JPH05208801A - Method for producing synthetic gas from methane-containing gas and carbon dioxide-containing gas - Google Patents

Method for producing synthetic gas from methane-containing gas and carbon dioxide-containing gas

Info

Publication number
JPH05208801A
JPH05208801A JP3188391A JP18839191A JPH05208801A JP H05208801 A JPH05208801 A JP H05208801A JP 3188391 A JP3188391 A JP 3188391A JP 18839191 A JP18839191 A JP 18839191A JP H05208801 A JPH05208801 A JP H05208801A
Authority
JP
Japan
Prior art keywords
gas
catalyst
containing gas
methane
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3188391A
Other languages
Japanese (ja)
Inventor
Ikuya Matsuura
郁也 松浦
Yasushi Yoshida
康史 吉田
Tadashi Takayasu
紀 高安
Kuniaki Nitta
邦昭 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP3188391A priority Critical patent/JPH05208801A/en
Publication of JPH05208801A publication Critical patent/JPH05208801A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce a synthetic gas containing CO and H2 by bringing a CH4- containing gas into contact with a CO2-containing gas in the presence of a catalyst having higher activity, simple in the catalyst preparing process, reduced in a carrying amount of an expensive active component metal and capable of imparting to the production a characteristic effectively converting CO2 into a usable synthetic gas. CONSTITUTION:A CH4-containing gas at 300-1200 deg.C is brought into contact with CO2-containing gas under the presence of a catalyst consisting of a high- purity ultrafine single crystal magnesium oxide and an element of group VII metal to produce the objective synthetic gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,メタン含有ガスおよび
二酸化炭素含有ガスを触媒の存在下で接触させて一酸化
炭素および水素を含有する合成ガスを製造する方法に関
するものである。なお,この明細書では以下にメタン,
二酸化炭素,一酸化炭素および水素をそれぞれCH
CO,COおよびHと記す場合がある。
TECHNICAL FIELD The present invention relates to a method for producing a synthesis gas containing carbon monoxide and hydrogen by contacting a gas containing methane and a gas containing carbon dioxide in the presence of a catalyst. In this specification, methane,
Carbon dioxide, carbon monoxide and hydrogen are replaced by CH 4 ,
Sometimes referred to as CO 2 , CO and H 2 .

【0002】[0002]

【従来の技術およびその課題】石油資源の枯渇,オイル
ショック対策,化学工業原料の多様化などの理由から天
然ガスの有効利用が注目されている。天然ガスの可採埋
蔵量は現状でも石油に匹敵する規模であり,最近も新し
い鉱床の発見が相次いでおり,その究極可採埋蔵量は2
00〜250兆mと推定されている。また,この天然
ガスは石油資源の偏在に対し世界広く分布している。そ
れにもかかわらずこの天然ガスの利用率は世界的にまだ
低い。その実用化されている例としては,そのままある
いは液化された天然ガスが燃料として,あるいは水蒸気
改質して合成ガスを製造する際の出発原料としての2例
にすぎない。
2. Description of the Related Art The effective use of natural gas is drawing attention because of depletion of petroleum resources, measures against oil shocks, and diversification of raw materials for chemical industry. The recoverable reserves of natural gas are still comparable to petroleum, and new deposits have been discovered one after another, and the ultimate recoverable reserves are 2
It is estimated to be 100 to 250 trillion m 3 . In addition, this natural gas is widely distributed worldwide due to uneven distribution of petroleum resources. Nevertheless, the utilization rate of this natural gas is still low worldwide. Only two examples of practical use thereof are as they are or as liquefied natural gas as a fuel or as a starting material when steam-reforming to produce synthetic gas.

【0003】このような状況のもとで,最近天然ガスの
主成分であるメタンを直接酸化カップリングしてエチレ
ンやエタンに転換する試みや直接酸化してメタノールや
ホルムアルデヒドに転換する試みもなされているが,ま
だ工業化の段階には至っていない。
Under these circumstances, attempts have recently been made to directly oxidize methane, which is the main component of natural gas, to convert it into ethylene or ethane, or to oxidize it directly into methanol or formaldehyde. However, it has not reached the stage of industrialization yet.

