JPS59199043A - Catalyst for reforming methanol - Google Patents

Catalyst for reforming methanol

Info

Publication number
JPS59199043A
JPS59199043A JP7307983A JP7307983A JPS59199043A JP S59199043 A JPS59199043 A JP S59199043A JP 7307983 A JP7307983 A JP 7307983A JP 7307983 A JP7307983 A JP 7307983A JP S59199043 A JPS59199043 A JP S59199043A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
reaction
carrier
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7307983A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成男
Tetsuya Imai
哲也 今井
Hiroshi Fujita
浩 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7307983A priority Critical patent/JPS59199043A/en
Publication of JPS59199043A publication Critical patent/JPS59199043A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst having high selectivity, activity and durability by depositing Pt, Pd, etc. on a carrier consisting of alumina coated previously with alkali metal oxide. CONSTITUTION:Alumina is previously coated with an alkali metal oxide (e.g. K2O) and at least one metal selected from Pt and Pd is deposited on the obtd. carrier. Preferred concn. of the alkali metal oxide to be deposited on the carrier is 0.01-1.0g (as K2O or Na2O) per 1g alumina. Preferred amt. of Pt or Pd is 0.001-0.1g per 1g alumina. The obtd. catalyst has high selectivity and high activity for a reaction for decomposing methanol to a gas contg. CO and H2, and the durability is also excellent.

Description

【発明の詳細な説明】 本発明はメタノール改質用触媒に関するものである。[Detailed description of the invention] The present invention relates to a methanol reforming catalyst.

更に詳しくはメタノールを水素と一酸化炭素を含有する
ガスに改質する方法において、水素と一酸化炭素を選択
的に生成させる低温で高活性かつ長寿命の触媒を提供せ
んとするものである0 メタノールは、石炭、天然ガスなどから合成ガスを経由
して大規模に製造することができ、しかも輸送が容易で
あることから、将来1石油に代るエネルギー源、あるい
は種々化学工業原料として大きな関心がもたれている。
More specifically, the present invention aims to provide a highly active and long-life catalyst at low temperatures that selectively generates hydrogen and carbon monoxide in a method for reforming methanol into a gas containing hydrogen and carbon monoxide. Methanol can be produced on a large scale from coal, natural gas, etc. via synthetic gas, and is easy to transport, so it is of great interest as an energy source to replace petroleum in the future or as a raw material for various chemical industries. is leaning.

その利用法の一つとして、メタノールを水素と一酸化炭
素を含むガスに分解し、これを自動車用無公害燃料、あ
るいは還元カス製造用原料として利用する方法がある。
One method of using it is to decompose methanol into gas containing hydrogen and carbon monoxide, and use this as a pollution-free fuel for automobiles or as a raw material for producing reduced residue.

一方、この分解ガスから水素を分離し、この水素を燃料
電池発電用燃料としで、又、石油精製工業における各種
有機化合物の水素化などの水素源として、利用でき、−
酸化炭素についても各種有機化合物のカルボニル化プロ
セスに利用できる。
On the other hand, hydrogen can be separated from this cracked gas and used as a fuel for fuel cell power generation or as a hydrogen source for hydrogenation of various organic compounds in the oil refining industry.
Carbon oxide can also be used in the carbonylation process of various organic compounds.

メタノールの分解反応は、熱力学的には比較的低温で起
りうるが、これを経済的に行わせるためには、触媒の存
在が不可欠である。
Although the decomposition reaction of methanol can occur thermodynamically at relatively low temperatures, the presence of a catalyst is essential in order to carry it out economically.

従来、メタノールを分解する触媒としては、アルミナ(
以下、lu2 o3と記す)などの担体に、白金などの
白金属元素、又は銅、ニッケル、り −ロム、亜鉛など
の卑金属元素及びその酸化物などを担持した触媒が提案
されているが、これらの触媒は、低温活性に乏しく、耐
熱性がない、また寿命が短いなど、現在までのところ多
くの問題点を残している。
Traditionally, alumina (
Catalysts have been proposed in which platinum metal elements such as platinum, or base metal elements such as copper, nickel, lithium, zinc, and their oxides are supported on a carrier such as lu2 o3. To date, these catalysts still have many problems, including poor low-temperature activity, lack of heat resistance, and short lifespan.

上記、従来の触媒の中で、例えば7− At2 o、。Among the conventional catalysts mentioned above, for example, 7-At2o.

に白金を担持した触媒については、下記の目的の反応■
のみでなく、メタン、炭酸ガス、水。
For catalysts supported with platinum, the following desired reaction ■
as well as methane, carbon dioxide, and water.

