JPH05343397A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH05343397A
JPH05343397A JP14718092A JP14718092A JPH05343397A JP H05343397 A JPH05343397 A JP H05343397A JP 14718092 A JP14718092 A JP 14718092A JP 14718092 A JP14718092 A JP 14718092A JP H05343397 A JPH05343397 A JP H05343397A
Authority
JP
Japan
Prior art keywords
type epitaxial
type
conductivity type
resistance
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14718092A
Other languages
Japanese (ja)
Inventor
Akio Nakamura
彰男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP14718092A priority Critical patent/JPH05343397A/en
Publication of JPH05343397A publication Critical patent/JPH05343397A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance a degree of freedom of wiring without increasing the area occupied by elements by also providing N type buried layers just under the separated oxide films and respectively connecting N type epitaxial layers which will become lands of resistance with the N type buried layers. CONSTITUTION:N type buried layers 2 are selectively formed within a semiconductor substrate 1 and the N type epitaxial layers 3 are grown. Thereafter, the N type epitaxial layers 3 in the region which will become the isolated region is etched to form isolated oxide films 10. In this case, the bottom part of the isolated oxide films 10 is set in contact with the N type buried layers 2. Thereafter, after the P type diffused layers 5 are formed as the resistance elements within the N type epitaxial layers 3 which will become lands of resistance, an oxide film 6 is formed on the surface and aperture windows 11 are provided on the one land of the N type epitaxial layer 3 to form metal wirings 12, 13. Thereby, connection of metal wirings at the surface are no longer necessary and the other metal wirings formed simultaneously between lands of resistance can also be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抵抗素子を内蔵する半導
体集積回路装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device incorporating a resistance element.

【0002】[0002]

【従来の技術】近年、半導体集積回路装置においては微
細化が進み素子占有面積の縮小化が要望されている。こ
れに伴い抵抗素子も微細化の観点から占有面積の縮小化
および配置の自由度を高くできる技術が望まれている。
一般に拡散抵抗素子を使用する場合は、抵抗となる拡散
層は、それとは反対導電型の拡散層上に形成し、下部拡
散層の電位を抵抗の電位より高く設定する必要があり、
普通、電源電圧と同じ電位に設定される。
2. Description of the Related Art In recent years, miniaturization of semiconductor integrated circuit devices has progressed, and there has been a demand for reduction of the area occupied by elements. Along with this, from the viewpoint of miniaturization of the resistance element, there is a demand for a technology capable of reducing the occupied area and increasing the degree of freedom of arrangement.
In general, when using a diffusion resistance element, the diffusion layer to be the resistance, it is necessary to form on the diffusion layer of the opposite conductivity type, to set the potential of the lower diffusion layer higher than the potential of the resistance,
Usually, it is set to the same potential as the power supply voltage.

【0003】以下に従来の半導体集積回路装置について
説明する。図3は、従来の半導体集積回路装置の断面構
造図、図4は平面図である。図3、図4において、半導
体基板1中に選択的にN型埋め込み層2を形成し、半導
体基板1およびN型埋め込み層2上にN型エピタキシヤ
ル層3を形成する。その後、選択的にP型分離拡散層4
を形成した後、前記P型分離拡散層4で囲まれたN型エ
ピタキシヤル層の島内にP型拡散層5を選択的に形成し
抵抗素子として使用する。その後、N型エピタキシヤル
層3上に酸化膜6を形成し、N型エピタキシヤル層3の
島上の酸化膜6に選択的に開口部7および8を設け、金
属配線9で電気的に接続する。
A conventional semiconductor integrated circuit device will be described below. FIG. 3 is a sectional structural view of a conventional semiconductor integrated circuit device, and FIG. 4 is a plan view. 3 and 4, the N-type buried layer 2 is selectively formed in the semiconductor substrate 1, and the N-type epitaxial layer 3 is formed on the semiconductor substrate 1 and the N-type buried layer 2. After that, the P-type isolation diffusion layer 4 is selectively
Then, the P-type diffusion layer 5 is selectively formed in the island of the N-type epitaxial layer surrounded by the P-type isolation diffusion layer 4 and used as a resistance element. After that, an oxide film 6 is formed on the N-type epitaxial layer 3, openings 7 and 8 are selectively provided in the oxide film 6 on the island of the N-type epitaxial layer 3, and electrically connected by a metal wiring 9. ..

