JP3482459B2 - Catalyst for producing hydrogen by partial oxidation of methanol and method for producing the same - Google Patents

Catalyst for producing hydrogen by partial oxidation of methanol and method for producing the same

Info

Publication number
JP3482459B2
JP3482459B2 JP2000061037A JP2000061037A JP3482459B2 JP 3482459 B2 JP3482459 B2 JP 3482459B2 JP 2000061037 A JP2000061037 A JP 2000061037A JP 2000061037 A JP2000061037 A JP 2000061037A JP 3482459 B2 JP3482459 B2 JP 3482459B2
Authority
JP
Japan
Prior art keywords
methanol
catalyst
hydrogen gas
cuznal
partial oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000061037A
Other languages
Japanese (ja)
Other versions
JP2001246258A (en
Inventor
憲司 鈴木
スブラマニ ベル
利彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000061037A priority Critical patent/JP3482459B2/en
Publication of JP2001246258A publication Critical patent/JP2001246258A/en
Application granted granted Critical
Publication of JP3482459B2 publication Critical patent/JP3482459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、新規なCuZn
Al酸化物触媒、その製造方法、及びこの触媒を用い
て、メタノールの部分酸化反応により水素を製造する方
法に関するものであり、さらに詳しくは、メタノールの
部分酸化反応による水素の製造法において、COを全く
含まない、あるいは極僅かなCOしか含まない水素ガス
の生成を可能とする、新しいCuZnAl酸化物触媒、
この触媒をハイドロタルサイト様層状複水酸化物から製
造する方法、及びこの触媒を用いて、高い選択率で水素
ガスを製造する方法に関するものである。本発明は、新
規CuZnAl酸化物触媒、この触媒をハイドロタルサ
イト様層状複水酸化物の熱分解により調製する方法、及
びこの触媒を用いたメタノールの空気共存下での部分酸
化反応による水素製造法を提供する。
TECHNICAL FIELD The present invention relates to a novel CuZn.
The present invention relates to an Al oxide catalyst, a method for producing the same, and a method for producing hydrogen by a partial oxidation reaction of methanol using the catalyst. More specifically, in the method for producing hydrogen by a partial oxidation reaction of methanol, CO A new CuZnAl oxide catalyst capable of producing hydrogen gas containing no or very little CO,
The present invention relates to a method for producing this catalyst from a hydrotalcite-like layered double hydroxide, and a method for producing hydrogen gas with high selectivity using this catalyst. The present invention relates to a novel CuZnAl oxide catalyst, a method for preparing this catalyst by thermal decomposition of hydrotalcite-like layered double hydroxide, and a method for producing hydrogen by partial oxidation reaction of methanol using this catalyst in the presence of air. I will provide a.

【0002】[0002]

【従来の技術】化石燃料の枯渇が危惧される中、今日、
化石燃料に変わる新エネルギー源として水素が注目され
ている。水素は燃料電池の燃料となり、電気エネルギー
に変えられる。この場合、発電後の廃棄物は水のみであ
り、地球温暖化対策の点からもクリーンなエネルギー源
である。また、環境に負荷を与える窒素酸化物、イオウ
酸化物、炭化水素等も排出されず、環境に優しいエネル
ギー源である。燃料電池は大型で大出力の固定式及び小
型で軽量の移動式の両方式が有るが、自動車等での使用
が検討されている燃料電池は後者の移動式である。ここ
で問題となるのは、如何にして水素を得るかということ
である。その解決策の一つは、触媒を用いた以下のいづ
れかの反応により、メタノールから水素を得る方法であ
る。 (1)メタノールの分解反応 CH3OH ⇔ 2H2 + CO △H = +92.0kJ/mol (2)メタノールの水蒸気改質反応 CH3OH + H2O ⇔ 3H2 + CO2 △H = +49.4kJ/mol (3)メタノールの部分酸化反応 CH3OH + (1/2)O2 ⇔ 2H2 + CO2 △H = −192.2kJ/mol △H :反応熱
2. Description of the Related Art With the fear of depletion of fossil fuels, today,
Hydrogen is drawing attention as a new energy source that can replace fossil fuels. Hydrogen serves as fuel for the fuel cell and is converted into electrical energy. In this case, the only waste after power generation is water, which is a clean energy source from the viewpoint of global warming countermeasures. In addition, it does not emit nitrogen oxides, sulfur oxides, hydrocarbons, etc., which have an impact on the environment, and is an environmentally friendly energy source. There are both large and large output fixed type fuel cells and small and lightweight mobile type fuel cells, but the latter type is the fuel cell that is being considered for use in automobiles and the like. The problem here is how to obtain hydrogen. One of the solutions is to obtain hydrogen from methanol by any of the following reactions using a catalyst. (1) Decomposition reaction of methanol CH 3 OH ⇔ 2H 2 + CO △ H = + 92.0kJ / mol (2) Steam reforming reaction of methanol CH 3 OH + H 2 O ⇔ 3H 2 + CO 2 △ H = +49.4 kJ / mol (3) Partial oxidation reaction of methanol CH 3 OH + (1/2) O 2 ⇔ 2H 2 + CO 2 △ H = −192.2 kJ / mol △ H: Heat of reaction