【0004】したがって,化学工業原料として天然ガス
が利用され実用化されているプロセスは,上記の水蒸気
改質による合成ガスの製造のみであり,さらにその合成
ガスはアンモニア合成,メタノール合成,Fische
r−Tropschプロセスによる炭化水素,アルデヒ
ドなどへの原料として用いられている。たとえば,メタ
ンはCH+HO→CO+3Hの反応式にしたがい
700〜800℃においてニッケル系触媒上で水蒸気改
質される。この反応はCOとHからなる合成ガスの重
要な供給源であるが,きわめて大きな吸熱反応であり,
さらにシフト反応CO+HO→CO+HによるC
の生成すなわち選択率の低下を必ず伴う。また炭素
析出防止のため,化学量論量よりかなり多くの水蒸気を
原料側に供給する必要があり,エネルギー的ロスも大き
い。
Therefore, the only process in which natural gas is used as a raw material for the chemical industry and put into practical use is the production of synthetic gas by steam reforming as described above, and the synthetic gas is ammonia synthesis, methanol synthesis, or Fische.
It is used as a raw material for hydrocarbons, aldehydes, etc. by the r-Tropsch process. For example, methane is steam reformed on a nickel-based catalyst at 700 to 800 ° C. according to the reaction formula of CH 4 + H 2 O → CO + 3H 2 . This reaction is an important source of syngas consisting of CO and H 2 , but it is a very large endothermic reaction,
Furthermore, shift reaction CO + H 2 O → C by CO 2 + H 2
It is always accompanied by generation of O 2 , that is, a decrease in selectivity. Also, to prevent carbon deposition, it is necessary to supply much more than the stoichiometric amount of steam to the raw material side, and energy loss is large.

【0005】一方,COは大気中,水中,鉱物中など
いろいろの形態で極めて広く多量に地球上に分布してお
り,その量は無尽蔵といえる。大気中のCO濃度は現
在約330ppmであるが,継続的に観測が開始されて
以来年々増加の一途をたどっており,「温室効果」など
気候や生物圏におよぼす影響が懸念されている。
On the other hand, CO 2 is extremely widely distributed in large amounts on the earth in various forms such as the atmosphere, water and minerals, and the amount can be said to be inexhaustible. The concentration of CO 2 in the atmosphere is currently about 330 ppm, but it has been increasing year by year since continuous observation was started, and there are concerns about the effects on the climate and biosphere such as the “greenhouse effect”.

【0006】このような状況のもとで,その対応策とし
て省エネルギーの推進,代替エネルギーの開発によるC
排出量の削減などとともに,物理的,化学的あるい
は生物的方法による各種の方法によるCOの回収およ
び固定化が検討されている。これまでにCOを化学工
業用原料とし,工業化されている例はアンモニアからの
尿素の合成,コルベーシュミット法の石炭酸アルカリ塩
との反応による芳香族カルボン酸の合成,水素化による
逆シフト反応など少数に限られている。そのため,特に
温暖化問題がクローズアップされて以来,触媒技術によ
るCOの固定化が注目されており,(1)COとコ
モノマーの共重合体の合成によるCOの固定,(2)
光触媒によるCOの固定,(3)電気化学的なCO
の固定,(4)COの接触水素化によるメタネーショ
ンあるいはメタノール合成などが有望視されている。
Under such a situation, as a countermeasure, promotion of energy saving and development of alternative energy C
In addition to reducing O 2 emissions, CO 2 recovery and immobilization by various physical, chemical or biological methods are being studied. So far, CO 2 has been used as a raw material for the chemical industry, and examples of industrialization are urea synthesis from ammonia, synthesis of aromatic carboxylic acid by reaction with Kolbeschmitt's alkali salt of carboxylic acid, and reverse shift reaction by hydrogenation. And so on. Therefore, since the issue of global warming has been highlighted, attention has been focused on the immobilization of CO 2 by catalytic technology. (1) Immobilization of CO 2 by synthesizing a copolymer of CO 2 and a comonomer, (2)
CO 2 fixation by photocatalyst, (3) Electrochemical CO 2
, (4) Methanation by catalytic hydrogenation of CO 2 or methanol synthesis are promising.

