JPS61130469A - Steel for die - Google Patents

Steel for die

Info

Publication number
JPS61130469A
JPS61130469A JP25724185A JP25724185A JPS61130469A JP S61130469 A JPS61130469 A JP S61130469A JP 25724185 A JP25724185 A JP 25724185A JP 25724185 A JP25724185 A JP 25724185A JP S61130469 A JPS61130469 A JP S61130469A
Authority
JP
Japan
Prior art keywords
steel
inclusions
less
dies
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25724185A
Other languages
Japanese (ja)
Other versions
JPH0121867B2 (en
Inventor
Yoshitomo Hitachi
常陸 美朝
Sadayuki Nakamura
中村 貞行
Yukinori Matsuda
幸紀 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25724185A priority Critical patent/JPS61130469A/en
Publication of JPS61130469A publication Critical patent/JPS61130469A/en
Publication of JPH0121867B2 publication Critical patent/JPH0121867B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steel for dies having high suitability to die sinking and low anisotropy in the mechanical properties and contg. sulfide inclusions having increased sphericity by adding S and Te to a steel for dies having a specified composition under restricted conditions. CONSTITUTION:This steel for dies such as dies for hot working or a metallic mold for molding plastics consists of, by weight, 0.30-0.70% C, 0.10-2.50% Si, 0.10-2.50% Mn, 0.10-2.0% Cr, 0.05-1.0% Mo, 0.002-0.40% S, 0.001-0.40% Te (Te/S=0.04-0.5) and the balance Fe or further contains <=1.0% Zr or <=0.3% Bi, and >=80% of sulfide inclusions of >=2mum major axis size in the steel have <=10 ratio between the major and minor axis sizes. The steel has superior durability even after forming into a metallic mold.

Description

【発明の詳細な説明】 本発明は機械的性質の異方性が少なく、かつ良好な型彫
加工性を有する型用鋼に関するもので、さらに詳しくは
SおよびTeを限定した条件で添加し、鋼中の硫化物系
介在物の形態を調整した熱間加工用型、プラスチック成
型金型などの型用鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold steel that has less anisotropy in mechanical properties and good die-sinking workability. This invention relates to steel for molds such as hot working molds and plastic molds, in which the form of sulfide inclusions in the steel is adjusted.

近年プレス、鍛造等の加工作業に用いる機械は大型かつ
高性能のものが出現し、作業の能率向上がはかられてい
るが、これにともなって成型金型に対する要求はますま
す厳しいものとなってきた。
In recent years, large and high-performance machines have appeared for processing operations such as presses and forging, and efforts are being made to improve work efficiency, but along with this, the demands on molds have become increasingly strict. It's here.

すなわち成型金型が従来の機械にくらべて負荷面で苛酷
化されている反面、作業能率の面から耐久性のさらに良
好な金型が要求されており、これらの要求を溝だし得る
型用鋼の開発が盛んに進められてる。また一方において
金型の複雑形状化ならびに高精度化に対処して型用鋼自
体の型彫加工性の改善も大きな課題となっている。
In other words, while molds are subjected to more severe loads than conventional machines, molds with even better durability are required from the perspective of work efficiency, and mold steels that can meet these demands are needed. is being actively developed. On the other hand, in response to the increasingly complex shapes and high precision of molds, improving the die-scattering workability of mold steel itself has become a major issue.

型用鋼の被削性を向上させるために従来から主としてs
、pb等の被削性向上元素を添加した型用鋼も見受けら
れ、それなりに効果をあげているが、一方において被削
性元素の添加による機械的性質の低下は避けられず特に
圧延または鍛延により延伸された型鋼は機械的性質の異
方性が強く、金型の耐久性低下の大きな原因となってい
る。これは被削性の改善に有効に作用するMnS等の硫
化物系介在物が展伸された形態で存在し、そこに応力集
中が生じて介在物を起点とする切欠現象が起るためと考
えられている。
In order to improve the machinability of mold steel, s
There are mold steels to which machinability-improving elements such as PB, PB, etc. have been added, and they have been somewhat effective. Steel shaped steel drawn by rolling has strong anisotropy in mechanical properties, which is a major cause of decreased durability of molds. This is because sulfide-based inclusions such as MnS, which effectively improve machinability, exist in an extended form, and stress concentration occurs there, causing a notch phenomenon originating from the inclusions. It is considered.

