JPS6240757A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6240757A
JPS6240757A JP18065185A JP18065185A JPS6240757A JP S6240757 A JPS6240757 A JP S6240757A JP 18065185 A JP18065185 A JP 18065185A JP 18065185 A JP18065185 A JP 18065185A JP S6240757 A JPS6240757 A JP S6240757A
Authority
JP
Japan
Prior art keywords
resistor
insulating film
wiring metal
layer
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18065185A
Other languages
Japanese (ja)
Inventor
Kazuyuki Mizushima
水嶋 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18065185A priority Critical patent/JPS6240757A/en
Publication of JPS6240757A publication Critical patent/JPS6240757A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat sink of a polycrystalline silicon resistor having no bias dependency of a parasitic capacity by forming a wiring metal through an insulating film on the resistor, and coupling the metal via a through-hole with a wiring metal of the upper layer of multilayer wirings to sufficiently increase the area of the upper layer wirings. CONSTITUTION:An insulating film 107 such as an oxide film is grown on a polycrystalline silicon resistor 106 formed on an insulating film 103 to form the first layer electrode wirings 104. In this case, the first layer wiring metal 108 is formed directly above the resistor 106 in the state electrically insulated from the wirings 104. Then, after the first and second interlayer insulating film 107 is grown, a through hole 109 is formed on the first layer wiring metal 108 on the resistor. Then, the second layer wiring metal 110 is formed in the shape for coating the resistor on the hole 109 on the resistor so that the area is widened as much as possible in response to the distance to a device adjacent to the resistor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置に関し、竹に多結晶シリコ
ン抵抗に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and relates to a bamboo polycrystalline silicon resistor.

°〔従来の技術〕 半導体集積回路装置において使用される抵抗は大きく分
類して、抵抗体を単結晶シリコン中に不純物を導入する
ことにより作り込むものと、単結晶シリコン以外の薄膜
をパターニングし作成するものとがある。第2図(a)
(b)は従来技術で作盛さ輯。
° [Prior art] Resistors used in semiconductor integrated circuit devices are broadly classified into those that are fabricated by introducing impurities into single-crystal silicon, and those that are fabricated by patterning a thin film other than single-crystal silicon. There is something to do. Figure 2(a)
(b) is created using conventional technology.

た抵抗の断面図を示す。同図(a)は単結晶基板201
中に作り込まnた単1結晶基板と反対導電型の拡散層2
02が抵抗体となり、絶縁膜203に開口されたコンタ
クトを介して電極204と接続される。
A cross-sectional view of the resistor is shown. In the same figure (a), a single crystal substrate 201
Diffusion layer 2 of the opposite conductivity type to the single crystal substrate built inside
02 is a resistor, which is connected to the electrode 204 through a contact opened in the insulating film 203.

同図0)は単結晶シリコン以外の薄膜として多結晶シリ
コンを使用した場合で単結晶基板201上の絶縁膜20
3上に多結晶シリコン206をパターニングし、絶縁膜
207に開口されたコンタクトを介して電極金属204
と接続される。
Figure 0) shows a case where polycrystalline silicon is used as a thin film other than single crystal silicon, and an insulating film 20 on a single crystal substrate 201 is used.
The polycrystalline silicon 206 is patterned on 3, and the electrode metal 204 is formed through contacts opened in the insulating film 207.
connected to.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した従来の半導体集積回路の抵抗で第2図   ・
(&)の半導体基板あるいはエピタキシャル層201に
形成した拡散層202を抵抗体として用いるものでは、
抵抗体と、基板あるいはエピタキシャル層間のp−n接
合により抵抗体に分布的な寄生容量が付き、これが集積
回路の高速動作を妨げる一因となる。またこれらの寄生
容量はp −n接合のバイアスに依存しており回路内の
バイアス条件によって容量値が変わるため設計時にはこ
の点の考慮が必要である。
Figure 2 shows the resistance of the conventional semiconductor integrated circuit mentioned above.
In the case where the diffusion layer 202 formed in the semiconductor substrate or epitaxial layer 201 of (&) is used as a resistor,
The p-n junction between the resistor and the substrate or epitaxial layer creates a distributed parasitic capacitance on the resistor, which is one of the factors that hinders high-speed operation of the integrated circuit. Further, these parasitic capacitances depend on the bias of the p-n junction, and since the capacitance value changes depending on the bias conditions in the circuit, this point must be taken into consideration at the time of design.