【0007】ところが,本発明に関係するCH+CO
→2CO+2Hの反応系についての報告はきわめて
少なく,数例にすぎない。斉藤ら(第52回触媒討論会
(A)講演予稿集p46(1983))は,CH/C
=1,反応温度700℃の条件下でNi/SiO
触媒を用いた際のCH転化率64%,COへの転化率
75%,またRh/Al触媒を用いた際のCH
転化率56%,COへのCH転化率84%であったと
報告している。また内島ら(第66回触媒討論会講演予
稿集p314(1990),第67回触媒討論会講演予
稿集p99(1991))は,CH+1/2O→C
O+2Hの反応機構解明のためCH+CO→2C
O+2Hの反応系についてSiO系触媒を用いて検
討を行い,300〜800℃の範囲で活性の序列はNi
/Sio>Ru/SiO>Rh/SiO》Pt/
SiO>Pd/SiO>Co/SiOであり,そ
の序列はO.Tokunaga ら(Fuel.990
(1989))の同様な研究でのそれと一致していると
報告している。さらに彼らのデータによると,CH
CO=1,GHSV=10000h−1の条件下での
Ni/SiO触媒によるCHの転化率が100%に
達する温度は約770℃である。
However, CH 4 + CO related to the present invention
There are very few reports on the reaction system of 2 → 2CO + 2H 2 and only a few examples. Saito et al. (Proceedings of the 52nd Catalytic Discussion Meeting (A) p46 (1983)) are CH 4 / C
O 2 = 1 and Ni / SiO 2 under the reaction temperature of 700 ° C.
CH 4 conversion when using a catalyst 64%, conversion to CO 75%, CH 4 when using a Rh / Al 2 O 3 catalyst
It was reported that the conversion rate was 56% and the CH 4 conversion rate to CO was 84%. The Uchijima et al. (66th catalyst debate Preprint p314 (1990), 67th catalyst debate Preprint p99 (1991)) is, CH 4 + 1 / 2O 2 → C
CH 4 + CO 2 → 2C to clarify the reaction mechanism of O + 2H 2
The reaction system of O + 2H 2 was investigated using a SiO 2 -based catalyst, and the order of activity in the range of 300 to 800 ° C. was Ni.
/ Sio 2 > Ru / SiO 2 > Rh / SiO 2 >> Pt /
SiO 2 > Pd / SiO 2 > Co / SiO 2 , and the order is O.S. Tokunaga et al. (Fuel.990
(1989)) and is consistent with that in a similar study. Furthermore, according to their data, CH 4 /
The temperature at which the conversion of CH 4 by the Ni / SiO 2 catalyst reaches 100% under the condition of CO 2 = 1 and GHSV = 10000 h −1 is about 770 ° C.

【0008】この反応系は天然ガスなどのCH含有ガ
スの化学工業原料への展開を図るものであり,かつCO
ガスの有効利用の面からも今後注目されると考えられ
るが,上述のように報告例もまだ少なく改良の余地はか
なり残されている。
This reaction system is intended to develop a CH 4 -containing gas such as natural gas into a raw material for chemical industry, and CO
It is thought that this will attract attention in the future from the viewpoint of effective use of the two gases, but as mentioned above, there are still few reports, and there is considerable room for improvement.

【0009】本発明は,従来技術を改良するものであ
り,さらに一段と高活性である,触媒調製プロセス
が簡易である,高価な活性成分金属担持量が少ないな
どの特徴および効果を有する触媒を用い,CH含有ガ
スおよびCO含有ガスによる合成ガスの製造方法を提
供するものである。
The present invention is an improvement over the prior art, and uses a catalyst having characteristics and effects such as higher activity, simple catalyst preparation process, and low amount of expensive active ingredient metal supported. , CH 4 containing gas and CO 2 containing gas are provided.

【0010】[0010]

【課題を解決するための手段】本発明者らは,鋭意研究
を重ねた結果,高純度超微粉単結晶酸化マグネシウムを
担体として特定の担持法により調製した触媒を用いるこ
とにより,著しい効果が得られることを見出し本発明を
完成するに至った。
Means for Solving the Problems As a result of intensive studies, the inventors of the present invention obtained a remarkable effect by using a catalyst prepared by a specific supporting method using high-purity ultrafine single crystal magnesium oxide as a carrier. The present invention has been completed and the present invention has been completed.