そこで硫化物系介在物の形状をできるだけ球状に近(し
て応力集中を緩和することにより上記の問題を解決する
ことが試みられている。
Therefore, attempts have been made to solve the above problem by making the shape of the sulfide inclusions as close to spherical as possible to alleviate stress concentration.

本発明者等は熱間加工用金型またはプラスチック金型な
どの素材となる型用鋼についても上記のような考え方を
導入することにより金型の寿命向上が期待できると同時
に良好な型彫加工性を有する型用鋼が製造できると推考
し、多くの研究を積んだ結果、従来の型用鋼組成にたい
してSおよび↑eを特定の割合いで添加することにより
鋼中に生成される介在物自体の球形度が促進され、特に
大型介在物のほとんどが長短径比10以下の球形に近い
形態を有することを知見した。さらに上記介在物形態を
有する型用鋼は型彫加工性が良好であるばかりでな(、
機械的性質の異方性が著るしく少ないという特徴があり
、金型成形後の耐久性も一段と優れたものが得られるこ
とを確認した。すなわち機械的性質の異方性が少なく、
かつ良好な型彫加工性を兼ね備えるためには含有される
硫化物のうち長径が2μ以上の比較的大型のものは、そ
の少な長とも80%が長短径比10以下でなければなら
ないこと、またこのような硫化物系介在物はTe/Sの
重量割合いが0.04〜0.5にえらぶことによって実
現できることを確認した。さらには↑e基以外成分を調
整した溶鋼にT@を添加して均一に分散させることによ
り製造できること、そして上記Teの添加に先立って、
溶鋼中に非酸化性ガスを導入して強制攪拌することによ
り、被削性および鏡面仕上げ性シボ加工性などにとって
有害な主として酸化物系の介在物からなる大きさの介在
物を浮上分離させ除去するのが好ましいことも知った・ 以上の新規な知見にもとづく本発明の型用鋼は、C: 
0.30〜0.70%、Si:0.10〜2.50%。
The present inventors believe that by introducing the above-mentioned concept to mold steel, which is the raw material for hot working molds or plastic molds, it is possible to expect an increase in the life of the mold and at the same time to improve the quality of mold engraving. We believe that it is possible to produce mold steel that has the same characteristics, and as a result of much research, we have found that inclusions that are generated in the steel by adding S and ↑e in a specific ratio to the conventional mold steel composition. It was found that the sphericity of the particles was promoted, and that most of the large inclusions in particular had a shape close to a spherical shape with a length-to-width ratio of 10 or less. Furthermore, mold steel having the above-mentioned inclusion morphology not only has good die-carving workability (
It has been confirmed that it has a characteristic of having significantly less anisotropy in mechanical properties, and that it can also be obtained with even better durability after molding. In other words, there is less anisotropy in mechanical properties,
In addition, in order to have good engraving workability, at least 80% of the relatively large sulfides with a major axis of 2 μ or more must have a major axis ratio of 10 or less, and It has been confirmed that such sulfide-based inclusions can be realized by selecting a Te/S weight ratio of 0.04 to 0.5. Furthermore, it can be manufactured by adding T@ to molten steel with adjusted components other than ↑e group and uniformly dispersing it, and prior to the addition of Te,
By introducing non-oxidizing gas into molten steel and forcibly stirring it, we float and remove large-sized inclusions, mainly oxide-based inclusions, which are harmful to machinability, mirror finish, graining, etc. Based on the above new knowledge, the mold steel of the present invention has C:
0.30-0.70%, Si: 0.10-2.50%.

Mn: 0.10〜2.50%、(:r:0.10〜2
.0%、 M。
Mn: 0.10~2.50%, (:r:0.10~2
.. 0%, M.

: 0.05〜1.0%と必要によりZr1.0%以下
またはBio、30%以下を含有し、更にTe/Sは、
0.04〜0.5の範囲にて、 50.002〜0.4
0%、Tea。
: 0.05 to 1.0% and if necessary Zr 1.0% or less or Bio, 30% or less, and Te/S:
In the range of 0.04 to 0.5, 50.002 to 0.4
0%, Tea.