【0004】以上のように構成された半導体集積回路装
置において、抵抗の島となるN型エピタキシヤル層3は
金属配線9により、酸化膜6の開口部7および8を介し
てそれぞれ電気的に接続される。
In the semiconductor integrated circuit device configured as described above, the N-type epitaxial layer 3 serving as the island of resistance is electrically connected by the metal wiring 9 through the openings 7 and 8 of the oxide film 6, respectively. To be done.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では抵抗の島となるN型エピタキシヤル層を各
々電気的に接続し、抵抗素子より高い電位に保持するの
に金属配線を用いている。このため、抵抗の島間の表面
では、同時に形成した他の金属配線を配設することが不
可能である。また、抵抗の島となるN型エピタキシヤル
層同志が距離的に離れている場合、特に金属配線を長く
配設する必要があり、配線の自由度が大きく制限され、
素子占有面積が増大する。等の不都合があった。
However, in the above-mentioned conventional structure, the metal wiring is used to electrically connect the N-type epitaxial layers, which are the islands of the resistance, and to maintain the potential higher than that of the resistance element. .. Therefore, it is impossible to dispose another metal wiring formed at the same time on the surface between the resistor islands. Further, when the N-type epitaxial layers serving as the islands of resistance are separated from each other in distance, it is necessary to dispose the metal wiring particularly long, which greatly restricts the degree of freedom of wiring.
The element occupying area increases. There was an inconvenience.

【0006】本発明は、上記従来の課題を解決するもの
で素子占有面積を増大させることなく、配線の自由度を
高めることを可能とした半導体集積回路装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above conventional problems and to provide a semiconductor integrated circuit device capable of increasing the degree of freedom of wiring without increasing the element occupying area.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明の半導体集積回路装置は半導体基板中に形成
したN型埋め込み層を分離酸化膜の直下にも配設し、抵
抗の島となるN型エピタキシヤル層同志を、N型埋め込
み層でそれぞれ電気的接続した構成を有している。
To achieve this object, in a semiconductor integrated circuit device of the present invention, an N-type buried layer formed in a semiconductor substrate is provided directly below an isolation oxide film to form a resistance island. The N-type epitaxial layers are electrically connected to each other by N-type buried layers.

【0008】[0008]

【作用】この構成によって、抵抗の島となるN型エピタ
キシヤル層はすべて分離酸化膜直下に埋設したN型埋め
込み層により電気的に接続できる。このため、金属配線
とは、1つの抵抗の島と電気的に接続しておくだけで、
残りの複数個の抵抗の島には、金属配線は不要となり、
抵抗の島間を同時に形成した他の金属配線を配設でき
る、等の金属配線の配置自由度を高めることができ、素
子占有面積の削減が達成できる。また、回路動作上、前
記埋め込み拡散層および抵抗の島には電流は流さず、電
位保持機能のみでよいため、埋め込み層使用による拡散
抵抗の増大は問題ない。また、クロスオーバー用の金属
配線直下に厚い分離酸化膜を使用することにより、高周
波特性で問題となる配線容量の低減が期待できる。
With this structure, all the N-type epitaxial layers serving as the islands of resistance can be electrically connected by the N-type buried layer buried immediately below the isolation oxide film. Therefore, the metal wiring can be electrically connected to one resistance island,
No metal wiring is required for the remaining islands of resistance,
It is possible to increase the degree of freedom in arranging the metal wiring, such as arranging another metal wiring in which the islands of the resistance are formed at the same time, and to reduce the area occupied by the element. Further, in terms of circuit operation, no current flows through the buried diffusion layer and the island of the resistance, and only the function of holding the potential is sufficient, so that there is no problem in increasing the diffusion resistance due to the use of the buried layer. Further, by using a thick isolation oxide film immediately below the metal wiring for crossover, it can be expected to reduce the wiring capacitance which becomes a problem in high frequency characteristics.

【0009】[0009]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は、本発明の一実施例における半導体
集積回路装置の断面構造図であり、図2は平面図であ
る。
FIG. 1 is a sectional structural view of a semiconductor integrated circuit device according to an embodiment of the present invention, and FIG. 2 is a plan view.