【0011】本発明の製造方法について以下に詳細に説
明する。
The manufacturing method of the present invention will be described in detail below.

【0012】本発明に有用な触媒調製用担体原料は,B
ET比表面積5〜170m/g(比表面積径0.01
〜0.2μm),純度99.9%以上の高純度超微粉単
結晶酸化マグネシウムであり,たとえば特公平2−28
9号公報に開示の方法,すなわちマグネシウム蒸気と酸
素含有ガスを乱流拡散状態で酸化させる方法により合成
した酸化マグネシウムが好適である。BET比表面積1
70m/gを超える酸化マグネシウムを製造すること
は可能であり本発明にも有用であるが,製造コストがき
わめて高くなること,通常の粉末の取り扱いが困難にな
ることなどから現状では実用性が低い。また比表面積が
5m/g未満となると,触媒活性が低下するため好ま
しくない。したがって高純度超微粉単結晶酸化マグネシ
ウムの好ましい範囲は,BET比表面積5〜170m
/gである。
The carrier raw material for preparing the catalyst useful in the present invention is B
ET specific surface area 5 to 170 m 2 / g (specific surface area diameter 0.01
.About.0.2 .mu.m) and a purity of 99.9% or more of high-purity ultrafine powder single crystal magnesium oxide.
Magnesium oxide synthesized by the method disclosed in Japanese Patent Publication No. 9-9, that is, a method of oxidizing magnesium vapor and an oxygen-containing gas in a turbulent diffusion state is suitable. BET specific surface area 1
It is possible to produce magnesium oxide in excess of 70 m 2 / g, and it is useful in the present invention, but the production cost is extremely high, and it is difficult to handle ordinary powders. Low. On the other hand, if the specific surface area is less than 5 m 2 / g, the catalytic activity will decrease, which is not preferable. Therefore, the preferred range of high-purity ultrafine single crystal magnesium oxide is 5 to 170 m 2 of BET specific surface area.
/ G.

【0013】また,触媒調製用第8族金属元素として
は,好ましくはニッケル(Ni),ルテニウム(R
u),ロジウム(Rh),パラジウム(Pd)および白
金(Pt)から選択された1種または2種以上の金属元
素であり,その前駆体原料としてはアセチルアセトナト
塩,硝酸塩,アルコキシド,酢酸塩,カルボニル塩など
であり,一般に比較的低温たとえば300℃以下で溶融
し,かつ400℃以下で熱分解して金属酸化物となる第
8族金属材料であれば適用できる。たとえばアセチルア
セトナトニッケルの場合,その融点は228℃,熱分解
温度は約300℃であり,熱分解後には酸化ニッケル
(NiO)となる。
The Group 8 metal element for catalyst preparation is preferably nickel (Ni) or ruthenium (R).
u), rhodium (Rh), palladium (Pd), and platinum (Pt), and one or more metal elements selected from them. As a precursor material thereof, acetylacetonato salt, nitrate, alkoxide, acetate , A carbonyl salt, etc., and any group 8 metal material that melts at a relatively low temperature, for example, 300 ° C. or lower, and thermally decomposes at 400 ° C. or lower to form a metal oxide can be applied. For example, acetylacetonato nickel has a melting point of 228 ° C. and a thermal decomposition temperature of about 300 ° C., and becomes nickel oxide (NiO) after thermal decomposition.

【0014】上記高純度超微粉単結晶酸化マグネシウム
および第8族金属活性成分材料を用いて触媒を調製する
方法は,特願平2−275371号に基づくものであり
その方法を以下に示す。
A method for preparing a catalyst using the above-mentioned high-purity ultrafine single crystal magnesium oxide and a Group 8 metal active component material is based on Japanese Patent Application No. 2-275371, and the method is shown below.