001〜0.40%を含有し、残余が実質的にFsから
なる組成を有し、鋼中に存在する長径2μ以上の硫化物
系介在物のうち少なくとも80%がその長短径比10以
下であることを特徴とする被削性の優れた型用鋼である
001 to 0.40%, with the remainder substantially consisting of Fs, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10 or less. It is a type steel with excellent machinability.

本発明における各成分元素の役割および範囲の限定理由
はおおむね各鋼について既に知られたところであるが、
以下に示す。
The role of each component element in the present invention and the reason for limiting the range are generally already known for each steel, but
It is shown below.

C: 0.30〜0.70% 型用鋼としての硬さ、耐摩耗性を確保するために0.3
0%以上添加することが望ましい。ただし多量に添加す
ると靭性が低下し、実用に適さなくなるため0.70%
以下に限定した。
C: 0.30-0.70% 0.3 to ensure hardness and wear resistance as mold steel
It is desirable to add 0% or more. However, if added in large amounts, the toughness will decrease and it will become unsuitable for practical use, so 0.70%
Limited to the following.

Si:0.10〜2.50% 溶製時の脱酸効果のほか、基地の強化に有効な元素であ
り0.10%以上添加する。ただし多量に添加すると地
底が多くなると同時に被削性が低下するため2.50%
以下に限定した。
Si: 0.10 to 2.50% Si is an element effective in strengthening the matrix in addition to its deoxidizing effect during melting, and is added in an amount of 0.10% or more. However, if a large amount is added, the amount of underground will increase and the machinability will decrease at the same time, so 2.50%
Limited to the following.

Mn:0.10〜2.50% 溶製時の脱酸効果を持たせるため及び基地を強化するた
めに有効な元素であり、0.10%以上添加する必要が
ある。しかし多量に添加すると靭性及び被削性が低下す
るおで2.50%以下に限定した。
Mn: 0.10 to 2.50% Mn is an effective element for providing a deoxidizing effect during melting and for strengthening the base, and must be added in an amount of 0.10% or more. However, if added in large amounts, toughness and machinability will deteriorate, so the content was limited to 2.50% or less.

Cr: 0. l O〜2.0% 基地を強靭化し、焼入性、耐摩耗性、耐酸化性の確保に
有効な元素であり、0.10%以上添加する。しかしな
がら多量に添加すると靭性が低下し実用に適さなくなる
ため2.0%以下に限定した。
Cr: 0. l O~2.0% Element effective in toughening the matrix and ensuring hardenability, wear resistance, and oxidation resistance, and is added in an amount of 0.10% or more. However, if added in a large amount, the toughness decreases and becomes unsuitable for practical use, so the content was limited to 2.0% or less.

Mo  :  0. 0 5 〜1. 0  %Moは
強力な炭化物形成元素で、熱処理硬さ耐摩耗性の確保に
有効な元素であり0.05%以上添加する。しかし多量
に添加すると製造が困難になるーと同時に靭性が低下し
、実用に適さなくなるため1.0%以下に限定した。
Mo: 0. 0 5 ~ 1. 0% Mo is a strong carbide-forming element and is an effective element for ensuring heat treatment hardness and wear resistance, and is added in an amount of 0.05% or more. However, adding a large amount makes manufacturing difficult and at the same time reduces toughness, making it unsuitable for practical use, so it was limited to 1.0% or less.

S : O,OO2〜0.40% 被削性を改善するために有効な介在物であるMnS系介
在物の形成には不可欠であって0.002%以上添加す
る。多量になるほど被削性は向上するが、鋼の清浄度を
害し、靭性が低下するため0.40%以下に限定した。
S: O, OO2 to 0.40% S is essential for the formation of MnS-based inclusions, which are effective inclusions for improving machinability, and is added in an amount of 0.002% or more. The machinability improves as the amount increases, but it impairs the cleanliness of the steel and reduces toughness, so it was limited to 0.40% or less.