及びエーテル、アルデヒド等が生成する副反応■が起シ
やずいという問題がある。
There is also the problem that side reactions (2) in which ethers, aldehydes, etc. are produced occur.

反応■ CH30HCO+2H2 反応■ CH30H+ H2→CH4+ H20C由OH+C’
O→CH4+ C02 CH30H% C1(30CH3+ 3AH20CH3
OF(C+ H2+ H20 上記反応のうち、■はメタノール分解の主反応で、この
際、生成した分解ガスは、分解反応の吸熱量相当分(約
22に7/mot)だけ分解ガスの発熱量が増加すると
いう利点があシ、熱効率改善につながる。
Reaction■ CH30HCO+2H2 Reaction■ CH30H+ H2→CH4+ OH+C' from H20C
O→CH4+ C02 CH30H% C1(30CH3+ 3AH20CH3
OF(C+ H2+ H20 Among the above reactions, ■ is the main reaction of methanol decomposition, and at this time, the generated cracked gas has a calorific value equivalent to the endothermic amount of the cracked reaction (approximately 22 to 7/mot). This has the advantage of increasing heat efficiency, leading to improved thermal efficiency.

しかし、反応■のような副反応が起ると、この反応はい
ずれも発熱反応であるため、発熱量相当分だけ副生物の
発熱量が減少し、熱効率の面からはむしろ損失となる。
However, when a side reaction such as reaction (2) occurs, since all of these reactions are exothermic, the calorific value of the by-product decreases by the amount equivalent to the calorific value, which is rather a loss in terms of thermal efficiency.

さらに1この分解ガスを各種プロセスの水素源などに利
用する場合、反応■によって副生ずる水、エーテル類な
どは分離精製を困難にする要因となる。父、反応■のう
ち、カーボッ生成反応は、触媒の劣化あるいはりアクタ
−の閉塞などを来し、長期安定操業の妨けとなる。
Furthermore, when this cracked gas is used as a hydrogen source in various processes, water, ethers, etc. produced as by-products in reaction (1) become a factor that makes separation and purification difficult. Of the two reactions, the carbon formation reaction causes deterioration of the catalyst and blockage of the reactor, which impedes long-term stable operation.

そこで本発明者らは上記の問題fr:解決すべく研究を
重ねた結果、アルミナと活性金属との間に第三物質を介
在せしめることによって、即ちアルミナにあらかじめア
ルカリ金属酸化物を担持させることによって、通常、酸
性触媒として作用するr −At203  を塩基性の
性質に変換はせ、脱水素反応を起させれば、副反比:か
抑制されるという知見を得た。即ち、酸性触媒の場合は
、触媒活性点であるプロトンH+がメタノールのOH−
と結合し、C−0結合の切断が生じ、2 CH30H→
CH30CHs + H2Oなる脱水反応を生起してエ
ーテルを生成する。
Therefore, the present inventors conducted repeated research to solve the above problem fr: By interposing a third substance between the alumina and the active metal, that is, by making the alumina support an alkali metal oxide in advance. It has been found that by converting r -At203, which usually acts as an acidic catalyst, into a basic property and causing a dehydrogenation reaction, the side reaction ratio can be suppressed. That is, in the case of an acidic catalyst, the proton H+, which is the active site of the catalyst, is the OH− of methanol.
2 CH30H→
A dehydration reaction of CH30CHs + H2O occurs to produce ether.

これに対し、塩基性触媒の場合は、斯る脱水反応は生ぜ
ず、 CH30H−+HCH○+H2 々る脱水素反応を生起し、該反応で生成されたアルデヒ
ドが引続いて HCHO→H2+ C0 なる反応によシ分解する。従って、脱水素反応を起こさ
せれば、前記■の副反応を抑制することができるのであ
る。
On the other hand, in the case of a basic catalyst, such a dehydration reaction does not occur, but a dehydrogenation reaction of CH30H−+HCH○+H2 occurs, and the aldehyde produced in this reaction subsequently undergoes a reaction of HCHO→H2+ C0. Break it down into parts. Therefore, by allowing the dehydrogenation reaction to occur, it is possible to suppress the side reaction (2) above.