【0003】上記反応で、得られた水素を燃料電池に導
入して電気に変換する際、ガス中にCOが痕跡(20p
pm)程度でも含まれると、それが燃料電池のPt電極
にダメージを与え、出力が急激に低下するという問題が
ある。したがって、水素ガス中にはCOが含まれないこ
とが望まれる。ところが、(1)の反応では水素と共に
大量のCOが生成し、(2)の反応でも(1)の反応ほ
どではないが、100ppm以上のCOが生成する。ま
た、(3)の反応でも数10ppmのCOが生成し、そ
のままでは燃料電池の燃料としては使用出来ない。水素
ガス中のCOを除去するために、水蒸気を導入する、水
性ガスシフト(water−gas shift)反応
(WGSR)(4)又は酸化反応(5)が行われるが、
それに伴い、装置の大型化及びコスト高になるという新
たな問題が生じる。この(4)及び(5)の反応式を以
下に示す。 (4)COの水性ガスシフト反応 CO + H2O ⇔ H2 + CO2 (5)COの酸化反応 CO + (1/2)O2 ⇔ CO2
The hydrogen obtained by the above reaction is introduced into a fuel cell.
When entering and converting to electricity, CO traces in the gas (20p
pm) is included in the Pt electrode of a fuel cell.
The damage to the output and the output drops sharply
is there. Therefore, make sure that hydrogen gas does not contain CO.
And is desired. However, in the reaction of (1), along with hydrogen
A large amount of CO is generated, and the reaction of (2) is almost the same as that of (1).
Although not so much, 100 ppm or more of CO is produced. Well
Also, in the reaction of (3), several tens of ppm of CO was produced,
As it is, it cannot be used as fuel for fuel cells. hydrogen
Introduce water vapor to remove CO in the gas, water
Water-gas shift reaction
(WGSR) (4) or oxidation reaction (5) is carried out,
Along with that, the new equipment will increase in size and cost.
Another problem arises. The reaction formulas of (4) and (5) are
Shown below. (4) Water gas shift reaction of CO CO + H2O ⇔ H2  + CO2 (5) CO oxidation reaction CO + (1/2) O2  ⇔ CO2

【0004】したがって、新規触媒の開発によりCOを
発生させない水素製造法が待たれるところである。とこ
ろで、メタノールの部分酸化反応による水素製造方法と
して、CuOZnO触媒を使用する方法がある(T. Hua
ng and S. Wang, Appl. Catal., Vol.24,(1986) p.287.
)。この方法は、Cu:Zn(wt%)比=82:1
8〜7:93にてテスト実施した結果、Cu:Zn=4
0:60の触媒が、反応温度220〜290℃で最も高
活性を示した。しかし、触媒の活性劣化が1時間以内に
急速に生じた。また、酸素/メタノール比の増加と共に
CO濃度が増加した。
Therefore, the development of new catalysts is awaiting a hydrogen production method that does not generate CO. By the way, as a method for producing hydrogen by a partial oxidation reaction of methanol, there is a method using a CuOZnO catalyst (T. Hua
ng and S. Wang, Appl. Catal., Vol.24, (1986) p.287.
). This method has a Cu: Zn (wt%) ratio = 82: 1.
As a result of performing the test at 8 to 7:93, Cu: Zn = 4
The 0:60 catalyst showed the highest activity at the reaction temperature of 220 to 290 ° C. However, the activity deterioration of the catalyst occurred rapidly within 1 hour. Also, the CO concentration increased as the oxygen / methanol ratio increased.

【0005】また、CuZn酸化物、CuZnAl酸化
物触媒による方法(L. Alejo, R. lago, M. A. Pena an
d J. L. G. Fierro, Appl. Catal., Vol.162 (1997) p.
281.)がある。このCuZn−酸化物触媒は、Cu:Z
n=20:80〜40:60であり、CuZnAl酸化
物−触媒は、Cu:Zn:Al=40:55:15であ
る。ここでは、触媒前駆体:Zn5 (CO32 (O
H)6 、Cu2 (CO3 )(OH)2 、Zn3 Cu2
(CO32 (OH)6 の混合物が加熱後ZnO,Cu
O混合物となる。反応温度は200〜230℃であり、
酸素/メタノール比は0.06である。さらに、Pd担
持ZnO触媒による方法(M. L. Cubeiro and J. L. G.
Fierro, J. Catal., Vol.179 (1998) p.150. )があ
る。このPd担持ZnO触媒のPd濃度は1〜5wt%
であり、反応温度は230〜270℃である。しかし、
この方法は、非常に高濃度(20〜40mol%)のC
Oを副生する。このように、従来、メタノールの部分酸
化反応による水素製造方法が種々報告されているが、C
Oを発生させない水素製造法としてはさらに改良すべき
問題があり、その開発が強く求められる。
Further, a method using a CuZn oxide or a CuZnAl oxide catalyst (L. Alejo, R. lago, MA Pena an
d JLG Fierro, Appl. Catal., Vol. 162 (1997) p.
281.) This CuZn-oxide catalyst is Cu: Z
n = 20: 80-40: 60 and CuZnAl oxide-catalyst is Cu: Zn: Al = 40: 55: 15. Here, the catalyst precursor: Zn 5 (CO 3 ) 2 (O
H) 6 , Cu 2 (CO 3 ) (OH) 2 , Zn 3 Cu 2
After the mixture of (CO 3 ) 2 (OH) 6 is heated, ZnO, Cu
O mixture. The reaction temperature is 200 to 230 ° C.,
The oxygen / methanol ratio is 0.06. Furthermore, a method using a Pd-supported ZnO catalyst (ML Cubeiro and JLG
Fierro, J. Catal., Vol.179 (1998) p.150.). The Pd concentration of this Pd-supported ZnO catalyst is 1 to 5 wt%
And the reaction temperature is 230-270 ° C. But,
This method uses a very high concentration (20-40 mol%) of C.
O is a byproduct. Thus, various methods for producing hydrogen by the partial oxidation reaction of methanol have been reported so far.
A hydrogen production method that does not generate O has a problem to be further improved, and its development is strongly required.