Te: 0.001〜0.40% MnS系介在物の形態を調整することと、それ自体で快
削性を与える点で重要な元素であり0.001%以上添
加する。あまり大量では熱間加工性が劣るので0.40
%以下に限定する。また硫化物系介在物の形態を改善す
るためにはTe/Sの重量割合が0.04以上であるこ
とを要する。
Te: 0.001 to 0.40% Te is an important element in terms of adjusting the morphology of MnS-based inclusions and providing free machinability by itself, and is added in an amount of 0.001% or more. If too large a quantity, hot workability will be poor, so 0.40
% or less. Furthermore, in order to improve the morphology of sulfide-based inclusions, the weight ratio of Te/S must be 0.04 or more.

しかしTe/Sの重量割合が0.5をこえると上記効果
が少なくなり、かつ熱間加工性も低下するので、Te/
Sの重量割合は0.04〜0.5の範囲とする。
However, if the weight ratio of Te/S exceeds 0.5, the above effects will decrease and hot workability will also decrease.
The weight ratio of S is in the range of 0.04 to 0.5.

硫化物系介在物の形態と分布 型用鋼の型彫加工性および機械的性質の異方性が鋼中の
硫化物系介在物の形態と分布に太き(依存す4ことを本
発明者等は確認し、硫化物の形態を種々変化させた鋼の
特性をしらべた。その結果、硫化物系介在物のうち長径
が2μ以上の比較的大型のものが強度異方性を左右し、
これが長短径比で10以内にあって極端に繊状に展伸さ
れていない形態をもつならば悪影響を示さないこと、そ
してこのようなものが全硫化物系介在物中の個数にもと
づいて80%またはそれ以上の大部分を占めるという条
件がみたされていればよいことを知ったのである。
Morphology of sulfide-based inclusions and distribution The present inventors have discovered that the anisotropy of die-cutting workability and mechanical properties of steel for molding greatly depends on the morphology and distribution of sulfide-based inclusions in the steel. They confirmed the characteristics of steels with various sulfide morphologies.As a result, it was found that relatively large sulfide inclusions with a major diameter of 2 μ or more affect the strength anisotropy.
If this has a length ratio of 10 or less and has a form that is not extremely filamentous, it will not show any adverse effects, and based on the number of such inclusions in the total sulfide inclusions, 80 I learned that it is sufficient as long as the condition of accounting for a large portion of % or more is satisfied.

以上記述した本発明の型用鋼を製造する第1のポイント
は成分の適確な調整にある。まず炉内でSを除く快削性
付与元素以外の合金成分の含有量を所定の値に調節した
溶鋼を用意する。なお好ましくは真空脱ガスなどにより
0量を0.015%以下に低下させ、酸化物系介在物の
生成を抑制するとよい0次に炉、取りなべあるいはタン
ディシュ中にあるこの溶鋼にTe/Sが0.04〜0.
5の条件をみたすようにTeを添加して、均一に分散さ
せればよい、Teの添加は注入管中で行うこともできる
The first point in manufacturing the mold steel of the present invention described above is proper adjustment of the components. First, molten steel is prepared in which the contents of alloy components other than S and other free-cutting properties imparting elements are adjusted to predetermined values in a furnace. Preferably, the amount of Te/S is reduced to 0.015% or less by vacuum degassing or the like to suppress the formation of oxide inclusions. 0.04~0.
Te may be added so as to satisfy the condition 5 and dispersed uniformly. Te can also be added in an injection tube.

Teの添加に際して、主として酸化物系介在物である大
型の非金属介在物をできるだけ除去することが望ましく
この目的には炉、取りなべまたはタンディシュ中の溶鋼
中にアルゴンのような非酸化性のガスを導入して強制攪
拌することが効果的である。この操作はTeの添加に先
立って行うこともできるし、またTeを添加しつつ行な
ってもよい。
When adding Te, it is desirable to remove as much as possible large nonmetallic inclusions, which are mainly oxide inclusions. It is effective to forcefully stir the mixture by introducing This operation can be performed prior to the addition of Te, or can be performed while adding Te.

以下本発明鋼の特徴を実施例により詳細に説明する。Hereinafter, the characteristics of the steel of the present invention will be explained in detail with reference to Examples.

〈実施例〉 第1表に溶製した供試鋼の成分組成を示す。<Example> Table 1 shows the composition of the sample steel.