【0015】上記2種類の原材料,すなわち超微粉単結
晶担体材料および活性成分金属材料をまず十分よく混合
する。この際,十分均一に混合されておれば,混合方法
に限定はなく,通常の乾式混合方法で良い。つぎに得ら
れた混合粉末を通常の乾式成形機を用いて成形する。こ
の際の成形機としては乾式成形機であればいずれでもよ
く,たとえば打錠機,ブリケッティングマシンなどの乾
式圧縮成形機などが用いられる。また,その際成形体
(タブレット)の形状は,球,円柱,リング,小粒状,
いずれでもよく,また大きさは通常20mm以内である
が,これらはともに使用面から決定される。
First, the above two kinds of raw materials, that is, the ultrafine powder single crystal carrier material and the active ingredient metal material, are mixed sufficiently well. At this time, if the mixing is sufficiently uniform, the mixing method is not limited, and a normal dry mixing method may be used. Next, the obtained mixed powder is molded using a normal dry molding machine. Any molding machine may be used as long as it is a dry molding machine, and for example, a dry compression molding machine such as a tableting machine or a briquetting machine is used. At that time, the shape of the molded body (tablet) is sphere, cylinder, ring, small grain,
Either may be used, and the size is usually within 20 mm, but both of them are determined from the viewpoint of use.

【0016】こうして得られたタブレットをHe,A
r,Nなどの不活性ガス雰囲気中において,一旦その
活性成分材料の融点より高く,かつ融点の近傍の温度で
加熱保持し,その活性成分を担体材料表面に均一に溶融
分散させる。さらに,同一の不活性ガス雰囲気中におい
てその活性成分材料の熱分解する温度より高い温度で完
全に分解するまで加熱処理を行う。
The tablets thus obtained were replaced with He, A
In an atmosphere of an inert gas such as r, N 2 or the like, the active ingredient is once heated and held at a temperature higher than and close to the melting point of the active ingredient material to uniformly melt and disperse the active ingredient on the surface of the carrier material. Further, heat treatment is carried out in the same inert gas atmosphere at a temperature higher than the temperature at which the active ingredient material is thermally decomposed until it is completely decomposed.

【0017】たとえば,前記超微粉単結晶酸化マグネシ
ウム(比表面積140m/g)およびアセチルアセト
ナトニッケルの場合には,これらを乾式で十分混合成形
した後,230〜250℃における不活性ガス中におい
て少なくとも10分間加熱保持し,さらに同じ雰囲気ガ
ス中において300〜400℃の温度で少なくとも10
分間加熱処理を行う。
For example, in the case of the ultrafine powder single crystal magnesium oxide (specific surface area 140 m 2 / g) and acetylacetonato nickel, they are sufficiently dry-mixed and then molded in an inert gas at 230 to 250 ° C. It is heated and held for at least 10 minutes and at least 10 at a temperature of 300 to 400 ° C. in the same atmosphere gas.
Heat treatment for minutes.

【0018】得られた触媒タブレットは必要に応じ活性
化処理があらかじめ使用前にあるいは使用直前に行われ
る。たとえば,活性成分材料がニッケル金属塩の場合に
は,使用直前にHガス雰囲気中で通常300℃以上で
行われる。
The catalyst tablets thus obtained are optionally subjected to activation treatment in advance before use or immediately before use. For example, when the active ingredient material is a nickel metal salt, it is usually performed at 300 ° C. or higher in an H 2 gas atmosphere immediately before use.

【0019】なお,第8族金属元素の担持量は活性化後
の金属として0.1〜30mol%が好ましい。その下
限値未満ではその担持効果が小さく触媒活性の向上が小
さい。またその上限値を超えると,その金属によるシン
タリング傾向がみられるようになり,かえって活性が低
下すると同時に経済的にも不利である。
The supported amount of the Group 8 metal element is preferably 0.1 to 30 mol% as the metal after activation. If it is less than the lower limit, the supporting effect is small and the improvement of the catalytic activity is small. If the upper limit is exceeded, sintering tends to occur due to the metal, which rather reduces the activity and is economically disadvantageous.