【0006】[0006]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、メタノール
の部分酸化反応による高選択率の水素製造法を開発する
ことを目標として鋭意研究を進めたところ、(1) ハイド
ロタルサイト様層状複水酸化物を共沈法で作製し、それ
を約450℃で加熱することによりCuZnAl酸化物
触媒を調製する方法を見出し、また、(2) このCuZn
Al酸化物触媒を用いて、メタノールの部分酸化反応を
行ったところ、COを全く含まない、あるいは極僅かな
COしか含まない水素ガスの生成に成功し、本発明を完
成するに至った。すなわち、本発明は、メタノールの部
分酸化反応による水素製造に用いる新規CuZnAl酸
化物触媒を提供することを目的とするものである。ま
た、本発明は、この触媒を用いて、COを発生させない
水素ガスを製造する方法を提供することを目的とするも
のである。
Under these circumstances, the present inventors have aimed to develop a high-selectivity hydrogen production method by a partial oxidation reaction of methanol in view of the above-mentioned prior art. As a result of earnest research, (1) a method for preparing a CuZnAl oxide catalyst by producing a hydrotalcite-like layered double hydroxide by a coprecipitation method and heating it at about 450 ° C., (2) This CuZn
When a partial oxidation reaction of methanol was carried out using an Al oxide catalyst, hydrogen gas containing no CO at all or very little CO was successfully produced, and the present invention was completed. That is, the object of the present invention is to provide a novel CuZnAl oxide catalyst used for hydrogen production by a partial oxidation reaction of methanol. It is another object of the present invention to provide a method for producing hydrogen gas that does not generate CO, using this catalyst.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)出発材料として、Cu,Zn,Alの各硝酸塩を
調製し、このCu,Zn,Alの各硝酸塩水溶液の混合
NaOH水溶液及びNaCO3 水溶液をpHが約9
で一定になるようにして添加し、沈澱物を生成させ、こ
れをエージング、濾過pHが7になるまで洗浄
た後、乾燥してCuZnAl層状複水酸化物からなる触
媒前駆体を調製し、次いで、これを空気雰囲気で熱分解
て得られるメタノールの部分酸化反応による水素製造
CuZnAl酸化物触媒を用いて、メタノールを空気
共存下での部分酸化反応により水素ガスに変換すること
によりCOを全く含まない、あるいは極僅かなCOしか
含まない水素ガスを生成することを特徴とする水素ガス
の製造方法。 (2)出発溶液中のCu,Zn,Alの分子比が(Cu
+Zn)/Al=2〜5である、前記(1)に記載の
素ガスの製造方法。 (3)室温から約10℃min -1 程度で約450℃まで
昇温後約5時間保持する、前記(1)に記載の水素ガス
の製造方法。 )酸素/メタノール(モル比)が0.20〜0.5
0である、前記()に記載の水素ガスの製造方法。 ()反応温度が200〜245℃である、前記(
に記載の水素ガスの製造方法。
[Means for Solving the Problems] To solve the above problems
The present invention comprises the following technical means. (1)As a starting material,Cu, Zn, AlEach nitrate
Of Cu, Zn, AlMixing each nitrate solution
objectToNaOH aqueous solution and NaCO3Aqueous solutionpH is about 9
Add so that it becomes constant withA precipitate is formed,
Aging thisShi,filtrationrear,until pH is 7WashingShi
After, A layer of dried CuZnAl layered double hydroxide
A medium precursor is prepared and then pyrolyzed in an air atmosphere.
ShiProduction of hydrogen by partial oxidation of methanol
forCuZnAl oxide catalystUsing methanol to air
Conversion to hydrogen gas by partial oxidation reaction in the coexistence
Therefore, CO is not contained at all, or very little CO is contained.
Hydrogen gas characterized by producing hydrogen gas not containing
Manufacturing method. (2) The molecular ratio of Cu, Zn and Al in the starting solution is (Cu
+ Zn) / Al = 2 to 5, as described in (1) above.water
Elementary gasManufacturing method. (3)About 10 ℃ min from room temperature -1 Up to about 450 ℃
Hydrogen gas according to (1) above, which is maintained for about 5 hours after the temperature is raised.
Manufacturing method. (Four) Oxygen / methanol (molar ratio) is 0.20 to 0.5
0, the above (1) The method for producing hydrogen gas according to [4]. (5) The reaction temperature is 200 to 245 ° C., the above (1)
The method for producing hydrogen gas according to 1.

【0008】[0008]

【発明の実施の形態】以下に、本発明についてさらに詳
細に説明する。本発明の新規触媒は、CuZnAl酸化
物からなる。このCuZnAl酸化物触媒は、次のよう
にして製造される。出発材料として、Cu,Zn,Al
の各硝酸塩を調製する。このCu,Zn,Alの各硝酸
塩水溶液の混合物とNaOH水溶液及びNaCO3 水溶
液を反応させて、共沈法により沈澱物を生成させる。こ
の場合、上記混合物を攪拌しながら、これにNaOH水
溶液、NaCO3 水溶液、あるいはNaOH水溶液とN
aCO3 水溶液の混合液を少しづつ添加し、共沈法によ
り沈澱物を生成させる。NaOH水溶液、NaCO3
溶液は、個別的にあるいは同時的に添加すればよく、そ
れらの添加方法は、特に制限されない。出発溶液中のC
u,Zn,Alの分子比は(Cu+Zn)/Al=2〜
5であることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. The novel catalyst of the present invention consists of CuZnAl oxide. This CuZnAl oxide catalyst is manufactured as follows. Starting materials include Cu, Zn, Al
Prepare each nitrate salt of. The mixture of the respective aqueous solutions of nitrates of Cu, Zn and Al is reacted with the aqueous solution of NaOH and the aqueous solution of NaCO 3 to produce a precipitate by the coprecipitation method. In this case, while stirring the above-mentioned mixture, an aqueous solution of NaOH, an aqueous solution of NaCO 3 or an aqueous solution of NaOH and N
A mixed solution of aCO 3 aqueous solution is added little by little, and a precipitate is formed by a coprecipitation method. The NaOH aqueous solution and the NaCO 3 aqueous solution may be added individually or simultaneously, and the addition method thereof is not particularly limited. C in the starting solution
The molecular ratio of u, Zn and Al is (Cu + Zn) / Al = 2
It is preferably 5.