なお鋼の溶製にあたっては所定量の合金元素を塩基性電
気炉内で調整した後、Teを溶鋼中のS量に応じて取な
べ中へ添加し、均一に分散させ下注法により造塊した。
In melting steel, after adjusting a predetermined amount of alloying elements in a basic electric furnace, Te is added to the ladle according to the amount of S in the molten steel, uniformly dispersed, and ingots are formed by the pouring method. did.

次に第1表の供試材を用いて鍛練比が10程度の熱間鍛
造を行ない金型の粗形を製造した。つづいて所定の条件
で焼入れ、焼もどし処理を施し、プラスチック金型とし
て要求される鏡面仕上げ性およびシボ加工性を調査した
。また同時に硫化物系介在物の分布形態を調査した。そ
の結果をまとめて第2表に示した。
Next, using the test materials shown in Table 1, hot forging was carried out at a forging ratio of about 10 to produce a rough mold. Subsequently, the molds were hardened and tempered under predetermined conditions, and the mirror finish and texture required for plastic molds were investigated. At the same time, the distribution form of sulfide inclusions was investigated. The results are summarized in Table 2.

同表にみられるごとく比較鋼にくらべて本発明鋼はいず
れも鏡面仕上げ性、シボ加工性ともに優れておりプラス
チック金型用鋼として好適であることを示している。ま
た本発明鋼の場合第2表にみられるごとく長短径比10
以下の比較的球状に近い硫化物系介在物がほとんどを占
めており比較鋼に(らべて均一に分布しているため、鏡
面仕上げ性およびシボ加工性にも好影響を及ぼしている
ものと思われる。
As shown in the same table, the steels of the present invention are both superior in mirror finishing and graining properties as compared to the comparative steels, indicating that they are suitable as steels for plastic molds. In addition, in the case of the steel of the present invention, as shown in Table 2, the major axis ratio is 10.
The comparatively spherical sulfide inclusions shown below account for most of the sulfide inclusions and are more uniformly distributed than the comparison steel, which has a positive effect on the mirror finish and graining properties. Seem.

以上のごとく本発明鋼はSおよびTeを適量添加して硫
化物系介在物の形a調整を行なった熱間加工用型用鋼で
あって、型彫加工性が良好であると同時に硫化物系介在
物の形態に基づく機械的性質異方性が少な(、また金型
の鏡面仕上げ性、シボ加工性なども良好であり、各種金
型を使用した場合に優れた耐久性が得られる等総合的に
優れた型用鋼である。
As described above, the steel of the present invention is a mold steel for hot working in which the shape of sulfide-based inclusions is adjusted by adding appropriate amounts of S and Te, and it has good die-sinking workability and also contains sulfide-based inclusions. There is little anisotropy in mechanical properties based on the form of system inclusions (also, the mold has good mirror finish and graining properties, and excellent durability can be obtained when using various molds). It is an overall excellent mold steel.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%でC:0.30〜0.70%、Si:0.
10〜2.50%、Mn:0.10〜2.50%、Cr
:0.10〜2.0%、Mo:0.05〜1.0%とT
e/S:0.04〜0.5の範囲でS:0.002〜0
.40%、Te:0.001〜0.40%を含有し、残
余が実質的にFeからなる組成を有し、鋼中に存在する
長径2μ以上の硫化物系介在物のうち、少なくとも80
%が長短径比10以下であることを特徴とする被削性の
優れた型用鋼。
(1) C: 0.30-0.70%, Si: 0.
10-2.50%, Mn: 0.10-2.50%, Cr
:0.10~2.0%, Mo:0.05~1.0% and T
e/S: in the range of 0.04 to 0.5, S: 0.002 to 0
.. 40%, Te: 0.001 to 0.40%, and the remainder is substantially Fe, and at least 80
A die steel with excellent machinability, characterized in that the length ratio is 10 or less.
(2)重量%でC:0.30〜0.70%、Si:0.
10〜2.50%、Mn:0.10〜2.50%、Cr
:0.10〜2.0%、Mo:0.05〜1.0%、Z
r1.0%以下とTe/S:0.04〜0.5の範囲で
S:0.002〜0.40%、Te:0.001〜0.
40%を含有し、残余が実質的にFeからなる組成を有
し、鋼中に存在する長径2μ以上の硫化物系介在物のう
ち、少なくとも80%が長短径比10以下であることを
特徴とする被削性の優れた型用鋼。
(2) C: 0.30-0.70%, Si: 0.
10-2.50%, Mn: 0.10-2.50%, Cr
:0.10~2.0%, Mo:0.05~1.0%, Z
r1.0% or less and Te/S: 0.04-0.5, S: 0.002-0.40%, Te: 0.001-0.
40%, with the remainder essentially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10 or less. A mold steel with excellent machinability.
(3)重量%でC:0.30〜0.70%、Si:0.
10〜2.50%、Mn:0.10〜2.50%、Cr
:0.10〜2.0%、Mo:0.05〜1.0%、B
i:0.30%以下とTe/S:0.04〜0.5の範
囲でS:0.002〜0.40%、Te:0.001〜
0.40%を含有し、残余が実質的にFeからなる組成
を有し、鋼中に存在する長径2μ以上の硫化物系介在物
のうち、少なくとも80%が長短径比10以下であるこ
とを特徴とする被削性の優れた型用鋼。
(3) C: 0.30-0.70%, Si: 0.
10-2.50%, Mn: 0.10-2.50%, Cr
:0.10~2.0%, Mo:0.05~1.0%, B
i: 0.30% or less and Te/S: in the range of 0.04 to 0.5, S: 0.002 to 0.40%, Te: 0.001 to
0.40%, with the remainder substantially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10 or less. A mold steel with excellent machinability.
JP25724185A 1985-11-16 1985-11-16 Steel for die Granted JPS61130469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25724185A JPS61130469A (en) 1985-11-16 1985-11-16 Steel for die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25724185A JPS61130469A (en) 1985-11-16 1985-11-16 Steel for die