本発明者らは、貼る知見の下に、種々の実験検討を行っ
た結果、アルミナをあらかじめ副反応を抑制する能力の
あるアルカリ金属酸化物で被覆し、この上に白金、パラ
ジウムなどの貴金属を担持させた触媒がメタノールの分
解反応において活性選択性とも極めて優れていることを
見出し本発明を完成するに至った。
Based on this knowledge, the present inventors conducted various experimental studies, and found that alumina was coated in advance with an alkali metal oxide that has the ability to suppress side reactions, and noble metals such as platinum and palladium were coated on top of this. The present invention was completed based on the discovery that the supported catalyst has extremely excellent activity selectivity in the methanol decomposition reaction.

本発明方法は、メタノール分解用触媒として、あらかじ
めアルカリ金属酸化物で被覆したアルミナ担体上に白金
、パラジウムなどの貴金属を担持させた触媒を用いるこ
とを特徴としている。
The method of the present invention is characterized in that a catalyst in which a noble metal such as platinum or palladium is supported on an alumina carrier coated with an alkali metal oxide in advance is used as a methanol decomposition catalyst.

ここでアルカリ金属酸化物とは、周期律表のIa族の元
素の酸化物であシ、例えばに20. Na2O。
Here, the alkali metal oxide is an oxide of an element in group Ia of the periodic table, for example, 20. Na2O.

などが挙けられる。これらをアルミナに被覆するには、
アルミナを、アルカリ金属の硝酸塩水溶液に浸漬したの
ち、焼成することで容易に得られる。
Examples include. To coat these with alumina,
It can be easily obtained by immersing alumina in an aqueous alkali metal nitrate solution and then firing it.

アルミナに担持するアルカリ金属酸化物の濃度は、アル
ミナ12に対しに20又はNano  として0.01
〜0.12、好ましくは0.03〜0.057が好適で
あり、またPt、 P(i の量はアルミナ1グに対し
0.001〜0.01S’、好寸しくは0.003〜0
.011Fが好適である。
The concentration of alkali metal oxide supported on alumina is 20 for alumina 12 or 0.01 for nano.
-0.12, preferably 0.03-0.057, and the amount of Pt, P(i) is 0.001-0.01S', preferably 0.003-0.01S' per 1 g of alumina. 0
.. 011F is preferred.

次にこのようにして得られた担体に貴金属を担持させる
方法は、従来から用いられている方法で問題なく、例え
ば貴金属の硝酸塩、塩化物。
Next, the method of supporting the noble metal on the support obtained in this way can be any conventionally used method, such as noble metal nitrate or chloride.

アンミン錯体などの化合物の水溶液に担体を浸漬した後
、焼成し、さらにそれを水素還元処理すれば貴金属が担
持された触媒が得られる。
A catalyst on which noble metals are supported can be obtained by immersing the carrier in an aqueous solution of a compound such as an ammine complex, calcining it, and then subjecting it to hydrogen reduction treatment.

以上のようにして得られた触媒は、メタノ−ルを水素と
一酸化炭素を含むガス九分解する反応に対し、高選択性
で、かつ活性が一高<、耐久性にも極めて優れた性能を
有するものである。
The catalyst obtained as described above has high selectivity, high activity, and extremely excellent durability for the reaction of decomposing methanol into gases containing hydrogen and carbon monoxide. It has the following.

以下、実施例によυ本発明を具体的に説明する0 〔実施例1〕 粒径2〜4咽の7  /’、4zOs  からなるペレ
ットを硝酸カリウムの水溶液に浸漬後、乾燥し、500
℃で3時間焼成してアルミナに対してに20が5重量%
担持された担体を得た。
[Example 1] A pellet consisting of 4zOs with a particle size of 2 to 4 mm was immersed in an aqueous solution of potassium nitrate, dried, and
After firing at ℃ for 3 hours, 20 is 5% by weight based on alumina.
A supported carrier was obtained.

このようにして得られた担体を、テトラアンミンニ塩化
白金〔化学式P t (NH3)4 C1z :)の水
溶液に浸漬し、乾燥後500℃で3時間焼成して、0.
5重量%の白金を担持した触媒1を調製した。
The support thus obtained was immersed in an aqueous solution of tetraammine diplatinum chloride [chemical formula P t (NH3) 4 C1z:], dried, and then calcined at 500°C for 3 hours to give a 0.
Catalyst 1 carrying 5% by weight of platinum was prepared.

この触媒を400℃で3時間、4チ水素気流中で還元し
、表1に示す条件で活性評価試験を行い、表2の結果を
得た。
This catalyst was reduced at 400° C. for 3 hours in a hydrogen stream, and an activity evaluation test was conducted under the conditions shown in Table 1, yielding the results shown in Table 2.