【0009】次に、上記沈澱物を例えば、約65℃前後
でエージングし、濾過後、これを脱イオン水などで濾液
のpHが中性になるまで洗浄し、乾燥してCuZnAl
層状複水酸化物(ハイドロタルサイト様層状複水酸化
物)からなる触媒前駆体を調製する。次に、このハイド
ロタルサイト様層状複水酸化物からなる触媒前駆体を空
気雰囲気で例えば、450℃で熱分解してCuZnAl
酸化物を調製する。熱分解の方法及び条件は、好適に
は、例えば、上記触媒前駆体を電気炉に入れ、室温から
約10℃min-1程度で約450℃まで昇温後約5時間
保持する方法が例示されるが、これらは、上記触媒前駆
体が熱分解する加熱温度、加熱時間を採用すればよく、
特に制限されない。次に、本発明の方法では、上記方法
で製造したCuZnAl酸化物触媒を用いて、メタノー
ルを空気共存下で部分酸化反応により水素ガスに変換す
ることによりCOを発生させることなく水素ガスを生成
させる。この場合、酸素/メタノール(モル比)は、好
適には0.20〜0.50であり、この範囲において高
CO2 選択率で水素ガスが生成する。また、反応温度
は、200〜245℃、さらに好適には200〜230
℃である。
Next, the precipitate is aged at, for example, about 65 ° C., filtered, washed with deionized water or the like until the pH of the filtrate becomes neutral, and dried to form CuZnAl.
A catalyst precursor composed of a layered double hydroxide (hydrotalcite-like layered double hydroxide) is prepared. Next, the catalyst precursor composed of this hydrotalcite-like layered double hydroxide is thermally decomposed in an air atmosphere, for example, at 450 ° C. to form CuZnAl.
Prepare the oxide. Preferable examples of the thermal decomposition method and conditions include a method in which the catalyst precursor is placed in an electric furnace, heated from room temperature to about 450 ° C. at about 10 ° C. min −1 and then held for about 5 hours. However, for these, the heating temperature and the heating time at which the catalyst precursor is thermally decomposed may be adopted,
There is no particular limitation. Next, in the method of the present invention, the CuZnAl oxide catalyst produced by the above method is used to generate hydrogen gas without generating CO by converting methanol into hydrogen gas by a partial oxidation reaction in the presence of air. . In this case, the oxygen / methanol (molar ratio) is preferably 0.20 to 0.50, and hydrogen gas is produced with a high CO 2 selectivity in this range. The reaction temperature is 200 to 245 ° C, and more preferably 200 to 230.
℃.

【0010】[0010]

【実施例】次に、実施例により本発明をさらに具体的に
説明するが、本発明は以下の実施例により何ら限定され
るものではない。 実施例1 本実施例では、触媒前駆体/触媒を調製した。 1)方法 Cu,Zn,Alの各硝酸塩水溶液の混合物(Cu,Z
n,Alの分子比が(Cu+Zn)/Al=2〜5にな
るように混合)を撹拌しながらNaOH水溶液(濃度;
約2M)、NaCO3 水溶液(濃度;約0.3M)、あ
るいはNaOH水溶液(濃度;約2M)とNaCO3
溶液(濃度;約0.3M)の混合液を室温でpHが約9
一定になるようにして少しづつ添加し、沈殿物を得た。
次に、沈殿物を65℃、30分間、撹拌しながらエージ
ングし、濾過後、沈殿物を脱イオン水で濾液のpHが7
になるまで数回(3〜5回)洗浄した後、70℃で乾燥
して、CuZnAl−層状複水酸化物(触媒前駆体、こ
の層状複水酸化物をLDHと呼ぶ)を調製した。次に、
このCuZnAl−層状複水酸化物(触媒前駆体)を空
気雰囲気の電気炉で、450℃、5時間加熱してCuZ
nAl−酸化物(本発明の触媒)を調製した。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the following examples. Example 1 In this example, a catalyst precursor / catalyst was prepared. 1) Method A mixture of Cu, Zn, and Al nitrate aqueous solutions (Cu, Z
Aqueous NaOH solution (concentration; concentration; n, Al mixed so that the molecular ratio is (Cu + Zn) / Al = 2-5)
2M), an aqueous solution of NaCO 3 (concentration: about 0.3M), or a mixed solution of an aqueous solution of NaOH (concentration: about 2M) and an aqueous solution of NaCO 3 (concentration: about 0.3M) at room temperature and a pH of about 9M.
It was added little by little so as to be constant, and a precipitate was obtained.
Next, the precipitate was aged at 65 ° C. for 30 minutes with stirring, and after filtration, the precipitate was diluted with deionized water to adjust the pH of the filtrate to 7
It was washed several times (3 to 5 times) until it became, and dried at 70 ° C. to prepare CuZnAl-layered double hydroxide (catalyst precursor, this layered double hydroxide is referred to as LDH). next,
This CuZnAl-layered double hydroxide (catalyst precursor) is heated at 450 ° C. for 5 hours in an electric furnace in an air atmosphere to form CuZ.
An nAl-oxide (catalyst of the invention) was prepared.

【0011】2)結果 本実施例で合成した触媒前駆体(70℃乾燥後、加熱
前)の化学組成及びXRD相を表1に示す。この表中、
LDHは層状複水酸化物を意味する。また、本実施例で
合成した触媒(450℃加熱後)の物理、化学的特性を
表2に示す。さらに、図1に、本実施例で合成した触媒
前駆体及び触媒のX線回折図(加熱前及び450℃加熱
後)を示す。
2) Results Table 1 shows the chemical composition and XRD phase of the catalyst precursor (after drying at 70 ° C. and before heating) synthesized in this example. In this table,
LDH means layered double hydroxide. In addition, Table 2 shows the physical and chemical characteristics of the catalyst (after heating at 450 ° C.) synthesized in this example. Further, FIG. 1 shows an X-ray diffraction diagram (before heating and after heating at 450 ° C.) of the catalyst precursor and the catalyst synthesized in this example.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】実施例2 (メタノールの部分酸化反応による水素ガス製造) 1)装置 本実施例の触媒実験に使用した部分酸化反応触媒実験装
置を図2に示す。この装置は次の構成からなる。 構成:小型電気炉7、石英ガラス製反応管(直径:4m
mφ)8、マイクロフィーダー(メタノール供給装置)
5、ガスクロマトグラフィー(ガス分析器)10、記録
計(ガスクロマトグラフィーの出力を記録)11、アル
ゴンガスボンベ1、空気(酸素濃度;20.2%、窒素
濃度;79.8%)ボンベ2、温度コントローラー9、
リボンヒーター6、流量調整器3、4
Example 2 (Hydrogen Gas Production by Partial Oxidation Reaction of Methanol) 1) Apparatus FIG. 2 shows a partial oxidation reaction catalyst experimental apparatus used in the catalyst experiment of this Example. This device has the following configuration. Structure: Small electric furnace 7, quartz glass reaction tube (diameter: 4m
mφ) 8, micro feeder (methanol supply device)
5, gas chromatography (gas analyzer) 10, recorder (recording the output of gas chromatography) 11, argon gas cylinder 1, air (oxygen concentration; 20.2%, nitrogen concentration; 79.8%) cylinder 2, Temperature controller 9,
Ribbon heater 6, flow rate regulators 3, 4

