JPS61130467A - Steel for die - Google Patents

Steel for die

Info

Publication number
JPS61130467A
JPS61130467A JP25723985A JP25723985A JPS61130467A JP S61130467 A JPS61130467 A JP S61130467A JP 25723985 A JP25723985 A JP 25723985A JP 25723985 A JP25723985 A JP 25723985A JP S61130467 A JPS61130467 A JP S61130467A
Authority
JP
Japan
Prior art keywords
steel
inclusions
sulfide
mold
dies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25723985A
Other languages
Japanese (ja)
Other versions
JPH0121866B2 (en
Inventor
Yoshitomo Hitachi
常陸 美朝
Sadayuki Nakamura
中村 貞行
Yukinori Matsuda
幸紀 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25723985A priority Critical patent/JPS61130467A/en
Publication of JPS61130467A publication Critical patent/JPS61130467A/en
Publication of JPH0121866B2 publication Critical patent/JPH0121866B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a steel for dies having high suitability to die sinking and low anisotropy in the mechanical properties and contg. sulfide inclusions having increased sphericity by adding S and Te to a steel for dies having a specified composition under restricted conditions. CONSTITUTION:This steel for dies such as dies for hot working or a metallic mold for molding plastics consists of, by weight, 0.30-0.50% C< 0.10-1.50% Si, 0.10-1.50% Mn, 4.0-6.0% Cr, 0.50-2.0% Mo, 0.20-1.50% V, 0.002-0.40% S, 0.001-0.40% Te (Te/S=0.04-0.5) and the balance Fe, and >=80% of sulfide inclusions of >=2mum major axis size in the steel have <=10 ratio between the major and minor axis sizes. The steel has superior durability even after forming into a metallic mold.

Description

【発明の詳細な説明】 本発明は機械的性質の異方性が少なく、かつ良好な型彫
加工性を有する型用鋼に関するもので、さらに詳しくは
SおよびTeを限定した条件で添加し、鋼中の硫化物系
介在物の形態を調整した熱間加工用型、プラスチック成
型金型などの型用鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold steel that has less anisotropy in mechanical properties and good die-sinking workability. This invention relates to steel for molds such as hot working molds and plastic molds, in which the form of sulfide inclusions in the steel is adjusted.

近年プレス、鍛造等の加工作業に用いる機械は大型かつ
高性能のものが出現し、作業の能率向上がはかられてい
るが、これにともなって成型金型に対する要求はますま
す厳しいものとなってきた。
In recent years, large and high-performance machines have appeared for processing operations such as presses and forging, and efforts are being made to improve work efficiency, but along with this, the demands on molds have become increasingly strict. It's here.

すなわち成型金型が従来の機械にくらべて負荷面で苛酷
化されている反面、作業能率の面から耐久性のさらに良
好な金型が要求されており、これらの要求を満たし得る
型用鋼の開発が盛んに進められている。また一方におい
て金型の複雑形状化ならびに高精度化に対処して型用鋼
自体の型彫加工性の改善も大きな課題となっている。
In other words, while molds are subject to more severe loads than conventional machines, molds with even better durability are required from the perspective of work efficiency, and mold steel that can meet these requirements is being developed. Development is actively underway. On the other hand, in response to the increasingly complex shapes and high precision of molds, improving the die-scattering workability of mold steel itself has become a major issue.

型用鋼の被削性を向上させるために従来から主としてs
、pb等の被削性向上元素を添加した型用鋼も見受けら
れ、それなりに効果をあげているが、一方において被削
性元素の添加による機械的性質の低下は避けられず特に
圧延または鍛延により延伸された型鋼は機械的性質の異
方性が強く、金型の耐久性低下の大きな原因となってい
る。これは被削性の改善に有効に作用するMnS等の硫
化物系介在物が展伸された形態で存在し、そこに応力集
中が生じて介在物を起点とする切欠現象が起るためと考
えられている。
In order to improve the machinability of mold steel, s
There are mold steels to which machinability-improving elements such as PB, PB, etc. have been added, and they have been somewhat effective. Steel shaped steel drawn by rolling has strong anisotropy in mechanical properties, which is a major cause of decreased durability of molds. This is because sulfide-based inclusions such as MnS, which effectively improve machinability, exist in an extended form, and stress concentration occurs there, causing a notch phenomenon originating from the inclusions. It is considered.

そこで硫化物系介在物の形状をできるだけ球状に近くし
て応力集中を緩和することにより上記の問題を解決する
ことが試みられている。
Therefore, attempts have been made to solve the above problem by making the shape of the sulfide inclusions as close to spherical as possible to alleviate stress concentration.

