JPS61130468A - Steel for die - Google Patents

Steel for die

Info

Publication number
JPS61130468A
JPS61130468A JP25724085A JP25724085A JPS61130468A JP S61130468 A JPS61130468 A JP S61130468A JP 25724085 A JP25724085 A JP 25724085A JP 25724085 A JP25724085 A JP 25724085A JP S61130468 A JPS61130468 A JP S61130468A
Authority
JP
Japan
Prior art keywords
steel
inclusions
mold
less
dies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25724085A
Other languages
Japanese (ja)
Other versions
JPH0129861B2 (en
Inventor
Yoshitomo Hitachi
常陸 美朝
Sadayuki Nakamura
中村 貞行
Yukinori Matsuda
幸紀 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25724085A priority Critical patent/JPS61130468A/en
Publication of JPS61130468A publication Critical patent/JPS61130468A/en
Publication of JPH0129861B2 publication Critical patent/JPH0129861B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steel for dies having high suitability to die sinking and low anisotropy in the mechanical properties and contg. sulfide inclusions having increased sphericity by adding S and Te to a steel for dies having a specified composition under restricted conditions. CONSTITUTION:This steel for dies such as dies for hot working or a metallic mold for molding plastics consists of, by weight, 0.25-0.45% C, 0.10-1.50% Si, 0.10-1.50% Mn, 4.0-6.0% Cr, 0.10-1.50% Mo, 1.0-3.0% V, 3.0-5.0% W, 2.0-6.0% C0, 0.002-0.40% S, 0.001-0.40% Te (Te/S=0.04-0.5) and the balance Fe, and >=80% of sulfide inclusions of >=2mum major axis size in the steel have <=10 ratio between the major and minor axis sizes. The steel has superior durability even after forming into a metallic mold.

Description

【発明の詳細な説明】 本発明は機械的性質の異方性が少なく、かつ良好な型彫
加工性を有する型用鋼に関するもので、さらに詳しくは
SおよびTeを限定した条件で添加し、鋼中の硫化物系
介在物の形態を調整した熱間加工用型、プラスチック成
型金型などの型用鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold steel that has less anisotropy in mechanical properties and good die-sinking workability. This invention relates to steel for molds such as hot working molds and plastic molds, in which the form of sulfide inclusions in the steel is adjusted.

近年プレス、鍛造等の加工作業に用いる機械は大型かつ
高性能のものが出現し、作業の能率向上がはかられてい
るが、これにともなって成型金型に対する要求はますま
す厳しいものとなってきた。
In recent years, large and high-performance machines have appeared for processing operations such as presses and forging, and efforts are being made to improve work efficiency, but along with this, the demands on molds have become increasingly strict. It's here.

すなわち成型金型が従来の機械にくらべて負荷面で苛酷
化されている反面、作業能率の面から耐久性のさらに良
好な金型が要求されており、これらの要求を満たし得る
型用鋼の開発が盛んに進められてる。また一方において
金型の複雑形状化ならびに高精度化に対処して型用鋼自
体の型彫加工性の改善も大きな課題となっている。
In other words, while molds are subject to more severe loads than conventional machines, molds with even better durability are required from the perspective of work efficiency, and mold steel that can meet these requirements is being developed. Development is progressing actively. On the other hand, in response to the increasingly complex shapes and high precision of molds, improving the die-scattering workability of mold steel itself has become a major issue.

型用鋼の被削性を向上させるために従来から主としてs
、pb等の被削性向上元素を添加した型用鋼も見受けら
れ、それなりに効果をあげているが、一方において被削
性元素の添加による機械的性質の低下は避けられず特に
圧延または鍛延により延伸された型鋼は機械的性質の異
方性が強く、金型の耐久性低下の大きな原因となってい
る。これは被削性の改善に有効に作用するMnS等の硫
化物系介在物が展伸された形態で存在し、そこに応力集
中が生じて介在物を起点とする切欠現象が起るためと考
えられている。
In order to improve the machinability of mold steel, s
There are mold steels to which machinability-improving elements such as PB, PB, etc. have been added, and they have been somewhat effective. Steel shaped steel drawn by rolling has strong anisotropy in mechanical properties, which is a major cause of decreased durability of molds. This is because sulfide-based inclusions such as MnS, which effectively improve machinability, exist in an extended form, and stress concentration occurs there, causing a notch phenomenon originating from the inclusions. It is considered.