【0015】2)実験条件及び方法 実験条件を次に示す。 (a)実験方法:実験は、常圧固定床流通式により以下
の条件で行った。 触媒使用量:100mg、 触媒粒子径:0.25〜0.30mmφ、 反応温度:200〜245℃の範囲 (b)還元法:測定に先立ちCuZnAl−酸化物触媒
の還元を行った。すなわち、石英ガラス製反応管に詰め
られたCuZnAl−酸化物触媒100mgに水素を1
0cm3 min-1で流しながら、触媒温度を室温から3
00℃まで5℃min-1で昇温した。300℃で2時間
保持した後、測定温度まで降温し、測定に入った。 (c)測定方法:メタノール(液体)をマイクロフィー
ダーを用いて1.5又は2.0cm3-1の割合で触媒
層に導入した。空気(酸素;20.2vol%、窒素;
79.8vol%)を10〜20cm3 min-1、キャ
リアーガスとしてアルゴンガスを40cm3 min-1
導入した。空気、アルゴンガス中のメタノール濃度は2
0vol%以下に押さえた。反応生成物はオンラインで
繋がった2台のガスクロマトグラフィー(TC検出器
付)で分析した。1台目のガスクロマトグラフィーはポ
ラパックQの充填された2m長さのカラムが付いてお
り、水、メタノール、ホルムアルデヒド、蟻酸メチル、
ジメチルエーテルの分析を行った。2台目のガスクロマ
トグラフィーはモレキュラーシーブ13Xの充填された
2m長さのカラムが付いており、水素、空気、一酸化炭
素、二酸化炭素、メタンの分析を行った。測定データは
反応開始後5〜7時間後のものを使用した。
2) Experimental conditions and method Experimental conditions are shown below. (A) Experimental method: The experiment was carried out under the following conditions by a fixed pressure fixed bed flow system. Amount of catalyst used: 100 mg, catalyst particle size: 0.25 to 0.30 mmφ, reaction temperature: 200 to 245 ° C. (b) Reduction method: The CuZnAl-oxide catalyst was reduced prior to measurement. That is, hydrogen was added to 100 mg of CuZnAl-oxide catalyst packed in a quartz glass reaction tube.
While flowing at 0 cm 3 min -1 , set the catalyst temperature from room temperature to 3
The temperature was raised to 00 ° C. at 5 ° C. min −1 . After holding at 300 ° C. for 2 hours, the temperature was lowered to the measurement temperature and the measurement was started. (C) Measuring method: Methanol (liquid) was introduced into the catalyst layer at a ratio of 1.5 or 2.0 cm 3 h -1 using a micro feeder. Air (oxygen; 20.2 vol%, nitrogen;
(79.8 vol%) was introduced at 10 to 20 cm 3 min -1 , and argon gas as a carrier gas was introduced at 40 cm 3 min -1 . The concentration of methanol in air and argon gas is 2
It was suppressed to 0 vol% or less. The reaction product was analyzed by two gas chromatographs (with TC detector) connected online. The first gas chromatograph was equipped with a 2 m long column packed with Polapack Q, and water, methanol, formaldehyde, methyl formate,
Dimethyl ether was analyzed. The second gas chromatograph was equipped with a 2 m long column packed with molecular sieves 13X and analyzed for hydrogen, air, carbon monoxide, carbon dioxide and methane. The measurement data used was 5 to 7 hours after the start of the reaction.

【0016】3)触媒 CuZnAl−2LDHcal 触媒を使用した。還元操作
を実施した後、測定を開始した。メタノールの部分酸化
反応を反応温度、アルゴン及び空気の流量を変えて測定
した結果、触媒は200℃で高活性を示した。主生成物
は水素、二酸化炭素、副生成物は一酸化炭素(少量)で
あり、その他は検出されなかった。メタノール空間速度
(WHSV)*の触媒性能に及ぼす効果を図3に示す。
酸素/メタノール=0.25(モル比)** にて測定
した。
3) Catalyst CuZnAl-2LDH cal catalyst was used. After carrying out the reduction operation, the measurement was started. As a result of measuring the partial oxidation reaction of methanol by changing the reaction temperature and the flow rates of argon and air, the catalyst exhibited high activity at 200 ° C. The main products were hydrogen and carbon dioxide, the by-products were carbon monoxide (a small amount), and other substances were not detected. The effect of methanol space velocity (WHSV) * on catalyst performance is shown in FIG.
It was measured at oxygen / methanol = 0.25 (molar ratio) **.

【0017】メタノール転化率は0.20〜0.35m
olh-1-1までWHSVの増加と共に減少し、それ以
上(0.42molh-1-1)までは変化が無かった。
一方、生成物(水素、二酸化炭素、水、一酸化炭素)の
選択率にはメタノール空間速度は影響しなかった。水素
及び二酸化炭素の選択率は0.20〜0.42molh
-1-1の測定した全範囲においてほぼ100%であっ
た。また、水及び一酸化炭素の選択率はほぼ0%であっ
た。 *:メタノールの供給速度(molh-1)/触媒重量
(g)=molh-1-1 **:メタノールの部分酸化反応; CH3 OH+(1/2)O2 ⇔2H2 +CO2 を完結させるには、酸素/メタノール=0.5モル/1
モル=0.5(モル比)でなければならない。
The conversion of methanol is 0.20 to 0.35 m
olh-1g-1Decrease with increasing WHSV and
Above (0.42 molh-1g-1There was no change until).
On the other hand, of products (hydrogen, carbon dioxide, water, carbon monoxide)
The methanol space velocity did not affect the selectivity. hydrogen
And carbon dioxide selectivity is 0.20 to 0.42 molh
-1g-1Is almost 100% over the entire measured range of
It was The selectivity of water and carbon monoxide was almost 0%.
It was *: Methanol supply rate (molh-1) / Catalyst weight
(G) = molh-1g-1 **: Partial oxidation reaction of methanol; CH3 OH + (1/2) O2 ⇔ 2H2 + CO2 Oxygen / methanol = 0.5 mol / 1
It should be mol = 0.5 (molar ratio).