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8141279A Division JPS566758A (en) 1979-06-29 1979-06-29 Steel for mold and its production

Publications (2)

Publication Number Publication Date
JPS61130469A true JPS61130469A (en) 1986-06-18
JPH0121867B2 JPH0121867B2 (en) 1989-04-24

Family

ID=17303645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25724185A Granted JPS61130469A (en) 1985-11-16 1985-11-16 Steel for die

Country Status (1)

Country Link
JP (1) JPS61130469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711914A (en) * 1992-10-15 1998-01-27 Nmh Stahwerke Gmbh Rail steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127426A (en) * 1976-04-19 1977-10-26 Daido Steel Co Ltd Precipitation haredning hot working tool steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127426A (en) * 1976-04-19 1977-10-26 Daido Steel Co Ltd Precipitation haredning hot working tool steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711914A (en) * 1992-10-15 1998-01-27 Nmh Stahwerke Gmbh Rail steel

Also Published As

Publication number Publication date
JPH0121867B2 (en) 1989-04-24

Similar Documents

Publication Publication Date Title
JPWO2002077309A1 (en) Cast steel and casting mold
JPH11350065A (en) Non-refining steel for hot forging excellent in machinability
US5551995A (en) Spheroidal graphite cast iron for crank shafts and a crank shaft manufactured from such cast iron
JPS61130469A (en) Steel for die
CN111334712B (en) Environment-friendly free-cutting ferritic stainless steel and manufacturing method thereof
JPS61130467A (en) Steel for die
JPS59205453A (en) Free cutting steel and preparation thereof
JPS61130474A (en) Steel for die
JPS6358216B2 (en)
JPH05306427A (en) Centrifugally cast sleeve roll and its production
JP3589619B2 (en) Steel for free-cutting plastic molds with excellent finished surface roughness
JPS61130471A (en) Steel for die
JPS61130472A (en) Steel for die
JPS6120625B2 (en)
JPS61130470A (en) Steel for die
JPS61130473A (en) Steel for die
JPH09202938A (en) Chromium-molybdenum cast steel excellent in machinability
JPS61130468A (en) Steel for die
JPS61130466A (en) Steel for die
JPS582585B2 (en) Cold work tool steel and its manufacturing method
JPS61217559A (en) Free-cutting ball-bearing steel
JPH11158579A (en) Steel for plastic molding die
JP2594865B2 (en) Centrifugal casting roll and manufacturing method thereof
JP2579575B2 (en) Centrifugal casting roll and manufacturing method thereof
JP2716441B2 (en) High speed tool steel