2007244963A (en) * 2006-03-14 2007-09-27 Ihi Corp Methanol reforming catalyst, its manufacturing method, methanol reforming method and methanol reformer
JP2008307438A (en) * 2007-06-12 2008-12-25 Casio Comput Co Ltd Catalyst layer, reactor and method for manufacturing this reactor
WO2021214955A1 (en) * 2020-04-23 2021-10-28 千代田化工建設株式会社 Eggshell type platinum-loaded alumina catalyst, method for producing same, and use of same
CN115485063A (en) * 2020-04-23 2022-12-16 千代田化工建设株式会社 Eggshell type platinum-loaded alumina catalyst, preparation method and application method thereof

Similar Documents

Publication Publication Date Title
CA2883503C (en) Catalyst for producing hydrogen and method for producing hydrogen
CA2341068C (en) A method for catalytic conversion of carbon monoxide in a hydrogen-containing gas mixture with improved cold start behaviour and a catalyst therefor
US6677068B2 (en) Catalyst for selective oxidation of carbon monoxide present in hydrogen-containing gases, and elimination of carbon monoxide and solid polymer electrolyte fuel cell system which make use of the catalyst
WO2021235443A1 (en) Reaction system, method for collecting solid carbon, method for producing gas containing hydrogen, catalyst set, and catalyst for solid carbon collection
JPS6082137A (en) Reforming catalyst of methanol
US6916458B2 (en) Process for producing hydrogen-containing gas
KR100976789B1 (en) Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same
RU2491118C1 (en) Method of making catalyst for production of synthesis gas, catalyst thus made and method of producing synthesis gas with its application
WO2014182020A1 (en) Monolith catalyst for carbon dioxide reforming reaction, production method for same, and production method for synthesis gas using same
JPS6082136A (en) Reforming catalyst of methanol
JPS60202740A (en) Catalyst for reforming methanol
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JPS60122038A (en) Catalyst for reforming methanol
JPS60137434A (en) Catalyst for reforming methanol
JPS6241063B2 (en)
JPS59199043A (en) Catalyst for reforming methanol
JPH02307802A (en) Method for reforming methanol
JP4831800B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JPH0347895B2 (en)
JPS6235814B2 (en)
JPS637842A (en) Catalyst for reforming methanol
RU2677875C1 (en) Catalyst and method for obtaining gas mixture enriched by hydrogen from dimethyl ether and air
JPS59189937A (en) Preparation of steam reforming catalyst of methanol
KR100293200B1 (en) Nickel based catalyst used in carbon dioxide reforming(cdr) reaction of methane and reforming method using the same
JPS63126551A (en) Catalyst for reforming methanol