【0018】酸素/メタノール(モル比)の触媒性能に
及ぼす効果を図4に示す。WHSV=0.30molh
-1-1、反応温度=200℃にて測定した。メタノール
転化率は酸素/メタノール(モル比)が0.20から
0.42まで増加すると共に、27から40%に増加し
た。この範囲において一酸化炭素は生成されず、二酸化
炭素の選択率は100%であった。酸素/メタノール比
が0.28以上に増えると水の選択率が徐々に増加し、
それと共に水素の選択率は減少した。これは、生成した
水素が余分な酸素と反応することによる。 H2 + (1/2)O2 ⇔ H2O
The effect of oxygen / methanol (molar ratio) on the catalytic performance is shown in FIG. WHSV = 0.30 molh
It was measured at −1 g −1 and reaction temperature = 200 ° C. The conversion of methanol increased from 27 to 40% as the oxygen / methanol (molar ratio) increased from 0.20 to 0.42. In this range, carbon monoxide was not produced and the carbon dioxide selectivity was 100%. When the oxygen / methanol ratio increases above 0.28, the selectivity of water gradually increases,
Along with that, the selectivity of hydrogen decreased. This is because the generated hydrogen reacts with excess oxygen. H 2 + (1/2) O 2 ⇔ H 2 O

【0019】実施例3 (反応温度の触媒性能に及ぼす効果)次の条件で、反応
温度の触媒性能に及ぼす効果を調べた。 反応温度:200〜245℃、 触媒:CuZnAl−2LDHcal ,CuZnAl−3
LDHcal ,CuZnAl−4LDHcal ,CuZnA
l−42LDHcal WHSV=0.30molh-1g -1, 酸素/メタノール
=0.29(モル比) その結果を図5に示す。メタノール転化率は、CuZn
Al−2LDHcal ,CuZnAl−3LDHcal ,C
uZnAl−4LDHcal では反応温度の上昇と共に向
上した。245℃でCuZnAl−4LDHcal のメタ
ノール反応率は約80%であった。しかし、CuZnA
l−42LDHcal では、上昇率は小さく、245℃で
減少した。(図5(a))
Example 3 (Effect of reaction temperature on catalyst performance) The effect of reaction temperature on catalyst performance was examined under the following conditions. Reaction temperature: 200 to 245 ° C., catalyst: CuZnAl-2LDH cal , CuZnAl-3
LDH cal , CuZnAl-4LDH cal , CuZnA
l-42LDH cal WHSV = 0.30 molh −1 g −1 , oxygen / methanol = 0.29 (molar ratio) The results are shown in FIG. The conversion of methanol is CuZn
Al-2LDH cal , CuZnAl-3LDH cal , C
With uZnAl-4LDH cal , it improved with the increase of the reaction temperature. The reaction rate of methanol of CuZnAl-4LDH cal at 245 ° C. was about 80%. However, CuZnA
With l-42LDH cal , the rate of increase was small and decreased at 245 ° C. (Fig. 5 (a))

【0020】反応生成物の選択率も反応温度(200〜
245℃)に依存した。水素の選択率は反応温度の上昇
と共に増加し、全ての触媒において200〜245℃の
範囲で90mol%以上であった。特に、CuZnAl
−4LDHcal 及びCuZnAl−42LDHcal では
200℃において98mol%、215℃以上において
100mol%であった。(図5(b))
The selectivity of the reaction product also depends on the reaction temperature (200 to
245 ° C.). The hydrogen selectivity increased with the increase of the reaction temperature, and was 90 mol% or more in the range of 200 to 245 ° C. in all the catalysts. In particular, CuZnAl
-4LDH cal and CuZnAl-42LDH cal were 98 mol% at 200 ° C and 100 mol% at 215 ° C or higher. (Fig. 5 (b))

【0021】一方、二酸化炭素の選択率は、200℃に
おいてCuZnAl−3LDHcal ,CuZnAl−4
LDHcal ,CuZnAl−42LDHcal が100m
ol%、CuZnAl−2LDHcal が98mol%で
あり、反応温度の上昇と共に減少した。一酸化炭素は2
00℃では生成されなかったが、生成物中に含まれる一
酸化炭素の割合は反応温度の上昇と共に増加した。これ
は、次の反応; CO+ H2 O ⇔ H2 +CO2 の逆水性ガスシフト(reverse water−g
as shift )反応(右から左への反応)が高い
反応温度で起きることによる(図5(c))。
On the other hand, the carbon dioxide selectivity is 200 ° C.
CuZnAl-3LDHcal , CuZnAl-4
LDHcal , CuZnAl-42LDHcal Is 100m
ol%, CuZnAl-2LDHcal Is 98 mol%
Yes, and decreased with increasing reaction temperature. Carbon monoxide is 2
It was not produced at 00 ° C, but it was contained in the product.
The proportion of carbon oxide increased with increasing reaction temperature. this
Is the following reaction; CO + H2 O ⇔ H2+ CO2 Reverse water gas shift (reverse water-g)
As shift reaction (reaction from right to left) is high
Due to what happens at the reaction temperature (Fig. 5 (c)).