なお、比較触媒として、従来のアルミナ担体に白金を0
.5重量%担持した触媒を調製し、反応温度400℃で
の活性評価試験を行った結果を表2併せて示しだ。
As a comparative catalyst, platinum was added to a conventional alumina carrier.
.. Table 2 also shows the results of preparing a catalyst supported at 5% by weight and conducting an activity evaluation test at a reaction temperature of 400°C.

表  1 表  2 〔実施例2〕 実施例1で調製した触媒1と同じ方法で、K2Oの濃度
がそれぞれ0.2 、 1.0 、 3.0 、 5.
0 。
Table 1 Table 2 [Example 2] Using the same method as Catalyst 1 prepared in Example 1, the concentrations of K2O were 0.2, 1.0, 3.0, and 5.
0.

10重量1になるように担持し、これを塩化白金酸水溶
液に浸漬し、水素還元処理を行って、白金が0.3重量
%になるように担持した触媒2〜6を調製した。
Catalysts 2 to 6 were prepared in which platinum was supported in an amount of 0.3% by weight by supporting the platinum in an amount of 10% by weight, immersing it in an aqueous solution of chloroplatinic acid, and performing a hydrogen reduction treatment.

これらの触媒について、反応温度を400℃にした以外
は表1に示す条件で活性評価試験を行い、表3の結果を
得た。
Regarding these catalysts, an activity evaluation test was conducted under the conditions shown in Table 1 except that the reaction temperature was 400° C., and the results shown in Table 3 were obtained.

表  3 〔実施例3〕 5重量%のに20を担持したアルミナ−に20担体に、
白金濃度が0.1 、 0.3 、 0.5 、 1重
量%になるように担持した触媒7〜10、及びパラジウ
ム濃度が0.1,0.5重量%になるように担持した触
媒11.12を調製した。
Table 3 [Example 3] 5% by weight of alumina carrying 20 on a 20 carrier,
Catalysts 7 to 10 supported so that the platinum concentration was 0.1, 0.3, 0.5, and 1% by weight, and Catalyst 11 supported so that the palladium concentration was 0.1 and 0.5% by weight .12 was prepared.

これらの触媒について、反応温度を400℃にした以外
は表1に示す条件と同じ方法で活性評価試験を行い、表
4の結果を得た0 表  4 〔実施例4〕 実施例1で用いた7 −kt203  ペレットを硝酸
す) IJウムの水溶液に浸漬後、乾燥し、500℃で
5時間焼成して、アルミナに対してNa20か5重量係
となるように担持された担体を得た。
These catalysts were subjected to activity evaluation tests under the same conditions as shown in Table 1, except that the reaction temperature was 400°C, and the results shown in Table 4 were obtained. 7-kt203 pellets were immersed in an aqueous solution of IJum, dried, and fired at 500° C. for 5 hours to obtain a carrier in which Na was supported at a weight ratio of 20 to 5 to alumina.

この担体に実施例1と同じ方法で0.5重量係の白金を
担持させた触媒13を調製し、実施例1と同じ方法で活
性評価試験を行つプヒ結果、触媒1と同様の性能が得ら
れた。
Catalyst 13 was prepared in which 0.5 weight percent of platinum was supported on this carrier in the same manner as in Example 1, and an activity evaluation test was conducted in the same manner as in Example 1. As a result, the same performance as Catalyst 1 was obtained. Obtained.

〔実施例5〕 実施例1で調製した触媒1?、−ステンレス製の反応管
V 5 cc  充てんし、400℃でメタノールを5
 cc / h連続供給し、800時間の耐久性試験を
行った。この結果、メタノール反応率及び分解ガス組成
とも初期と殆んど変化がなく、触媒表面へのカーボン析
出もないことを確昭した。
[Example 5] Catalyst 1 prepared in Example 1? - Fill a stainless steel reaction tube with 5 cc of methanol at 400°C.
A durability test was conducted for 800 hours with continuous supply of cc/h. As a result, it was confirmed that there was almost no change in methanol reaction rate and cracked gas composition from the initial stage, and that there was no carbon precipitation on the catalyst surface.

〔実施例6〕 実施例1の触媒1において、7− A−1z O3ノ代
bシりα−At203  を用いたほかは実施例1と同
じ方法で0.5重量係の白金を担持した触媒14を調製
し、実施例1と同じ方法で活性評価試験を行った結果、
触媒1と同様の性能が得られた。
[Example 6] A catalyst in which 0.5 weight percent of platinum was supported was prepared in the same manner as in Example 1, except that 7-A-1z O3 b-silicon α-At203 was used in Catalyst 1 of Example 1. As a result of preparing 14 and conducting an activity evaluation test in the same manner as in Example 1,
Performance similar to that of catalyst 1 was obtained.