【0011】まず、P型シリコンなどの半導体基板1中
にN型埋め込み層2を選択的に形成する。この方法とし
て、たとえば、熱酸化膜をマスクにSbイオンをイオン
注入法にて形成し、1200度程度の拡散処理により、
深さ2μm程度形成しておく。その後、N型エピタキシ
ヤル層3をCVD法にて1μm程度成長する。その後、
分離領域となる領域のN型エピタキシヤル層3を選択的
に約600nm食刻し、CVD法による窒化膜を用いた
選択酸化法により分離酸化膜10を、約1.5μm形成す
る。このとき、分離酸化膜10の底部はN型埋め込み層
2に接触させておく。その後、抵抗の島となるN型エピ
タキシヤル層3中に抵抗素子としてP型拡散層5をボロ
ンのイオン注入法等で形成したのち、表面に酸化膜6を
形成し、N型エピタキシヤル層3の1つの島上に開口窓
11を設け、金属配線12、13を形成する。
First, an N type buried layer 2 is selectively formed in a semiconductor substrate 1 made of P type silicon or the like. As this method, for example, Sb ions are formed by an ion implantation method using a thermal oxide film as a mask, and a diffusion process at about 1200 degrees is performed.
It is formed to a depth of about 2 μm. After that, the N-type epitaxial layer 3 is grown to a thickness of about 1 μm by the CVD method. afterwards,
The N-type epitaxial layer 3 in the region to be the isolation region is selectively etched by about 600 nm, and the isolation oxide film 10 is formed by about 1.5 μm by the selective oxidation method using the nitride film by the CVD method. At this time, the bottom of the isolation oxide film 10 is kept in contact with the N-type buried layer 2. After that, a P-type diffusion layer 5 is formed as a resistance element in the N-type epitaxial layer 3 serving as a resistance island by a boron ion implantation method or the like, and then an oxide film 6 is formed on the surface thereof to form the N-type epitaxial layer 3 An opening window 11 is provided on one of the islands to form metal wirings 12 and 13.

【0012】ここで金属配線12は、N型エピタキシヤ
ル層の電位をとるためのものであり、金属配線13は、
同時に形成した他の能動素子に接続される配線である。
The metal wiring 12 is for taking the potential of the N-type epitaxial layer, and the metal wiring 13 is
The wiring is connected to other active elements formed at the same time.

【0013】以上のように、本実施例によれば埋め込み
拡散層を使用することにより、抵抗の島間の表面上を、
同時に形成した他の金属配線をクロスオーバーできる。
As described above, according to this embodiment, by using the buried diffusion layer, the surface between the resistor islands is
Other metal wiring formed at the same time can be crossed over.

【0014】なお、ここでは抵抗の島として、2個の例
を示したが、複数個あっても、また距離が離れていて
も、埋め込み層で接続しておけばよいことは言うまでも
ない。
Although two resistance islands are shown here, it is needless to say that even if there are a plurality of resistance islands or they are separated from each other, they may be connected by a buried layer.

【0015】[0015]

【発明の効果】以上のように本発明は、分離酸化膜下の
埋め込み層で抵抗の島を電気的に接続することにより、
表面での金属配線接続は不要となり、抵抗の島間に同時
に形成した他の金属配線を配設でき、配線の自由度の向
上が達成でき、素子占有面積の削減が可能となる。ま
た、金属配線の直下に厚い分離酸化膜を適用しているた
め、基板との配線容量が低減でき高周波特性で問題とな
る配線遅延の大幅な低減効果が期待でき、高集積化対応
可能なすぐれた半導体集積回路装置を実現できるもので
ある。
As described above, according to the present invention, by electrically connecting the islands of the resistance with the buried layer below the isolation oxide film,
No metal wiring connection is required on the surface, another metal wiring formed at the same time between islands of the resistor can be arranged, the degree of freedom of wiring can be improved, and the area occupied by the element can be reduced. In addition, since a thick isolation oxide film is applied directly under the metal wiring, wiring capacitance with the substrate can be reduced, and a significant reduction in wiring delay, which is a problem with high-frequency characteristics, can be expected, which is an excellent feature for high integration. The semiconductor integrated circuit device can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による半導体集積回路装置の
断面構造図
FIG. 1 is a sectional structural view of a semiconductor integrated circuit device according to an embodiment of the present invention.

【図2】本発明の一実施例による半導体集積回路装置の
平面図
FIG. 2 is a plan view of a semiconductor integrated circuit device according to an embodiment of the present invention.

【図3】従来の半導体集積回路装置の断面構造図FIG. 3 is a sectional structural view of a conventional semiconductor integrated circuit device.

【図4】従来の半導体集積回路装置の平面図FIG. 4 is a plan view of a conventional semiconductor integrated circuit device.

【符号の説明】[Explanation of symbols]

2 N型埋め込み層 3 N型エピタキシヤル層 4 P型分離拡散層 5 P型拡散層 7、8 コンタクト窓 9、12、13 金属配線 2 N-type buried layer 3 N-type epitaxial layer 4 P-type isolation diffusion layer 5 P-type diffusion layer 7, 8 Contact window 9, 12, 13 Metal wiring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の半導体基板中に選択的に形成
された第2導電型不純物拡散層と、前記第1導電型の半
導体基板および第2導電型不純物拡散層表面上に形成さ
れた第2導電型エピタキシヤル層と、前記第2導電型エ
ピタキシヤル層中に前記第2導電型不純物層と接触する
ように選択的に形成された第1絶縁膜と、前記第1絶縁
膜で囲まれた第2導電型エピタキシヤル層中に形成され
た第1導電型の不純物層と、前記第2導電型エピタキシ
ヤル層および第1絶縁膜上を覆って形成された第2絶縁
膜上に選択的に配設された金属配線とを備え、前記第1
絶縁膜で囲まれた複数個の第2導電型エピタキシヤル層
の島が、前記第1絶縁膜の直下に埋設された前記第2導
電型不純物拡散層でおのおの電気的接続され、かつ前記
第1絶縁膜で囲まれた第2導電型エピタキシヤル層の1
つの島に、前記第2絶縁膜の開口部を介して前記金属配
線が電気的接続されてなる半導体集積回路装置。
1. A second conductivity type impurity diffusion layer selectively formed in a first conductivity type semiconductor substrate and a surface of the first conductivity type semiconductor substrate and second conductivity type impurity diffusion layer. A second conductive type epitaxial layer, a first insulating film selectively formed in the second conductive type epitaxial layer so as to contact the second conductive type impurity layer, and the first insulating film. On a second conductivity type impurity layer formed in the enclosed second conductivity type epitaxial layer, and on a second insulation film formed to cover the second conductivity type epitaxial layer and the first insulation film. A metal wiring selectively disposed, the first
A plurality of islands of the second conductivity type epitaxial layer surrounded by an insulating film are electrically connected to each other by the second conductivity type impurity diffusion layer buried immediately below the first insulating film, and the first island of the second conductivity type epitaxial layer is electrically connected. 1 of the second conductivity type epitaxial layer surrounded by an insulating film
A semiconductor integrated circuit device in which the metal wiring is electrically connected to two islands through an opening of the second insulating film.
JP14718092A 1992-06-08 1992-06-08 Semiconductor integrated circuit device Pending JPH05343397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14718092A JPH05343397A (en) 1992-06-08 1992-06-08 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14718092A JPH05343397A (en) 1992-06-08 1992-06-08 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH05343397A true JPH05343397A (en) 1993-12-24

Family

ID=15424393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14718092A Pending JPH05343397A (en) 1992-06-08 1992-06-08 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH05343397A (en)

Similar Documents

Publication Publication Date Title
US4879584A (en) Semiconductor device with isolation between MOSFET and control circuit
US3944447A (en) Method for fabrication of integrated circuit structure with full dielectric isolation utilizing selective oxidation
US5323055A (en) Semiconductor device with buried conductor and interconnection layer
US4870475A (en) Semiconductor device and method of manufacturing the same
US5449946A (en) Semiconductor device provided with isolation region
US5670387A (en) Process for forming semiconductor-on-insulator device
EP0080730B1 (en) Semiconductor device with wiring layers and method of manufacturing the same
US4825281A (en) Bipolar transistor with sidewall bare contact structure
JP2605030B2 (en) Quadrature bipolar transistor
US4261003A (en) Integrated circuit structures with full dielectric isolation and a novel method for fabrication thereof
JPH02208952A (en) Semiconductor device and its manufacture
JPH05343397A (en) Semiconductor integrated circuit device
USRE34025E (en) Semiconductor device with isolation between MOSFET and control circuit
JPS62234363A (en) Semiconductor integrated circuit
JPH04343265A (en) Semiconductor device
JPH09102604A (en) Semiconductor device
JPH0590492A (en) Semiconductor integrated circuit and manufacture thereof
JP3417482B2 (en) Method for manufacturing semiconductor device
JP2993041B2 (en) Complementary MOS semiconductor device
JP3006795B2 (en) Semiconductor device
JPS63219160A (en) Semiconductor element and manufacture thereof
JPS5814072B2 (en) Semiconductor integrated circuit device and its manufacturing method
EP0112662A1 (en) Stacked MOS devices with polysilicon interconnects
JPS6124245A (en) Semiconductor device
JP3158564B2 (en) Semiconductor memory device