そこで硫化物系介在物の形状をできるだけ球状に近くし
て応力集中を緩和することにより上記の問題を解決する
ことが試みられている。
Therefore, attempts have been made to solve the above problem by making the shape of the sulfide inclusions as close to spherical as possible to alleviate stress concentration.

本発明者等は熱間加工用金型またはプラスチック金型な
どの素材となる型用鋼についても上記のような考え方を
導入することにより金型の寿命向上が期待できると同時
に良好な型彫加工性を有する型用鋼が製造できると推考
し、多くの研究を積んだ結果、従来の型用鋼組成にたい
してSおよびTeを特定の割合いで添加することにより
鋼中に生成される介在物自体の球形度が促進され、特に
大型介在物のほとんどが長短径比10以下の球形に近い
形態を有することを知見した。さらに上記介在物形態を
有する型用鋼は型彫加工性が良好であるばかりでなく、
機械的性質の異方性が著るしく少ないという特徴があり
、金型成形後の耐久性も一段と優れたものが得られるこ
とを確認した。すなわち機械的性質の異方性が少なく、
かつ良好な型彫加工性を兼ね備えるためには含有される
硫化物のうち長径が2μ以上の比較的大型のものは、そ
の少なくとも80%が長短径比10以下でなければなら
ないこと、またこのような硫化物系介在物はTo/Sの
重量割合いが0.04〜0.5にえらぶことによって実
現できることを確認した。さらにはTe以外の成分を調
整した溶鋼にTeを添加して均一に分散させることによ
り製造できること、そして上記Teの添加に先立って、
溶鋼中に非酸化性ガスを導入して強制攪拌することによ
り、被削性および鏡面仕上げ性シボ加工性などにとって
有害な主として酸化物系の介在物からなる大きさの介在
物を浮上分離させ除去するのが好ましいことも知った・ 以上の新規な知見にもとづく本発明の型用鋼は、CF 
0.25〜0.45%、Si:0.10〜1.50%。
The present inventors believe that by introducing the above-mentioned concept to mold steel, which is the raw material for hot working molds or plastic molds, it is possible to expect an increase in the life of the mold and at the same time to improve the quality of mold engraving. We hypothesized that it would be possible to produce mold steel that has the same characteristics, and as a result of extensive research, we found that by adding S and Te in a specific ratio to the conventional mold steel composition, we could reduce the inclusions themselves that are generated in the steel. It was found that sphericity was promoted, and in particular, most of the large inclusions had a shape close to a spherical shape with a length-to-width ratio of 10 or less. Furthermore, mold steel having the above-mentioned inclusion form not only has good die-carving workability, but also
It has been confirmed that it has a characteristic of having significantly less anisotropy in mechanical properties, and that it can also be obtained with even better durability after molding. In other words, there is less anisotropy in mechanical properties,
In addition, in order to have good engraving workability, at least 80% of the relatively large sulfides with a major axis of 2 μ or more must have a major axis ratio of 10 or less. It was confirmed that sulfide-based inclusions can be realized by selecting a To/S weight ratio of 0.04 to 0.5. Furthermore, it can be manufactured by adding Te to molten steel in which components other than Te have been adjusted and dispersing it uniformly, and prior to the addition of Te,
By introducing non-oxidizing gas into molten steel and forcibly stirring it, we float and remove large-sized inclusions, mainly oxide-based inclusions, which are harmful to machinability, mirror finish, graining, etc. I also learned that it is preferable to
0.25-0.45%, Si: 0.10-1.50%.

Mn : 0. L O〜1.50%、Cr:4.0〜
6.G%、Mo0゜10〜1.50%、V:1.Q 〜
3.0%、w:3.o ””5.0%、 Co2.0〜
6.0%、とTe/Sが0.04〜0.5の範囲にて、
  30.002〜0.40%以下、Te0.001〜
0.40%を含有し、残余が実質的にFeからなる組成
を有し、鋼中に存在する長径2μ以上の硫化物系介在物
のうち少なくとも80%がその長短径比lO以下である
ことを特徴とする被削性の優れた型用鋼である。
Mn: 0. L O~1.50%, Cr:4.0~
6. G%, Mo0°10-1.50%, V:1. Q ~
3.0%, w:3. o ””5.0%, Co2.0~
6.0%, and Te/S in the range of 0.04 to 0.5,
30.002~0.40% or less, Te0.001~
0.40%, with the remainder substantially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2μ or more present in the steel have a major axis ratio of 1O or less It is a mold steel with excellent machinability.

本発明における各成分元素の役割および範囲(重量%)
の限定理由は以下に示す。
Role and range of each component element in the present invention (wt%)
The reason for this limitation is shown below.