以上の実施例では、粒状触媒について記述しであるが、
触媒の形状を特に限定するものではなく、−・ニカム状
、板状などの形状で用いて良いことは云う壕でもない。
In the above examples, granular catalysts are described, but
There is no particular limitation on the shape of the catalyst, and it is not to be said that it may be used in a nicham shape, a plate shape, or the like.

又、す、」二の実施例ではメタノール却独の場合につい
て記述しているが、水蒸気、空気などを含治したガスと
の共存下でメタノール分解を行わせても良い。
Furthermore, although the second embodiment describes the case where methanol is used alone, methanol decomposition may be carried out in the coexistence of a gas containing water vapor, air, etc.

復代理人  内 1)   明 復代理人  萩 原 亮 −Sub-agent 1) Akira Sub-agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】[Claims] アルミナをあらかじめアルカリ金属酸化物で被覆した担
体上に白金、パラジウムからなる群の一種以上の金属を
担持させたことを特徴とするメタノール改質用触媒。
A methanol reforming catalyst characterized in that one or more metals from the group consisting of platinum and palladium are supported on a carrier in which alumina is coated in advance with an alkali metal oxide.
JP7307983A 1983-04-27 1983-04-27 Catalyst for reforming methanol Pending JPS59199043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7307983A JPS59199043A (en) 1983-04-27 1983-04-27 Catalyst for reforming methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7307983A JPS59199043A (en) 1983-04-27 1983-04-27 Catalyst for reforming methanol

Publications (1)

Publication Number Publication Date
JPS59199043A true JPS59199043A (en) 1984-11-12

Family

ID=13507959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7307983A Pending JPS59199043A (en) 1983-04-27 1983-04-27 Catalyst for reforming methanol

Country Status (1)

Country Link
JP (1) JPS59199043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0133778A2 (en) * 1983-08-06 1985-03-06 The British Petroleum Company p.l.c. Methanol conversion process
JPS62250948A (en) * 1986-04-24 1987-10-31 Agency Of Ind Science & Technol Catalyst for steam reforming of methanol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768140A (en) * 1980-10-13 1982-04-26 Mitsubishi Heavy Ind Ltd Catalyst for modification of methanol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768140A (en) * 1980-10-13 1982-04-26 Mitsubishi Heavy Ind Ltd Catalyst for modification of methanol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0133778A2 (en) * 1983-08-06 1985-03-06 The British Petroleum Company p.l.c. Methanol conversion process
JPS62250948A (en) * 1986-04-24 1987-10-31 Agency Of Ind Science & Technol Catalyst for steam reforming of methanol
JPH0582321B2 (en) * 1986-04-24 1993-11-18 Kogyo Gijutsuin

Similar Documents

Publication Publication Date Title
JP5105420B2 (en) Water-gas shift noble metal catalyst having oxide support modified with rare earth elements
AU2003301440A1 (en) Use of metal supported copper catalysts for reforming alcohols
Navarro et al. Production of hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3 catalyst: Influence of the initial state of the catalyst on the start-up behaviour of the reformer
JP2001347169A (en) Catalyst for production of gaseous hydrogen by oxidative steam reforming reaction of methanol and method for producing the same
US20080241038A1 (en) Preparation of manganese oxide-ferric oxide-supported nano-gold catalyst and using the same
KR100976789B1 (en) Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same
US20080193354A1 (en) Preparation of manganese oxide-cerium oxide-supported nano-gold catalyst and the application thereof
JPS6082137A (en) Reforming catalyst of methanol
JPS60202740A (en) Catalyst for reforming methanol
JPS6082136A (en) Reforming catalyst of methanol
JPS59199043A (en) Catalyst for reforming methanol
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JPH0347894B2 (en)
KR20050079567A (en) Catalyst for water-gas shift reaction of carbon monoxide
JPS60137434A (en) Catalyst for reforming methanol
JPH02307802A (en) Method for reforming methanol
JP3482459B2 (en) Catalyst for producing hydrogen by partial oxidation of methanol and method for producing the same
JPH08176034A (en) Synthesis of methanol
JPH0347895B2 (en)
JPH0425064B2 (en)
JPS637842A (en) Catalyst for reforming methanol
JPS6236001A (en) Reforming method for methanol
RU2677875C1 (en) Catalyst and method for obtaining gas mixture enriched by hydrogen from dimethyl ether and air
JP7388776B2 (en) Catalyst for ammonia synthesis and method for producing ammonia
JPH0371174B2 (en)