【0022】実施例4 (触媒の安定性)次の条件で、触媒の安定性を調べた。 反応温度:200℃、反応時間:4〜24時間 触媒:CuZnAl−2LDHcal ,CuZnAl−3
LDHcal ,CuZnAl−4LDHcal ,CuZnA
l−42LDHcal WHSV=0.35molh-1g -1, 酸素/メタノー
ル=0.29(モル比)
Example 4 (Catalyst stability) The stability of the catalyst was examined under the following conditions. Reaction temperature: 200 ° C., reaction time: 4 to 24 hours Catalyst: CuZnAl-2LDH cal , CuZnAl-3
LDH cal , CuZnAl-4LDH cal , CuZnA
l-42LDH cal WHSV = 0.35 molh −1 g −1 , oxygen / methanol = 0.29 (molar ratio)

【0023】その結果を図6に示す。メタノール転化率
は時間と共に少しずつ減少する傾向であるが、CuZn
Al−4LDHcal はほとんど変わらなかった。(図6
(a)) 水素選択率は、反応開始4時間後でCuZnAl−2L
DHcal ,CuZnAl−3LDHcal ,CuZnAl
−4LDHcal は98mol%、24時間後で87〜9
2mol%であった。また、CuZnAl−42LDH
cal は90〜95mol%であった。(図6(b)) 4〜24時間の範囲で、二酸化炭素選択率は95〜10
0mol%、一酸化炭素選択率は0〜5mol%であっ
た。なお、CuZnAl−4LDHcal ,CuZnAl
−42LDHcal 両触媒において50ppm以下の痕跡
程度の一酸化炭素が生成した。(図6(c)) 以上の結果より、触媒の安定性については問題ないこと
が確認された。
The results are shown in FIG. The conversion of methanol tends to decrease gradually with time, but CuZn
Al-4LDH cal was almost unchanged. (Fig. 6
(A)) Hydrogen selectivity is CuZnAl-2L 4 hours after the start of the reaction.
DH cal , CuZnAl-3LDH cal , CuZnAl
-4LDH cal is 98 mol%, 87-9 after 24 hours
It was 2 mol%. Also, CuZnAl-42LDH
The cal was 90 to 95 mol%. (FIG. 6 (b)) The carbon dioxide selectivity is 95 to 10 in the range of 4 to 24 hours.
0 mol% and carbon monoxide selectivity were 0 to 5 mol%. CuZnAl-4LDH cal , CuZnAl
Both traces of -42LDH cal produced trace amounts of carbon monoxide below 50 ppm. (FIG. 6 (c)) From the above results, it was confirmed that there was no problem with the stability of the catalyst.

【0024】[0024]

【発明の効果】以上詳述した通り、本発明は、メタノー
ルの部分酸化反応による水素製造触媒、その製造法、及
びこの触媒を用いて、メタノールの部分酸化反応により
水素ガスを製造する方法に係るものであり、本発明によ
り、1)メタノールの部分酸化反応による水素製造用の
新規CuZnAl酸化物触媒を提供することができる、
2)この触媒を用いて、メタノールの部分酸化反応を行
うことにより、COを発生させないで水素ガスを製造す
ることができる、3)メタノールの部分酸化反応により
COを全く含まない、あるいは極僅かなCOしか含まな
い水素ガスを生成することができる、4)新エネルギー
源としての水素ガスの新しい生産方法を提供できる、等
の効果が奏される。
As described above in detail, the present invention relates to a hydrogen production catalyst by a partial oxidation reaction of methanol, a method for producing the same, and a method for producing hydrogen gas by a partial oxidation reaction of methanol using this catalyst. According to the present invention, it is possible to provide 1) a novel CuZnAl oxide catalyst for hydrogen production by a partial oxidation reaction of methanol.
2) Using this catalyst, hydrogen gas can be produced without generating CO by carrying out a partial oxidation reaction of methanol. 3) CO is not contained at all by the partial oxidation reaction of methanol, or a very small amount of CO is produced. Effects such that hydrogen gas containing only CO can be generated, 4) a new production method of hydrogen gas as a new energy source can be provided, and the like are exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る触媒前駆体(上段)/触媒(下
段)のXRDパターンを示す。
FIG. 1 shows an XRD pattern of a catalyst precursor (upper stage) / catalyst (lower stage) according to the present invention.

【図2】実施例で用いた装置の説明図である。FIG. 2 is an explanatory diagram of an apparatus used in Examples.

【図3】メタノール空間速度(WHSV)の触媒性能に
及ぼす効果を示す。
FIG. 3 shows the effect of methanol space velocity (WHSV) on catalyst performance.

【図4】酸素/メタノール(モル比)の触媒性能に及ぼ
す効果を示す。
FIG. 4 shows the effect of oxygen / methanol (molar ratio) on the catalytic performance.

【図5】反応温度の触媒性能に及ぼす効果を示す。FIG. 5 shows the effect of reaction temperature on catalyst performance.

【図6】触媒の安定性を調べた結果を示す。FIG. 6 shows the results of examining the stability of the catalyst.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−72951(JP,A) 特開 平11−169714(JP,A) 特開 平7−163870(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C01B 3/32 C01B 3/40 H01M 8/06 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-3-72951 (JP, A) JP-A-11-169714 (JP, A) JP-A-7-163870 (JP, A) (58) Field (Int.Cl. 7 , DB name) B01J 21/00-38/74 C01B 3/32 C01B 3/40 H01M 8/06