【0020】このようにして調製された触媒を通常の流
通式反応器内に充填し,天然ガスなどメタン含有ガスお
よびセメント工場焼成排ガスなどCO含有ガスを導入
してメタンを部分酸化させ反応を連続的に行わせる。こ
の際の反応温度は300〜1200℃,好ましくは50
0〜900℃,反応圧力は常圧〜20kgf/cm
G,好ましくは常圧〜5kgf/cmGで行う。
The catalyst thus prepared is filled in an ordinary flow-type reactor, and a methane-containing gas such as natural gas and a CO 2 -containing gas such as a cement factory burning exhaust gas are introduced to partially oxidize methane to carry out the reaction. Let it run continuously. The reaction temperature at this time is 300 to 1200 ° C., preferably 50.
0 to 900 ° C, reaction pressure is atmospheric pressure to 20 kgf / cm
2 G, preferably atmospheric pressure to 5 kgf / cm 2 G.

【0021】[0021]

【実施例】以下に実施例を示す。EXAMPLES Examples will be shown below.

【0022】[0022]

【実施例1〜3】気相酸化法製高純度超微粉単結晶酸化
マグネシウム(BET比表面積140m/g)にアセ
チルアセトナトニッケルを加えて乾式で十分混合し,こ
れを通常の圧縮成形機を用いてφ5×5mmのシリンダ
ー状に成形した。この際のニッケル担持量はNiとして
5mol%となるように調合した。ついでこの成形物を
Heガス気流中で230℃で加熱しアセチルアセトナト
ニッケルを溶融させた後,同一雰囲気ガス中で300℃
で加熱処理を行いニッケル前駆体を熱分解させた。
[Examples 1 to 3] Acetylacetonato nickel was added to high-purity ultrafine single crystal magnesium oxide (BET specific surface area 140 m 2 / g) manufactured by a gas phase oxidation method and thoroughly mixed in a dry system, and this was mixed with an ordinary compression molding machine. It was used to form a cylinder of φ5 × 5 mm. At this time, the amount of nickel supported was adjusted to 5 mol% as Ni. Then, this molded product was heated at 230 ° C. in a He gas stream to melt acetylacetonato nickel, and then 300 ° C. in the same atmosphere gas.
To heat-decompose the nickel precursor.