C: 0.25〜0.45% 型用鋼としての硬さ、耐摩耗性を確保するために0.2
0%以上添加する必要がある。ただし多量に添加すると
靭性が低下し、実用に適さなくなるため0.45%以下
に限定した。
C: 0.25-0.45% 0.2 to ensure hardness and wear resistance as mold steel
It is necessary to add 0% or more. However, if added in a large amount, the toughness decreases, making it unsuitable for practical use, so it was limited to 0.45% or less.

Si:0.10〜1.50% 溶製時の脱酸効果のほか、基地の強化に有効な元素であ
り0.10%以上添加する必要がある。ただし多量に添
加すると地底が多くなると同時に被削性が低下するため
1,50%以下に限定した。
Si: 0.10 to 1.50% Si is an effective element for strengthening the matrix in addition to its deoxidizing effect during melting, and must be added in an amount of 0.10% or more. However, if added in a large amount, the amount of carbon increases and the machinability decreases, so it was limited to 1,50% or less.

Mn: 0.10〜1.50% 溶製時の脱酸効果を持たせるため及び基地を強化するた
めに有効な元素であり、0.10%以上添加する必要が
ある。しかし多量に添加すると靭性及び被削性が低下す
るので、1. s o%以下に限定した。
Mn: 0.10 to 1.50% Mn is an effective element to have a deoxidizing effect during melting and to strengthen the base, and must be added in an amount of 0.10% or more. However, if added in large amounts, toughness and machinability will decrease, so 1. It was limited to so% or less.

Cr:4.0〜6.0% 基地を強靭化し、焼入性、耐摩耗性、耐酸化性の確保に
有効な元素であり、4.0%以上添加する。
Cr: 4.0 to 6.0% This is an effective element for toughening the matrix and ensuring hardenability, wear resistance, and oxidation resistance, and is added in an amount of 4.0% or more.

しかしながら多量に添加すると靭性が低下し実用に適さ
なくなるため6.0%に限定した。
However, if added in a large amount, the toughness decreases and becomes unsuitable for practical use, so the content was limited to 6.0%.

Co:2.0〜6.0% 基壇の強化、および耐摩耗性の確保に有効な元素であり
、2.0%以上添加する。しかしながら多量に添加する
と靭性が低下し実用に適さなくなるため6.0%以下に
限定した。
Co: 2.0 to 6.0% Co is an effective element for strengthening the base and ensuring wear resistance, and is added in an amount of 2.0% or more. However, if added in a large amount, the toughness decreases and becomes unsuitable for practical use, so the content was limited to 6.0% or less.

Mo:0.10〜1.50%、W:3.Q 〜s、o%
、■:1.0〜3.0% 上記元素はいずれも強力な炭化物形成元素で、熱処理硬
さ耐摩耗性の確保に有効な元素でありMOは0.10%
以上、Wは3.0%以上、Vl、0%以上添加する。し
かし多量に添加すると製造が困難になると同時に靭性が
低下し、実用に通さなくなるためMoは1.50%以下
、Wは5.0%以下、■は3゜0%以下に限定した。
Mo: 0.10-1.50%, W: 3. Q ~s, o%
, ■: 1.0-3.0% All of the above elements are strong carbide-forming elements, and are effective elements for ensuring heat treatment hardness and wear resistance, and MO is 0.10%.
Above, W is added in an amount of 3.0% or more, and Vl is added in an amount of 0% or more. However, if added in large amounts, manufacturing becomes difficult and the toughness decreases, making it impractical for practical use. Therefore, Mo was limited to 1.50% or less, W to 5.0% or less, and ■ to 3.0% or less.

S : 0.002〜0.40% 被削性を改善するために有効な介在物であるMnS系介
在物の形成には不可欠であって0.002%以上添加す
る。多量になるほど被削性は向上するが、鋼の清浄度を
害し、靭性が低下するため0.40%以下に限定した。
S: 0.002 to 0.40% S is essential for the formation of MnS-based inclusions, which are effective inclusions for improving machinability, and is added in an amount of 0.002% or more. The machinability improves as the amount increases, but it impairs the cleanliness of the steel and reduces toughness, so it was limited to 0.40% or less.