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 出発材料として、Cu,Zn,Alの
硝酸塩を調製し、このCu,Zn,Alの各硝酸塩水溶
液の混合物NaOH水溶液及びNaCO3水溶液を
Hが約9で一定になるようにして添加し、沈澱物を生成
させ、これをエージング、濾過pHが7になるま
洗浄した後、乾燥してCuZnAl層状複水酸化物か
らなる触媒前駆体を調製し、次いで、これを空気雰囲気
で熱分解して得られるメタノールの部分酸化反応による
水素製造用CuZnAl酸化物触媒を用いて、メタノー
ルを空気共存下での部分酸化反応により水素ガスに変換
することによりCOを全く含まない、あるいは極僅かな
COしか含まない水素ガスを生成することを特徴とする
水素ガスの製造方法。
As claimed in claim 1 starting material, Cu, Zn, each of Al
Nitrate was prepared, the Cu, Zn, an aqueous solution of NaOH and NaCO 3 aqueous solution to the mixture of the aqueous nitrate solution of Al p
H was added at a constant level of about 9 to form a precipitate, which was aged and filtered to a pH of 7 after filtration.
In After washing, the catalyst precursor dried consisting CuZnAl layered double hydroxide is prepared, then this is due to thermal decomposition and partial oxidation reaction of the resulting methanol in an air atmosphere
Using CuZnAl oxide catalyst for hydrogen production , methanol
Is converted to hydrogen gas by partial oxidation reaction in the presence of air
CO is not included at all, or very little
Characterized by producing hydrogen gas containing only CO
Method for producing hydrogen gas .
【請求項2】 出発溶液中のCu,Zn,Alの分子比
が(Cu+Zn)/Al=2〜5である、請求項1に記
載の水素ガスの製造方法。
2. The method for producing hydrogen gas according to claim 1, wherein the molecular ratio of Cu, Zn, and Al in the starting solution is (Cu + Zn) / Al = 2 to 5.
【請求項3】 室温から約10℃min -1 程度で約45
0℃まで昇温後約5時間保持する、請求項1に記載の水
素ガスの製造方法。
3. From room temperature to about 45 ° C. at about 10 ° C. min −1
The water according to claim 1, which is kept for about 5 hours after being heated to 0 ° C.
Raw gas manufacturing method.
【請求項4】 酸素/メタノール(モル比)が0.20
〜0.50である、請求項に記載の水素ガスの製造方
法。
4. Oxygen / methanol (molar ratio) is 0.20
The method for producing hydrogen gas according to claim 1 , wherein the hydrogen gas is about 0.50.
【請求項5】 反応温度が200〜245℃である、請
求項に記載の水素ガスの製造方法。
5. The method for producing hydrogen gas according to claim 1 , wherein the reaction temperature is 200 to 245 ° C.
JP2000061037A 2000-03-06 2000-03-06 Catalyst for producing hydrogen by partial oxidation of methanol and method for producing the same Expired - Lifetime JP3482459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000061037A JP3482459B2 (en) 2000-03-06 2000-03-06 Catalyst for producing hydrogen by partial oxidation of methanol and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000061037A JP3482459B2 (en) 2000-03-06 2000-03-06 Catalyst for producing hydrogen by partial oxidation of methanol and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001246258A JP2001246258A (en) 2001-09-11
JP3482459B2 true JP3482459B2 (en) 2003-12-22

Family

ID=18581250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000061037A Expired - Lifetime JP3482459B2 (en) 2000-03-06 2000-03-06 Catalyst for producing hydrogen by partial oxidation of methanol and method for producing the same

Country Status (1)

Country Link
JP (1) JP3482459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824190A (en) * 2017-10-25 2018-03-23 山东齐鲁科力化工研究院有限公司 A kind of efficient Methanol Decomposition hydrogen manufacturing copper-based catalysts

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776785B2 (en) 2006-10-13 2010-08-17 Idemitsu Kosan Co., Ltd. Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
BR112012026991B1 (en) * 2010-04-21 2021-08-31 Sk Innovation Co., Ltd Method for preparing copper based catalyst, copper based catalyst, using copper based catalyst and method for preparing alcohol
ES2628881T3 (en) * 2011-12-02 2017-08-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procedure for preparing a water gas displacement catalyst that operates at medium temperatures
CN106000408B (en) * 2016-05-13 2018-04-24 万华化学集团股份有限公司 A kind of preparation method of aldehyde gas phase hydrogenation catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647367B1 (en) * 1989-04-24 1991-08-30 Inst Francais Du Petrole PROCESS FOR THE PREPARATION OF CATALYST PRECURSORS CONTAINING COPPER, ALUMINUM AND ZINC FOR USE IN THE SYNTHESIS AND DECOMPOSITION OF METHANOL
US5407652A (en) * 1993-08-27 1995-04-18 Engelhard Corporation Method for decomposing N20 utilizing catalysts comprising calcined anionic clay minerals
DE19739773A1 (en) * 1997-09-10 1999-03-11 Basf Ag Process and catalyst for steam reforming of methanol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824190A (en) * 2017-10-25 2018-03-23 山东齐鲁科力化工研究院有限公司 A kind of efficient Methanol Decomposition hydrogen manufacturing copper-based catalysts

Also Published As

Publication number Publication date
JP2001246258A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
JP3496051B2 (en) Catalyst for producing hydrogen gas by oxidative steam reforming of methanol and its production method
CA2681411C (en) Catalyst precursor substance, and catalyst using the same
CN113209976B (en) Catalyst for methanol steam reforming hydrogen production, preparation method and application thereof, and methanol steam reforming hydrogen production reaction
EP2086913A1 (en) Process for producing carbon dioxide and methane by catalytic gas reaction
JPWO2002024571A1 (en) Methane partial oxidation method using dense oxygen selective permeable ceramic membrane
Navarro et al. Production of hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3 catalyst: Influence of the initial state of the catalyst on the start-up behaviour of the reformer
US20080241038A1 (en) Preparation of manganese oxide-ferric oxide-supported nano-gold catalyst and using the same
CA2595466A1 (en) Catalytically active composition for the selective methanation of carbon monoxide and method for producing said composition
JP4398670B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
US20080193354A1 (en) Preparation of manganese oxide-cerium oxide-supported nano-gold catalyst and the application thereof
JP3482459B2 (en) Catalyst for producing hydrogen by partial oxidation of methanol and method for producing the same
KR102271431B1 (en) A catalyst for liquid phase reforming of biomass, the method for producing the same, and the method for producing high purity hydrogen
EP1298089B1 (en) Method for obtaining hydrogen by partial methanol oxidation
KR100579945B1 (en) Catalyst for water-gas shift reaction of carbon monoxide
JPH05208801A (en) Method for producing synthetic gas from methane-containing gas and carbon dioxide-containing gas
US20150352528A1 (en) Process for production of hydrogen
Zhang Modification of cerium oxide with different dopants and synthesis methods
Nomoto et al. Production of Hydrogen by the Autothermal Reforming of Methanol over Cu/ZnO/Al2O3-based Catalysts: Improved Durability and Self-activation Ability upon Pd-doping
JP2664997B2 (en) Methanol reforming method
RU2677875C1 (en) Catalyst and method for obtaining gas mixture enriched by hydrogen from dimethyl ether and air
KR20220165052A (en) A perovskite based catalyst for hydrogen production using aqueous reforming and the method for producing the same
JP2003047846A (en) Catalyst and method for reforming dimethyl ether
Abed Synthesis, Characterization and Testing of Lanthanum-Nickel Based Materials as Catalysts for The Carbon Dioxide Reforming of Methane
KR20140146968A (en) hydrogen fuel processor containing photocatalyst
RU2431526C1 (en) Catalyst, preparation method thereof and method of producing hydrogen

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3482459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term