【0023】このようにして得られた5mol%Ni/
MgO触媒をマイクロリアクターに0.1g充填しH
気流中800℃で3時間還元処理を行った。引き続き,
CH:CO:He=15:15:70vol%の混
合ガス100ml/minをマイクロリアクターに導入
しながら,反応温度600℃(実施例1),700℃
(実施例2)および750℃(実施例3)において反応
させた。排出ガス2mlを採取して定常状態におけるガ
ス組成をガスクロマトグラフにより求めCH転化率,
へのCH転化率およびCOへのCH転化率をそ
れぞれ算出した。この結果を表1に示す。なおこの際,
GHSV=60000h−1,全圧=1atmであっ
た。
The thus obtained 5 mol% Ni /
Filling the microreactor with 0.1 g of MgO catalyst, H 2
The reduction treatment was performed at 800 ° C. for 3 hours in an air stream. Continuing,
CH 4 : CO 2 : He = 15: 15: 70 vol% of a mixed gas of 100 ml / min was introduced into the microreactor, while the reaction temperature was 600 ° C. (Example 1) and 700 ° C.
The reaction was carried out at (Example 2) and 750 ° C. (Example 3). 2 ml of exhaust gas was sampled and the gas composition in the steady state was determined by gas chromatography, and CH 4 conversion,
The CH 4 conversion and CH 4 conversion of CO to H 2 was calculated. The results are shown in Table 1. At this time,
GHSV = 60,000 h −1 , total pressure = 1 atm.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【実施例4〜8】実施例1〜3で用いた5mol%Ni
/MgO触媒(実施例4)のほかに,同様にして調製し
た1mol%Rh/MgO触媒(実施例5),1mol
%Ru/MgO触媒(実施例6),1mol%Pd/M
gO触媒(実施例7)および1mol%Pt/MgO触
媒(実施例8)を用い,実施例1〜3と同様に活性試験
を行った。この際の反応条件は反応温度=740℃,G
HSV=60000h−1,全圧=1atmである。そ
の結果を表2に示す。
Examples 4 to 8 5 mol% Ni used in Examples 1 to 3
/ MgO catalyst (Example 4), 1 mol% Rh / MgO catalyst (Example 5) prepared in the same manner, 1 mol
% Ru / MgO catalyst (Example 6), 1 mol% Pd / M
An activity test was conducted in the same manner as in Examples 1 to 3 using the gO catalyst (Example 7) and the 1 mol% Pt / MgO catalyst (Example 8). The reaction conditions at this time are: reaction temperature = 740 ° C., G
HSV = 60,000 h −1 , total pressure = 1 atm. The results are shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明は,CH含有ガスおよびCO
含有ガスを触媒の存在下で接触させてCOおよびH
含有する合成ガスを製造する方法に関するものであっ
て,本発明の方法にしたがって製造することにより以下
の効果が顕著に認められる。すなわち,さらに一段と
高活性である。触媒調製プロセスが簡易である。高
価な活性成分金属担持量が少ない。COを有効利用
して有用な合成ガスに転換できる。
INDUSTRIAL APPLICABILITY The present invention relates to CH 4 containing gas and CO 2
The present invention relates to a method for producing a synthesis gas containing CO and H 2 by bringing a contained gas into contact with each other in the presence of a catalyst, and by producing according to the method of the present invention, the following effects are remarkably observed. That is, the activity is much higher. The catalyst preparation process is simple. The amount of expensive active ingredient metal supported is small. CO 2 can be effectively utilized and converted into useful synthesis gas.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高純度超微粉単結晶酸化マグネシウムと
第8族金属元素からなる触媒の存在下で,温度300〜
1200℃において,メタン含有ガスと二酸化炭素含有
ガスとを接触させることを特徴とする一酸化炭素および
水素を含有する合成ガスの製造方法。
1. In the presence of a catalyst comprising high-purity ultrafine single crystal magnesium oxide and a Group 8 metal element, a temperature of 300 to
A method for producing a synthesis gas containing carbon monoxide and hydrogen, which comprises contacting a methane-containing gas and a carbon dioxide-containing gas at 1200 ° C.
【請求項2】 第8族金属元素がニッケル(Ni),ル
テニウム(Ru),ロジウム(Rh),パラジウム(P
d)および白金(Pt)から選択された1種または2種
以上の金属元素である請求項1に記載の合成ガスの製造
方法。
2. The Group 8 metal element is nickel (Ni), ruthenium (Ru), rhodium (Rh), or palladium (P).
The method for producing synthesis gas according to claim 1, wherein the synthetic gas is one or more metal elements selected from d) and platinum (Pt).
【請求項3】 第8族金属元素を0.1〜30mol%
含有する前記触媒を使用する請求項1に記載の合成ガス
の製造方法。
3. A 0.1 to 30 mol% Group 8 metal element
The method for producing synthesis gas according to claim 1, wherein the catalyst contained is used.
【請求項4】 前記触媒が,高純度超微粉単結晶酸化マ
グネシウムと第8族金属元素の化合物とから成形体を作
製し,つぎにこの成形体を不活性ガス雰囲気で該化合物
の融点より高く,かつ融点の近傍の温度に加熱保持し,
さらに該化合物の熱分解温度より高い温度で加熱処理し
て調製されたものである請求項1に記載の合成ガスの製
造方法。
4. The catalyst is used to prepare a compact from high-purity ultrafine single-crystal magnesium oxide and a compound of a Group 8 metal element, and the compact is heated in an inert gas atmosphere to a temperature higher than the melting point of the compound. , And keep it at a temperature near the melting point,
The method for producing synthesis gas according to claim 1, which is prepared by heating at a temperature higher than the thermal decomposition temperature of the compound.
JP3188391A 1991-04-26 1991-04-26 Method for producing synthetic gas from methane-containing gas and carbon dioxide-containing gas Pending JPH05208801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3188391A JPH05208801A (en) 1991-04-26 1991-04-26 Method for producing synthetic gas from methane-containing gas and carbon dioxide-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3188391A JPH05208801A (en) 1991-04-26 1991-04-26 Method for producing synthetic gas from methane-containing gas and carbon dioxide-containing gas

Publications (1)

Publication Number Publication Date
JPH05208801A true JPH05208801A (en) 1993-08-20

Family

ID=16222816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3188391A Pending JPH05208801A (en) 1991-04-26 1991-04-26 Method for producing synthetic gas from methane-containing gas and carbon dioxide-containing gas