Te  二 〇、0 0 1 〜0.4 0  %Mn
S系介在物の形態を調整することと、それ自体で快削性
を与える点で重要な元素であり0.001%以上添加す
る。あまり大量では熱間加工性が劣るので0.40%以
下に限定する。また、fE化物系介在物の形態を改善す
るためにはTe/Sの重量割合が0.04以上であるこ
とを要する。しかしTe/Sの重量割合が0.5をこえ
ると上記効果が少なくなり、かつ熱間加工性も低下する
ので、Te/Sの重量割合は0.04〜0.5の範囲と
する。
Te20,001~0.40%Mn
It is an important element in terms of adjusting the morphology of S-based inclusions and providing free machinability by itself, and is added in an amount of 0.001% or more. If the amount is too large, the hot workability will be poor, so it is limited to 0.40% or less. Furthermore, in order to improve the morphology of fE compound inclusions, the weight ratio of Te/S must be 0.04 or more. However, if the weight ratio of Te/S exceeds 0.5, the above-mentioned effects will be reduced and the hot workability will also be reduced, so the weight ratio of Te/S is set in the range of 0.04 to 0.5.

硫化物系介在物の形態と分布 型用鋼の型彫加工性および機械的性質の異方性が鋼中の
硫化物系介在物の形態と分布に大きく依存することを本
発明者等は確認し、硫化物の形態を種々変化させた鋼の
特性をしらべた。その結果、硫化物系介在物のうち長径
が2μ以上の比較的大型のものが強度異方性を左右し、
これが長短径比で10以内にあって極端に繊状に展伸さ
れていない形態をもつならば悪影響を示さないこと、そ
してこのようなものが全硫化物系介在物中の個数にもと
づいて80%またはそれ以上の大部分を占めるという条
件がみたされていればよいことを知ったのである。
The present inventors have confirmed that the form of sulfide inclusions and the anisotropy of the die-sinking workability and mechanical properties of steel for distribution molding greatly depend on the form and distribution of sulfide inclusions in the steel. We then investigated the properties of steel with various sulfide morphologies. As a result, it was found that relatively large sulfide inclusions with a major axis of 2μ or more affect the strength anisotropy,
If the length ratio is within 10 and the shape is not extremely filamentous, there will be no adverse effect, and based on the number of such inclusions in the total sulfide inclusions, 80 I learned that it is sufficient as long as the condition of accounting for a large portion of % or more is satisfied.

以上記述した本発明の型用鋼を製造する第1のポイント
は成分の適確な調整にある。まず炉内でSを除く快削性
付与元素以外の合金成分の含有量を所定の値に調節した
溶鋼を用意する。なお好ましくは真空脱ガスなどにより
O量を0.015%以下に低下させ、酸化物系介在物の
生成を抑制するとよい。次に炉、取りなべあるいはタン
ディシュ中にあるこの溶鋼にTe/Sが0.04〜0.
5の条件をみたすようにTeを添加して、均一に分散さ
せればよいsTeの添加は注入管中で行うこともできる
The first point in manufacturing the mold steel of the present invention described above is proper adjustment of the components. First, molten steel is prepared in which the contents of alloy components other than S and other free-cutting properties imparting elements are adjusted to predetermined values in a furnace. Preferably, the amount of O is reduced to 0.015% or less by vacuum degassing or the like to suppress the formation of oxide inclusions. Next, this molten steel in the furnace, ladle or tundish has a Te/S of 0.04 to 0.
It is sufficient to add Te so as to satisfy the condition 5 and to disperse it uniformly.Addition of sTe can also be carried out in an injection tube.

Teの添加に際して、主として酸化物系介在物である大
型の非金属介在物をできるだけ除去することが望ましく
この目的には炉、取りなべまたはタンディ7シユ内の溶
鋼中にアルゴンのような非酸化性のガスを導入して強制
攪拌することが効果的である。この操作はTeの添加に
先立って行うこともできるし、またTeを添加しつつ行
なってもよい。
When adding Te, it is desirable to remove as much as possible large non-metallic inclusions, which are mainly oxide-based inclusions. It is effective to forcefully stir the mixture by introducing a gas of This operation can be performed prior to the addition of Te, or can be performed while adding Te.

以下本発明鋼の特徴を実施例により詳細に説明する。Hereinafter, the characteristics of the steel of the present invention will be explained in detail with reference to Examples.

(実施例〉 第1表に溶製した供試鋼の成分組成を示す。(Example> Table 1 shows the composition of the sample steel.

同表にみられるご、とくいずれの鋼においても従来から
用いられている鋼は鍛造方向と直角方向の衝撃特性は著
るしく低く鍛造方向のそれにくらべてA以下の衝撃値を
示しており機械的性質の異方性が強いことがf1認でき
る。これにたいしてSおよびTe量を調整して添加した
本発明鋼はいずれも鍛造方向と直角方向の衝撃特性の低
下は少なく、鍛造方向の衝撃値に比べて4以上の衝撃値
を示すことが確認できた。すなわち本発明鋼は鍛造また
は圧延後における機械的性質異方性がそれほど強くなく
、安定な特性を有することを確認した。この事実の根拠
としては鋼中の硫化物系介在物の形態および量にある。
As can be seen in the same table, the impact properties of all the steels conventionally used are significantly lower in the direction perpendicular to the forging direction, and show an impact value of A or less compared to that in the forging direction. It can be seen that f1 has strong anisotropy in physical properties. On the other hand, it was confirmed that all of the steels of the present invention, in which S and Te amounts were adjusted and added, had little decrease in impact properties in the direction perpendicular to the forging direction, and exhibited an impact value of 4 or more compared to the impact value in the forging direction. Ta. In other words, it was confirmed that the steel of the present invention does not have very strong anisotropy in mechanical properties after forging or rolling, and has stable properties. The basis for this fact lies in the form and amount of sulfide inclusions in the steel.

すなわち従来鋼では長短径比10以下の比較的球状に近
い硫化物系介在物は全体の20%程度しか分布していす
他は長短径比10以上の展伸された硫化物系介在物であ
るのにたいして本発明鋼では長短径比10以下の比較的
球状に近い硫化物系介在物が大半を占めている。
In other words, in conventional steel, relatively spherical sulfide inclusions with an axis ratio of 10 or less are distributed in only about 20% of the total, and the rest are elongated sulfide inclusions with an axis ratio of 10 or more. In contrast, in the steel of the present invention, relatively spherical sulfide-based inclusions with a major axis ratio of 10 or less occupy the majority.

したがって従来鋼の衝撃特性は硫化物系介在物が展伸さ
れているため試料の採取方向によって太きなお鋼の溶製
にあたっては所定量の合金元素を塩基性電気炉内で調整
した後、Teを溶鋼中のslに応じて取なべ中へ添加し
、均一に分散させ下注法により造塊した。
Therefore, the impact properties of conventional steels are due to the elongation of sulfide-based inclusions, so when melting thick steel, depending on the direction in which the sample is taken, after adjusting a predetermined amount of alloying elements in a basic electric furnace, Te was added to the ladle according to the sl in the molten steel, dispersed uniformly, and formed into an ingot by the bottom pouring method.

次に第1表の供試材を用いて鍛練比が10程度の熱間鍛
造を行ない金型の粗形を製造した。つづいて所定の条件
で焼入れ、焼もどし処理した後同粗形より試料を採取し
、衝撃試験(JISa号シャルピー試験片)により強度
異方性を調べた。また同時に衝撃試験後の試験片につい
て硫化物系介在物の形態および分布状況を調査した。そ
の結果を第2表にまとめて示した。
Next, using the test materials shown in Table 1, hot forging was carried out at a forging ratio of about 10 to produce a rough mold. Subsequently, after quenching and tempering under predetermined conditions, a sample was taken from the same rough shape, and the strength anisotropy was examined by an impact test (JISa No. Charpy test piece). At the same time, the morphology and distribution of sulfide inclusions were investigated on the specimens after the impact test. The results are summarized in Table 2.

く影響されるのにたいして本発明鋼の硫化物系介在物は
そのほとんどが球状に近いものであるため、試料の採取
方向の影響は受けにくいことから本発明鋼の機械的性質
異方性が少ないことは容易に理解できる。
However, most of the sulfide inclusions in the steel of the present invention are close to spherical, so they are less affected by the direction in which the sample is taken, so the mechanical properties of the steel of the present invention are less anisotropic. This is easy to understand.

次に第1表の供試材から製造した金型用粗形を用いて、
ロアースピンドル製造用の金型を形彫加工し、これを実
用に供した。
Next, using a rough mold for a mold manufactured from the sample materials in Table 1,
Die-sinking was performed on a mold for manufacturing lower spindles, and this was put into practical use.

第3表にそれぞれの供試材の型彫加工性(比較鋼を基準
にした、型彫加工に要した時間比)および金型の耐久性
(比較鋼を基準にした型寿命比)を示した。
Table 3 shows the die-sinking workability (ratio of time required for die-sinking based on comparative steel) and mold durability (mold life ratio based on comparative steel) of each sample material. Ta.

同表にみられるごと〈従来鋼に比してSおよびTeの量
を調整して添加した本発明鋼はいずれも型彫加工時間は
少なくかつ製造された金型の耐久性は約1.5倍を示し
ている。
As seen in the same table, <Compared to conventional steels, the steels of the present invention with adjusted amounts of S and Te require less die-sinking time, and the durability of the manufactured molds is approximately 1.5%. It shows double.

以上のごとく本発明鋼はSおよびTeを適量添加して硫
化物系介在物の形態調整を行なった熱間加工用型用鋼で
あって、型彫加工性が良好であると同時に硫化物系介在
物の形態に基づく機械的性質異方性が少なく、また金型
の鏡面仕上げ性、シボ加工性なども良好であり、各種金
型を使用した場合に優れた耐久性が得られる等総合的に
優れた型用鋼である。
As described above, the steel of the present invention is a mold steel for hot working in which the form of sulfide-based inclusions has been adjusted by adding appropriate amounts of S and Te, and it has good die-sinking workability and at the same time contains sulfide-based inclusions. Mechanical properties based on the form of inclusions There is little anisotropy, and the mirror finish and graining properties of the mold are also good, and excellent durability can be obtained when using various molds. It is an excellent mold steel.

Claims (1)

【特許請求の範囲】[Claims] (1)重量%でC:0.25〜0.45%、Si:0.
10〜1.50%、Mn:0.10〜1.50%、Cr
:4.0〜6.0%、Mo:0.10〜1.50%、V
:1.0〜3.0%、W:3.0〜5.0%、C0:2
.0〜6.0%とTe/S:0.04〜0.5の範囲で
S:0.002〜0.40%、Te:0.001〜0.
40%を含有し、残余が実質的にFeからなる組成を有
し、鋼中に存在する長径2μ以上の硫化物系介在物のう
ち、少なくとも80%が長短径比10以下であることを
特徴とする被削性の優れた型用鋼。
(1) C: 0.25-0.45%, Si: 0.
10-1.50%, Mn: 0.10-1.50%, Cr
:4.0~6.0%, Mo:0.10~1.50%, V
:1.0~3.0%, W:3.0~5.0%, C0:2
.. S: 0.002-0.40%, Te: 0.001-0.0% and Te/S: 0.04-0.5.
40%, with the remainder essentially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10 or less. A mold steel with excellent machinability.
JP25724085A 1985-11-16 1985-11-16 Steel for die Granted JPS61130468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25724085A JPS61130468A (en) 1985-11-16 1985-11-16 Steel for die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25724085A JPS61130468A (en) 1985-11-16 1985-11-16 Steel for die

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8141279A Division JPS566758A (en) 1979-06-29 1979-06-29 Steel for mold and its production

Publications (2)

Publication Number Publication Date
JPS61130468A true JPS61130468A (en) 1986-06-18
JPH0129861B2 JPH0129861B2 (en) 1989-06-14

Family

ID=17303630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25724085A Granted JPS61130468A (en) 1985-11-16 1985-11-16 Steel for die

Country Status (1)

Country Link
JP (1) JPS61130468A (en)

Also Published As

Publication number Publication date
JPH0129861B2 (en) 1989-06-14

Similar Documents

Publication Publication Date Title
JP3141735B2 (en) Steel for plastic molding dies
JP3587348B2 (en) Machine structural steel with excellent turning workability
JPWO2002077309A1 (en) Cast steel and casting mold
KR19980081135A (en) Glass Molding Tool and Manufacturing Method
JPH11350065A (en) Non-refining steel for hot forging excellent in machinability
JP2001294973A (en) Steel for plastic molding die excellent in powder electric discharge machinability
JPS61130467A (en) Steel for die
JPS61130468A (en) Steel for die
JPS61130473A (en) Steel for die
JPS59205453A (en) Free cutting steel and preparation thereof
JPS61130466A (en) Steel for die
JP3589619B2 (en) Steel for free-cutting plastic molds with excellent finished surface roughness
JPS61130474A (en) Steel for die
JPS61130469A (en) Steel for die
JPS6120625B2 (en)
JP2755301B2 (en) Tool steel for hot working
JPS61130471A (en) Steel for die
JPS61130470A (en) Steel for die
JPS61130472A (en) Steel for die
JPS582585B2 (en) Cold work tool steel and its manufacturing method
CN115679194B (en) Plastic mold steel plate and manufacturing method thereof
JPH11158579A (en) Steel for plastic molding die
JPS61217559A (en) Free-cutting ball-bearing steel
JPH06248389A (en) Maraging steel for die casting die
JPH0468377B2 (en)