一方第2図中)の多結晶シリコン206を抵抗体として
用いる抵抗では、抵抗体と半導体基板とが酸化膜、窒化
膜などの絶縁膜203で絶縁されており、絶縁膜厚が十
分厚ければ半導体基板との寄生容量は小さくできる。ま
たこの寄生容量はバイアス状態に依存せず→定であるた
め設計が容易である。しかし通常、酸化膜や窒化膜など
の絶縁膜は単結晶シリコンにくらべて熱伝導度が小さく
、抵抗体の周囲が絶縁体でおおわれるこの例のような抵
抗では放熱が悪く、抵抗の温度上昇が問題となる。また
温度上昇を小さくおさえるためには抵抗体の面積を土窯
大きくする必要が生じる。
On the other hand, in a resistor using polycrystalline silicon 206 as a resistor (in Figure 2), the resistor and the semiconductor substrate are insulated by an insulating film 203 such as an oxide film or a nitride film, and if the insulating film is thick enough, Parasitic capacitance with the semiconductor substrate can be reduced. Further, this parasitic capacitance does not depend on the bias state and is constant, so it is easy to design. However, insulating films such as oxide films and nitride films usually have lower thermal conductivity than single-crystal silicon, and in resistors like this example where the resistor is surrounded by an insulator, heat dissipation is poor and the temperature of the resistor increases. becomes a problem. Furthermore, in order to suppress the temperature rise, it is necessary to increase the area of the resistor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は多結晶シリコン抵抗体上に絶縁膜を介し、配線
金属を形成し、これと多層配線系のよ鴫上層の配線物質
と結合する事により、下層配線の設計自由度を極力損な
わず、寄生容量が小さく、寄生容量のバイアス依存性の
無い多結晶シリコン抵抗の放熱性を向上させることを可
能とする。
The present invention forms a wiring metal on a polycrystalline silicon resistor through an insulating film, and combines this with the wiring material in the upper layer of a multilayer wiring system, thereby minimizing the degree of freedom in designing the lower wiring. It is possible to improve the heat dissipation performance of a polycrystalline silicon resistor with small parasitic capacitance and no bias dependence of parasitic capacitance.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の一実施例の平面図である。FIG. 1(a) is a plan view of one embodiment of the present invention.

第1図中)は同図(a)に示すy−y’  での断面図
を、第1図(e)は同図(a)に示すX−X’  での
断面図を示している。
1) shows a sectional view taken along line yy' shown in FIG. 1(a), and FIG. 1(e) shows a sectional view taken along line XX' shown in FIG. 1(a).

絶縁膜103上にフォトエツチング法などにより形成さ
また多結晶シリコン抵抗体106に対し、従来技術によ
し酸化膜等の絶縁膜107を成長せしめ第1層電極配線
104をフォトエツチングにて形成する。その際、多結
晶シリコン抵抗体106直上に第1層配線金属108を
前記第1層電極配線104と電気的に絶縁された状態で
形成する。
An insulating film 107 such as an oxide film is grown on the polycrystalline silicon resistor 106 formed on the insulating film 103 by photo-etching or the like, and a first layer electrode wiring 104 is formed by photo-etching. At this time, a first layer wiring metal 108 is formed directly above the polycrystalline silicon resistor 106 so as to be electrically insulated from the first layer electrode wiring 104 .

次に例えばシリコン酸化膜や窒化膜等の第1.第2層間
絶縁膜107を従来技術により成長せしめた後、フォト
エツチングにより前記抵抗体上第1層配線金属108上
にスルーホール109を形成する。このフォトエツチン
グ工程は、本発明の抵抗以外の配線領域では通常の下層
配線と上層配線とを接続する通常のスルーホール工程で
ある。ここで形成される抵抗体上のスルーホール109
は、可能な限り大型化することが望ましい。
Next, a first film such as a silicon oxide film or a nitride film is formed. After growing a second interlayer insulating film 107 using a conventional technique, a through hole 109 is formed on the first layer wiring metal 108 on the resistor by photoetching. This photoetching process is a normal through-hole process for connecting the normal lower layer wiring and the upper layer wiring in the wiring area other than the resistor of the present invention. Through hole 109 on the resistor formed here
It is desirable to make it as large as possible.

次に、第2層配線金属を付着せしめ従来のフォトエツチ
ング技術により通常の第2層配線を形成するが、この際
前記抵抗体上スルーホール109主に第2層配線金属1
10を抵抗体を被う形状に形成する。またその面積は抵
抗体に隣接するデバイスとの距離に応じて可能な限り広
くする。場合に応じて前記抵抗体上第2層配線金属は複
数個接続しても良くまた回路特性上問題の発生しない範
囲で電源線、接地線と共通にしても良い。
Next, a second layer wiring metal is deposited and a conventional second layer wiring is formed using a conventional photoetching technique. At this time, the through hole 109 on the resistor is mainly
10 is formed in a shape to cover the resistor. Further, the area is made as wide as possible depending on the distance between the resistor and the adjacent device. Depending on the case, a plurality of the above-mentioned second layer wiring metals on the resistor may be connected, or may be shared with the power supply line and the ground line as long as no problem arises in terms of circuit characteristics.

このよう抵抗体上に広い面積を持つより上層の配線金属
層を形成することにより、下層配線の自由度を大きく損
なう事なく、多結晶シリコン抵抗体での発熱の集中を防
止し、抵抗体の面積を大きくすることなく放熱性に優れ
た多結晶シリコン抵抗が実現さnる。
By forming an upper wiring metal layer with a wider area on the resistor in this way, it is possible to prevent heat generation from concentrating on the polycrystalline silicon resistor without significantly impairing the degree of freedom of the lower layer wiring, and to prevent heat generation from concentrating on the resistor. A polycrystalline silicon resistor with excellent heat dissipation properties can be realized without increasing the area.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、多結晶シリコン抵抗体上
に、絶縁膜を介し配線金属を形成し、とnと多層配線系
のより上層の配線金属とスルーホールを介し結合し、上
層配線の面積を十分大きくすることにより、下層配線系
の設計自由度大きく損なうことなく、寄生容量が小さく
、寄生容量のバイアス依存性の無い多結晶シリコン抵抗
の放熱性を向上させることを可能とする。
As explained above, in the present invention, a wiring metal is formed on a polycrystalline silicon resistor through an insulating film, and is connected to a wiring metal in an upper layer of a multilayer wiring system through a through hole. By making the area sufficiently large, it is possible to improve the heat dissipation performance of the polycrystalline silicon resistor, which has small parasitic capacitance and is free from bias dependence, without significantly impairing the degree of freedom in designing the lower wiring system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の多結晶シリコン抵抗の平面図、
第1図中)は第1図(a)のy−y’線断面図、第1図
(C)は第1図(a)のx  xl線断面図である。第
2図゛(a)は従来の単結晶シリコンに作り込まれた抵
抗の断面図第2図中)は従来の多結晶シリコン抵抗の断
面図である。 101・−・・・:単結晶半導体基板、103・・・・
・・絶縁膜、104・・・・・・第1層電極配線、10
6・・・・・・多結晶シリコン抵抗体、107・・・・
・・層間絶縁膜、108・・・・・・抵抗体上第1層配
線金属、109・・・・・・スルーホール、110・・
・・・・抵抗体上第2層配線金属、201・・・・・・
単結晶半導体基板、202・・・・・・拡散層、203
・・・・・・絶縁膜、204・・・・・・電極金属、2
05・・・・・・パッシベーション膜、206・・・・
・・多結晶シリコン抵抗体、207・・・・・・絶縁膜
FIG. 1(a) is a plan view of the polycrystalline silicon resistor of the present invention;
1) is a cross-sectional view along the y-y' line in FIG. 1(a), and FIG. 1(C) is a cross-sectional view along the xxl line in FIG. 1(a). FIG. 2(a) is a cross-sectional view of a conventional resistor built in single-crystal silicon. FIG. 2(a) is a cross-sectional view of a conventional polycrystalline silicon resistor. 101...: single crystal semiconductor substrate, 103...
...Insulating film, 104...First layer electrode wiring, 10
6... Polycrystalline silicon resistor, 107...
...Interlayer insulating film, 108...First layer wiring metal on resistor, 109...Through hole, 110...
...Second layer wiring metal on resistor, 201...
Single crystal semiconductor substrate, 202...Diffusion layer, 203
...Insulating film, 204... Electrode metal, 2
05... Passivation film, 206...
...Polycrystalline silicon resistor, 207...Insulating film.

Claims (1)

【特許請求の範囲】[Claims] 多結晶シリコン抵抗上に絶縁膜を介して下層配線金属を
有し、前記下層配線金属が、スルーホールを介して上層
の配線金属と結合され、前記上層配線金属が集積回路装
置上に延在している半導体装置。
A lower layer wiring metal is provided on the polycrystalline silicon resistor via an insulating film, the lower layer wiring metal is coupled to an upper layer wiring metal via a through hole, and the upper layer wiring metal extends over the integrated circuit device. semiconductor devices.
JP18065185A 1985-08-16 1985-08-16 Semiconductor device Pending JPS6240757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18065185A JPS6240757A (en) 1985-08-16 1985-08-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18065185A JPS6240757A (en) 1985-08-16 1985-08-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6240757A true JPS6240757A (en) 1987-02-21

Family

ID=16086924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18065185A Pending JPS6240757A (en) 1985-08-16 1985-08-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6240757A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512539A (en) * 1991-07-08 1993-01-22 Nippon Kinsen Kikai Kk Medal delivering device in playing system
DE112009005017T5 (en) 2009-06-29 2012-07-26 Fujitsu Limited Semiconductor device and method for manufacturing a semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512539A (en) * 1991-07-08 1993-01-22 Nippon Kinsen Kikai Kk Medal delivering device in playing system
DE112009005017T5 (en) 2009-06-29 2012-07-26 Fujitsu Limited Semiconductor device and method for manufacturing a semiconductor device
US8946857B2 (en) 2009-06-29 2015-02-03 Fujitsu Limited Semiconductor device for effectively disperse heat generated from heat generating device

Similar Documents

Publication Publication Date Title
USRE26803E (en) Hioh frequency power transistor
US3566214A (en) Integrated circuit having a plurality of circuit element regions and conducting layers extending on both of the opposed common major surfaces of said circuit element regions
US4190949A (en) Method for manufacturing a semiconductor device
US3398335A (en) Transistor structure with an emitter region epitaxially grown over the base region
JPS6240757A (en) Semiconductor device
US4544941A (en) Semiconductor device having multiple conductive layers and the method of manufacturing the semiconductor device
JPH01214048A (en) Semiconductor integrated device
US3631313A (en) Resistor for integrated circuit
JP2504498B2 (en) Semiconductor device
JPH01262654A (en) Semiconductor device
JP2526536Y2 (en) Semiconductor device
JP2559102B2 (en) Semiconductor device
JPH0563167A (en) Semiconductor device
JPH04361566A (en) Semiconductor integrated circuit
JPH01298746A (en) Semiconductor device and manufacture of the same
JPS5914650A (en) Semiconductor integrated circuit device
JP3006795B2 (en) Semiconductor device
JPS59208750A (en) Wiring structure of semiconductor device
JPS61194864A (en) Semiconductor device
JPS5842257A (en) Semiconductor device
JPS6022828B2 (en) Manufacturing method of semiconductor device
JPH05211294A (en) Semiconductor device
JPH04162652A (en) Semiconductor device
JPH05343397A (en) Semiconductor integrated circuit device
JPS6171668A (en) Semiconductor device