Country Status (1)

Country Link
JP (1) JPH05208801A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975728A (en) * 1995-09-13 1997-03-25 Nec Corp Synthetic gas producing catalyst and production using the same
JP2000103757A (en) * 1998-09-30 2000-04-11 Chiyoda Corp Production of dimethyl ether from lower hydrocarbon gas
JP2002173303A (en) * 2000-12-06 2002-06-21 Japan National Oil Corp Method of producing synthetic gas
JP2010530879A (en) * 2007-06-21 2010-09-16 ユニバーシティ オブ サザン カリフォルニア Conversion of carbon dioxide to dimethyl ether using methane or natural gas reforming.
KR20120060145A (en) * 2010-12-01 2012-06-11 삼성전자주식회사 Method of converting carbon dioxide, and method of capturing and converting carbon dioxide
JP2014524826A (en) * 2011-06-21 2014-09-25 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for depositing metal on support oxide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975728A (en) * 1995-09-13 1997-03-25 Nec Corp Synthetic gas producing catalyst and production using the same
JP2000103757A (en) * 1998-09-30 2000-04-11 Chiyoda Corp Production of dimethyl ether from lower hydrocarbon gas
JP2002173303A (en) * 2000-12-06 2002-06-21 Japan National Oil Corp Method of producing synthetic gas
JP2010530879A (en) * 2007-06-21 2010-09-16 ユニバーシティ オブ サザン カリフォルニア Conversion of carbon dioxide to dimethyl ether using methane or natural gas reforming.
KR20120060145A (en) * 2010-12-01 2012-06-11 삼성전자주식회사 Method of converting carbon dioxide, and method of capturing and converting carbon dioxide
KR20180128380A (en) * 2010-12-01 2018-12-03 삼성전자주식회사 Method of converting carbon dioxide, and method of capturing and converting carbon dioxide
JP2014524826A (en) * 2011-06-21 2014-09-25 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for depositing metal on support oxide

Similar Documents

Publication Publication Date Title
Zhang et al. Advances in studies of the structural effects of supported Ni catalysts for CO 2 hydrogenation: from nanoparticle to single atom catalyst
US6409940B1 (en) Nickel-rhodium based catalysts and process for preparing synthesis gas
Palma et al. Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica
Choudhary et al. CO-free fuel processing for fuel cell applications
JP2761609B2 (en) An improved method for the conversion of methane to synthesis gas.
KR101529906B1 (en) Process for operating hts reactor
Seshan et al. Carbon dioxide reforming of methane in the presence of nickel and platinum catalysts supported on ZrO2
CA2676186C (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
JPWO2002024571A1 (en) Methane partial oxidation method using dense oxygen selective permeable ceramic membrane
US20030096880A1 (en) Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas
CN101279271A (en) Catalyst for producing synthesis gas by catalytic partial oxidation of methane and preparation thereof
Haryanto High temperature water gas shift reaction over nickel catalysts for hydrogen production: effect of supports, GHSV, metal loading, and dopant materials
JPH05208801A (en) Method for producing synthetic gas from methane-containing gas and carbon dioxide-containing gas
EP1298089B1 (en) Method for obtaining hydrogen by partial methanol oxidation
JPH04331704A (en) Production of synthetic gas containing both carbon monoxide and hydrogen
KR20190067146A (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JP3975271B2 (en) Biomass gasification method and catalyst used therefor
CN106311264A (en) Silica supported nickel tungsten catalyst and preparation method and application thereof
CN100528739C (en) Method of preparing synthetic gas by partly oxygenating of natural gas under large airspeed
KR20150129566A (en) Ni-based catalysts for combined steam and carbon dioxide reforming with natural gas
JP2001246258A (en) Catalyst for producing hydrogen by partial oxidation reaction of methanol and method therefor
KR20230057253A (en) Catalyst for reforming of methane and method for manufacturing thereof
Lapin et al. The preparation of hydrogen by the catalytic pyrolysis of ethanol on a nickel catalyst
KR20240054706A (en) Catalyst for reforming of methane and method for manufacturing thereof
JP2007516924A (en) Process for treating methane-carbon dioxide mixtures

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees