JPS6240420B2 - - Google Patents

Info

Publication number
JPS6240420B2
JPS6240420B2 JP25724285A JP25724285A JPS6240420B2 JP S6240420 B2 JPS6240420 B2 JP S6240420B2 JP 25724285 A JP25724285 A JP 25724285A JP 25724285 A JP25724285 A JP 25724285A JP S6240420 B2 JPS6240420 B2 JP S6240420B2
Authority
JP
Japan
Prior art keywords
steel
inclusions
mold
sulfide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25724285A
Other languages
Japanese (ja)
Other versions
JPS61130470A (en
Inventor
Yoshitomo Hitachi
Sadayuki Nakamura
Yukinori Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25724285A priority Critical patent/JPS61130470A/en
Publication of JPS61130470A publication Critical patent/JPS61130470A/en
Publication of JPS6240420B2 publication Critical patent/JPS6240420B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は機械的性質の異方性が少なく、かつ良
好な型彫加工性を有する型用鋼に関するもので、
さらに詳しくはSおよびTeを限定した条件で添
加し、鋼中の硫化物系介在物の形態を調整した熱
間加工用型、プラスチツク成型金型などの型用鋼
に関するものである。 近年プレス、鍛造等の加工作業に用いる機械は
大型かつ高性能のものが出現し、作業の能率向上
がはかられているが、これにともなつて成形金型
に対する要求はますます厳しいものとなつてき
た。すなわち成形金型が従来の機械にくらべて負
荷面で苛酷化されている反面、作業能率の面から
耐久性のさらに良好な金型が要求されており、こ
れらの要求を満たし得る型用鋼の開発が盛んに進
められている。また一方において金型の複雑形状
化ならびに高精度化に対処して型用鋼自体の型彫
加工性の改善も大きな課題となつている。 型用鋼の被削性を向上させるために従来から主
としてS.Pb等の被削性向上元素を添加した型用
鋼も見受けられ、それなりに効果をあげている
が、一方において被削性元素の添加による機械的
性質の低下は避けられず特に圧延または鍛延によ
り延伸された型鋼は機械的性質の異方性が強く、
金型の耐久性低下の大きな原因となつている。こ
れは被削性の改善に有効に作用するMnS等の硫
化物系介在物が展伸された形態で存在し、そこに
応力集中が生じて介在物を起点とする切欠現象が
起るためと考えられている。 そこで硫化物系介在物の形状をできるだけ球状
に近くして応力集中を緩和することにより上記の
問題を解決することが試みられている。 本発明者等は熱間加工用金型またはプラスチツ
ク金型などの素材となる型用鋼についても上記の
ような考え方を導入することにより金型の寿命向
上が期待できると同時に良好な型彫加工性を有す
る型用鋼が製造できると推考し、多くの研究を積
んだ結果、従来の型用鋼組成にたいしてSおよび
Teを特定の割合いで添加することにより鋼中に
生成される介在物自体の球形度が促進され、特に
大型介在物のほとんどが長短径比10以下の球形に
近い形態を有することを知見した。さらに上記介
在物形態を有する型用鋼は型彫加工性が良好であ
るばかりでなく、機械的性質の異方性が著るしく
少ないという特徴があり、金型成形後の耐久性も
一段と優れたものが得られることを確認した。す
なわち機械的性質の異方性が少なく、かつ良好な
型彫加工性を兼ね備えるためには含有される硫化
物のうち長径が2μ以上の比較的大型のものは、
その少なくとも80%が長短径比10以下でなければ
ならないこと、またこのような硫化物系介在れは
Te/Sの重量割合いが0.04〜0.5にえらぶことに
よつて実現できることを確認した。さらにはTe
以外の成分を調整した溶鋼にTeを添加して均一
に分散させることにより製造できること、そして
上記Teの添加に先立つて、溶鋼中に非酸化性ガ
スを導入して強制撹拌することにより、被削性お
よび鏡面仕上げ性シボ加工性などにとつて有害な
主として酸化物系の介在物からなる大きさの介在
物を浮上分離させ除去するのが好ましいことも知
つた。 以上の新規な知見にもとづく本発明の型用鋼
は、C:0.80〜1.60%、Si:0.10〜1.50%、Mn:
0.10〜1.50%、Cr10.0〜15.0%、Mo0.10〜1.50
%、V0.05〜0.80%、とTe/Sが0.04〜0.5の範囲
にて、S:0.002〜0.40%、Te:0.001〜0.40%を
含有し、残余が実質的にFeからなる組成を有
し、鋼中に存在する長径2μ以上の硫化物系介在
物のうち少なくとも80%がその長短径比10以下で
あることを特徴とする被削性の優れた型用鋼であ
る。 本発明における各成分元素の役割および範囲
(重量%)の限定理由は以下に示す。 C:0.80〜1.60% 型用鋼としての硬さ、耐摩耗性を確保するため
に0.80%以上添加する必要がある。ただし多量に
添加すると靭性が低下し、実用に適さなくなるた
め1.60%以下に限定した。 Si:0.10〜1.50% 溶製時の脱酸効果のほか、基地の強化に有効な
元素であり0.10%以上添加する必要がある。ただ
し多量に添加すると地疵が多くなると同時に被削
性が低下するため1.50%以下に限定した。 Mn:0.10〜1.50% 溶製時の脱酸効果を持たせるため及び基地を強
化するために有効な元素であり、0.10%以上添加
する必要がある。しかし多量に添加すると靭性及
び被削性が低下するので、1.50%以下に限定し
た。 Cr:10.0〜15.0% 基地を強靭化し、焼入性、耐摩耗性、耐酸化性
の確保に有効な元素であり、10.0%以上添加す
る。しかしながら多量に添加すると靭性が低下し
実用に適さなくなるため15.0%以下に限定した。 Mo:0.10〜1.50%、V:0.05〜0.80% 上記元素はいずれも強力な炭化物形成元素で、
熱処理硬さ耐摩耗性の確保に有効な元素であり
Moは0.10%以上、Vは0.05%以上添加する。 しかし多量に添加すると製造が困難になると同
時に靭性が低下し、実用に適さなくなるためMo
は1.50%以下、Vは0.80%以下に限定した。 S:0.002〜0.40% 被削性を改善するために有効な介在物である
MnS系介在物の形成には不可欠であつて0.002%
以上添加する。 多量になるほど被削性は向上するが、鋼の清浄
度を害し、靭性が低下するため0.40%以下に限定
した。 Te:0.001〜0.40% MnS系介在物の形態を調整することと、それ
自体で快削性を与える点で重要な元素であり
0.001%以上添加する。あまり大量では熱間加工
性が劣るので0.40%以下に限定する。また硫化物
系介在物の形態を改善するためにはTe/Sの重
量割合が0.04以上であることを要する。 しかしTe/Sの重量割合が0.5をこえると上記
効果が少なくなり、かつ熱間加工性も低下するの
でTe/Sの重量割合は0.04〜0.5の範囲とする。 硫化物系介在物の形態と分布 型用鋼の型彫加工性および機械的性質の異方性
が鋼中の硫化物系介在物の形態と分布に大きく依
存することを本発明者等は確認し、硫化物の形態
を種々変化させた鋼の特性をしらべた。その結
果、硫化物系介在物のうち長径が2μ以上の比較
的大型のものが強度異方性を左右し、これが長短
径比で10以内にあつて極端に縄状に展伸されてい
ない形態をもつならば悪影響を示さないこと、そ
してこのようなものが全硫化物系介在物中の個数
にもとづいて80%またはそれ以上の大部分を占め
るという条件がみたされていればよいことを知つ
たのである。 以上記述した本発明の型用鋼を製造する第1の
ポイントは成分の適確な調整にある。まず炉内で
Sを除く快削性付与元素以外の合金成分の含有量
を所定の値に調節した溶鋼を用意する。なお好ま
しくは真空脱ガスなどによりO量を0.015%以下
に低下させ、酸化物系介在物の生成を抑制すると
よい。次に炉、取りなべあるいはタンデイシユ中
にあるこの溶鋼にTe/Sが0.04〜0.5の条件をみ
たすようにTeを添加して、均一に分散させれば
よい。Teの添加は注入管中で行うこともでき
る。 Teの添加に際して、主として酸化物系介在物
である大型の非金属介在物をできるだけ除去する
ことが望ましくこの目的には炉、取りなべまたは
タンデイツシユ内の溶鋼中にアルゴンのような非
酸化性のガスを導入して同表にみられるごとく従
来鋼に比してSおよびTeの量を調整して添加し
た本発明鋼はいずれも型彫加工時間は少なくかつ
製造された金型の耐久性は1.2〜2.5倍を示してい
る。 実施例 第1表に溶製した供試鋼の成分組成を示す。
The present invention relates to a mold steel that has little anisotropy in mechanical properties and has good die-sinking workability.
More specifically, the present invention relates to steel for molds such as hot working molds and plastic molds, in which S and Te are added under limited conditions to adjust the form of sulfide inclusions in the steel. In recent years, large and high-performance machines have appeared for processing operations such as pressing and forging, and efforts are being made to improve work efficiency, but along with this, the demands on forming dies have become increasingly strict. I'm getting old. In other words, while forming molds are subject to more severe loads than conventional machines, molds with even better durability are required from the perspective of work efficiency, and mold steel that can meet these requirements is being developed. Development is actively underway. On the other hand, in response to the increasingly complex shapes and high precision of molds, improving the die-scattering workability of mold steel itself has become a major issue. In order to improve the machinability of mold steel, some mold steels have traditionally been added with machinability-improving elements such as S.Pb, and this has been somewhat effective. A decrease in mechanical properties is inevitable due to the addition of
This is a major cause of decreased durability of molds. This is because sulfide-based inclusions such as MnS, which effectively improve machinability, exist in an extended form, and stress concentration occurs there, causing a notch phenomenon originating from the inclusions. It is considered. Therefore, attempts have been made to solve the above problem by making the shape of the sulfide inclusions as close to spherical as possible to alleviate stress concentration. The present inventors believe that by introducing the above-mentioned concept to mold steel, which is a material for hot working molds or plastic molds, it is possible to expect an increase in the life of the mold and at the same time to improve the quality of mold engraving. We deduced that it would be possible to produce mold steel with a high
It was found that adding Te in a specific proportion promotes the sphericity of the inclusions themselves formed in steel, and that most of the large inclusions in particular have a morphology close to spherical with a length ratio of 10 or less. Furthermore, the mold steel having the above-mentioned inclusion morphology not only has good die-carving workability, but also has significantly less anisotropy in mechanical properties, and has even better durability after mold forming. I confirmed that I could get what I wanted. In other words, in order to have less anisotropy in mechanical properties and good engraving workability, relatively large sulfides with a major axis of 2μ or more should be used.
At least 80% of it must have a length ratio of 10 or less, and such sulfide inclusions must be
It was confirmed that this can be achieved by selecting a Te/S weight ratio of 0.04 to 0.5. Furthermore, Te
It can be manufactured by adding Te to molten steel with other ingredients adjusted and dispersing it uniformly, and by introducing a non-oxidizing gas into the molten steel and forcibly stirring it before adding Te, It has also been found that it is preferable to remove by flotation separation large-sized inclusions mainly consisting of oxide-based inclusions that are harmful to the properties of graining, mirror finishing, and graining. The mold steel of the present invention based on the above new knowledge has C: 0.80 to 1.60%, Si: 0.10 to 1.50%, Mn:
0.10~1.50%, Cr10.0~15.0%, Mo0.10~1.50
%, V0.05 to 0.80%, and Te/S in the range of 0.04 to 0.5, containing S: 0.002 to 0.40%, Te: 0.001 to 0.40%, and the remainder substantially consisting of Fe. However, it is a mold steel with excellent machinability, characterized in that at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10 or less. The role of each component element in the present invention and the reason for limiting the range (wt%) are shown below. C: 0.80-1.60% It is necessary to add 0.80% or more to ensure the hardness and wear resistance of mold steel. However, if added in a large amount, the toughness decreases, making it unsuitable for practical use, so it was limited to 1.60% or less. Si: 0.10-1.50% In addition to its deoxidizing effect during melting, it is an effective element for strengthening the base, and must be added at 0.10% or more. However, if added in large amounts, it would cause more scratches and at the same time reduce machinability, so it was limited to 1.50% or less. Mn: 0.10 to 1.50% Mn is an effective element to have a deoxidizing effect during melting and to strengthen the base, and it is necessary to add 0.10% or more. However, if added in large amounts, toughness and machinability will decrease, so it was limited to 1.50% or less. Cr: 10.0 to 15.0% It is an effective element for toughening the matrix and ensuring hardenability, wear resistance, and oxidation resistance, and is added in an amount of 10.0% or more. However, if added in a large amount, the toughness decreases and becomes unsuitable for practical use, so the content was limited to 15.0% or less. Mo: 0.10~1.50%, V: 0.05~0.80% All of the above elements are strong carbide forming elements,
It is an effective element for ensuring heat treatment hardness and wear resistance.
Mo is added in an amount of 0.10% or more, and V is added in an amount of 0.05% or more. However, Mo
was limited to 1.50% or less, and V was limited to 0.80% or less. S: 0.002-0.40% Inclusions effective for improving machinability
0.002% essential for the formation of MnS-based inclusions
Add more. The machinability improves as the amount increases, but it impairs the cleanliness of the steel and reduces toughness, so it was limited to 0.40% or less. Te: 0.001-0.40% An important element in adjusting the morphology of MnS-based inclusions and providing free machinability by itself.
Add 0.001% or more. If the amount is too large, hot workability will be poor, so limit it to 0.40% or less. Furthermore, in order to improve the morphology of sulfide inclusions, the weight ratio of Te/S must be 0.04 or more. However, if the weight ratio of Te/S exceeds 0.5, the above-mentioned effects will be reduced and hot workability will also be reduced, so the weight ratio of Te/S is set in the range of 0.04 to 0.5. Morphology and distribution of sulfide inclusions The present inventors have confirmed that the die-sinking workability and anisotropy of mechanical properties of mold steel greatly depend on the morphology and distribution of sulfide inclusions in the steel. We then investigated the properties of steel with various sulfide morphologies. As a result, it was found that relatively large sulfide inclusions with a major axis of 2μ or more influence the strength anisotropy, and that these inclusions have a long/minor axis ratio of within 10 and are not extremely stretched into a rope shape. It is recognized that if the sulfide-based inclusions contain sulfide-based inclusions, they do not show any adverse effects, and that the conditions that such sulfide-based inclusions account for 80% or more of the total sulfide-based inclusions based on their number are satisfied. It's ivy. The first point in manufacturing the mold steel of the present invention described above is proper adjustment of the components. First, molten steel is prepared in which the contents of alloy components other than S and other free-cutting properties imparting elements are adjusted to predetermined values in a furnace. Preferably, the amount of O is reduced to 0.015% or less by vacuum degassing or the like to suppress the formation of oxide inclusions. Next, Te may be added to this molten steel in a furnace, ladle, or tundish so that Te/S satisfies the condition of 0.04 to 0.5 and uniformly dispersed. Addition of Te can also be carried out in the injection tube. When adding Te, it is desirable to remove as much as possible large non-metallic inclusions, which are mainly oxide inclusions. As shown in the same table, the steel of the present invention, in which the amounts of S and Te were adjusted and added compared to the conventional steel, required less die-scattering time and the durability of the manufactured mold was 1.2. It shows ~2.5 times. Example Table 1 shows the composition of the sample steel produced.

【表】 なお鋼の溶製にあたつては所定量の合金元素を
塩基性電気炉内で調整した後、Teを溶鋼中のS
量に応じて取なべ中へ添加し、均一に分散させ下
注法により造塊した。 次に第1表の供試材を用いて鍛練比が10程度の
熱間鍛造を行ない金型の粗形を製造した。つづい
て所定の条件で焼入れ、焼もどし処理を施し、プ
ラスチツク金型として要求される鏡面仕上げ性お
よびシボ加工性を調査した。また同時に硫化物系
介在物の分布形態を調査した。その結果をまとめ
て第2表に示した。
[Table] When melting steel, after adjusting a predetermined amount of alloying elements in a basic electric furnace, Te is added to S in the molten steel.
It was added to the ladle according to the amount, dispersed uniformly, and formed into an agglomerate by the pouring method. Next, using the test materials shown in Table 1, hot forging was carried out at a forging ratio of about 10 to produce a rough mold. Subsequently, the molds were hardened and tempered under predetermined conditions, and the mirror finish and texture required for plastic molds were investigated. At the same time, the distribution form of sulfide inclusions was investigated. The results are summarized in Table 2.

【表】【table】

【表】 同表にみられるごとく比較鋼にくらべて本発明
鋼はいずれも鏡面仕上げ性、シボ加工ともに優れ
ておりプラスチツク金型用鋼として好適であるこ
とを示している。 また本発明鋼の場合第2表にみられるごとく長
短径比10以下の比較的球状に近い硫化物系介在物
がほとんどを占めており比較鋼にくらべて均一に
分布しているため、鏡面仕上げ性およびシボ加工
性にも好影響を及ぼしているものとおもわれる。 以上のごとく本発明鋼はSおよびTeを適量添
加して硫化物系介在物の形態調整を行なつた熱間
加工用型用鋼であつて、型彫加工性が良好である
と同時に硫化物系介在物の形態に基づく機械的性
質異方性が少なく、また金型の鏡面仕上げ性、シ
ボ加工性なども良好であり、各種金型を使用した
場合に優れた耐久性が得られる等総合的に優れた
型用鋼である。
[Table] As shown in the same table, the steels of the present invention are both superior in mirror finish and graining compared to the comparative steels, indicating that they are suitable as steels for plastic molds. In addition, as shown in Table 2, in the case of the steel of the present invention, relatively spherical sulfide inclusions with a length ratio of 10 or less account for most of the sulfide inclusions, which are more uniformly distributed than the comparison steel, resulting in a mirror finish. It is thought that this has a positive effect on texture and texture. As described above, the steel of the present invention is a mold steel for hot working in which the morphology of sulfide-based inclusions is adjusted by adding appropriate amounts of S and Te. The mechanical properties based on the form of inclusions in the system have little anisotropy, and the mirror finish and graining properties of the mold are also good, and excellent durability can be obtained when using various molds. It is an excellent mold steel.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%でC:0.80〜1.60%、Si:0.10〜1.50
%、Mn:0.10〜1.50%、Cr:10.0〜15.0%、
Mo:0.10〜1.50%、V:0.05〜0.80%とTe/S:
0.04〜0.5の範囲でS:0.002〜0.40%、Te:0.001
〜0.40%を含有し、残余が実質的にFeからなる
組成を有し、鋼中に存在する長径2μ以上の硫化
物系介在物のうち、少なくとも80%が長短径比10
以下であることを特徴とする被削性の優れた型用
鋼。
1 C: 0.80-1.60%, Si: 0.10-1.50 in weight%
%, Mn: 0.10~1.50%, Cr: 10.0~15.0%,
Mo: 0.10~1.50%, V: 0.05~0.80% and Te/S:
S: 0.002-0.40%, Te: 0.001 in the range of 0.04-0.5
~0.40%, with the remainder essentially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10
A mold steel with excellent machinability, characterized by the following:
JP25724285A 1985-11-16 1985-11-16 Steel for die Granted JPS61130470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25724285A JPS61130470A (en) 1985-11-16 1985-11-16 Steel for die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25724285A JPS61130470A (en) 1985-11-16 1985-11-16 Steel for die

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8141279A Division JPS566758A (en) 1979-06-29 1979-06-29 Steel for mold and its production

Publications (2)

Publication Number Publication Date
JPS61130470A JPS61130470A (en) 1986-06-18
JPS6240420B2 true JPS6240420B2 (en) 1987-08-28

Family

ID=17303660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25724285A Granted JPS61130470A (en) 1985-11-16 1985-11-16 Steel for die

Country Status (1)

Country Link
JP (1) JPS61130470A (en)

Also Published As

Publication number Publication date
JPS61130470A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
EP3831970B1 (en) Spring steel having superior fatigue life, and manufacturing method for same
CA1121187A (en) Bismuth-containing steel
JPS6338418B2 (en)
JPS5946300B2 (en) Steel for cold forging with excellent machinability and its manufacturing method
JPH11350065A (en) Non-refining steel for hot forging excellent in machinability
US2182759A (en) Steel
JPS61272349A (en) Bearing steel
JPS59205453A (en) Free cutting steel and preparation thereof
JPS61130467A (en) Steel for die
JPS6240420B2 (en)
JPS6240422B2 (en)
JPS6120625B2 (en)
JPS6358216B2 (en)
JPS6240421B2 (en)
JPH09202938A (en) Chromium-molybdenum cast steel excellent in machinability
JP2755301B2 (en) Tool steel for hot working
JPS61130469A (en) Steel for die
US3634073A (en) Free-machining steel, articles thereof and method of making
JPS61130472A (en) Steel for die
JPS61130471A (en) Steel for die
JPS61130468A (en) Steel for die
JPS61130466A (en) Steel for die
JPH0545661B2 (en)
JPS582585B2 (en) Cold work tool steel and its manufacturing method
JPS619554A (en) Forged steel roll for cold rolling