本発明者等は熱間加工用金型またはプラスチック金型な
どの素材となる型用鋼についても上記のような考え方を
導入することにより金型の寿命向上が期待できると同時
に良好な型彫加工性を有する型用鋼が製造できると推考
し、多くの研究を積んだ結果、従来の型用鋼組成にたい
してSおよびTeを特定の割合いで添加することにより
鋼中に生成される介在物自体の球形度が促進され、特に
大型介在物のほとんどが長短径比10以下の球形に近い
形態を有することを知見した。さらに上記介在物形態を
有する型用鋼は型彫加工性が良好であるばかりでな(、
機械的性質の異方性が著るしく少ないという特徴があり
、金型成形後の耐久性も一段と優れたものが得られるこ
とを確認した。すなわち機械的性質の異方性が少なく、
かつ良好な型彫加工性を兼ね備えるためには含有される
硫化物のうち長径が2μ以上の比較的大型のものは、そ
の少なくとも80%が長短径比10以下でなければなら
ないこと、またこのような硫化物系介在物はTe/Sの
重量割合いが0.04〜0.5にえらぶことによって実
現できることを確認した。 さらにはTe以外の成分を
調整した溶鋼にTeを添加して均一に分散させることに
より製造できること、そして上記Teの添加に先立って
、溶鋼中に非酸化性ガスを導入して強制攪拌することに
より、被削性および鏡面仕上げ性シボ加工性などにとっ
て存寄な主として酸化物系の介在物からなる大きさの介
在物を浮上分離させ除去するのが好ましいことも知った
・ 以上の新規な知見にもとづく本発明の型用鋼は、G O
,30〜0.50%、So、10〜1.50%、Mn0
゜10〜1.50%、Cr4.0〜6.0%、 Mo0
.50〜2゜0%、 V  O,20〜1.50%とT
e/S が0.04〜0゜5の範囲にて、So、002
〜0.40%、TsO,OO1〜0.40%を、含有し
、残余が実質的にFeからなる組成を有し、鋼中に存在
する長径2μ以上の硫化物系介在物のうち少なくとも8
0%がその長短径比10以下であることを特徴とする被
削性の優れた型用鋼である。
The present inventors believe that by introducing the above-mentioned concept to mold steel, which is the raw material for hot working molds or plastic molds, it is possible to expect an increase in the life of the mold and at the same time to improve the quality of mold engraving. We hypothesized that it would be possible to produce mold steel that has the same characteristics, and as a result of extensive research, we found that by adding S and Te in a specific ratio to the conventional mold steel composition, we could reduce the inclusions themselves that are generated in the steel. It was found that sphericity was promoted, and in particular, most of the large inclusions had a shape close to a spherical shape with a length-to-width ratio of 10 or less. Furthermore, mold steel having the above-mentioned inclusion morphology not only has good die-carving workability (
It has been confirmed that it has a characteristic of having significantly less anisotropy in mechanical properties, and that it can also be obtained with even better durability after molding. In other words, there is less anisotropy in mechanical properties,
In addition, in order to have good engraving workability, at least 80% of the relatively large sulfides with a major axis of 2 μ or more must have a major axis ratio of 10 or less. It was confirmed that sulfide-based inclusions can be realized by selecting a Te/S weight ratio of 0.04 to 0.5. Furthermore, it can be manufactured by adding Te to molten steel with adjusted components other than Te and uniformly dispersing it, and by introducing a non-oxidizing gas into the molten steel and forcibly stirring it prior to the addition of Te. We also learned that it is preferable to float and remove inclusions of a size that mainly consists of oxide-based inclusions, which are critical to machinability, mirror finish, and graining properties. The mold steel of the present invention is based on G O
, 30-0.50%, So, 10-1.50%, Mn0
°10~1.50%, Cr4.0~6.0%, Mo0
.. 50~2゜0%, VO, 20~1.50% and T
So, 002 in the range of e/S 0.04 to 0°5
~ 0.40%, TsO, OO 1 ~ 0.40%, with the remainder essentially consisting of Fe, and at least 8 of the sulfide inclusions with a major axis of 2 μ or more present in the steel.
It is a mold steel with excellent machinability, characterized in that 0% has a length-to-width ratio of 10 or less.

本発明における各成分元素の役割および範囲(重量%)
の限定理由は以下に示す。
Role and range of each component element in the present invention (wt%)
The reason for this limitation is shown below.

C! 0.30〜0.50% 型用鋼としての硬さ、耐摩耗性を確保するために0.3
0%以上添加する必要がある。ただし多量に添加すると
靭性が低下し、実用に適さなくなるため0.65%以下
に限定した。
C! 0.30-0.50% 0.3 to ensure hardness and wear resistance as mold steel
It is necessary to add 0% or more. However, if added in a large amount, the toughness decreases, making it unsuitable for practical use, so it was limited to 0.65% or less.

Si:0.10〜1.50% 溶製時の脱酸効果のほか、基地の強化に有効な元素であ
り0,10%以上添加する必要がある。ただし多量に添
加すると地底が多くなると同時に被削性が低下するため
1.50%以下に限定した。
Si: 0.10 to 1.50% Si is an effective element for strengthening the matrix in addition to its deoxidizing effect during melting, and must be added in an amount of 0.10% or more. However, if added in a large amount, the amount of ground will increase and machinability will decrease, so it was limited to 1.50% or less.

Mn : 0.10〜1.50% 溶製時の脱酸効果を持たせるため及び基地を強化するた
めに有効な元素であり、0.10%以上添加する必要が
ある。しかし多量に添加すると靭性及び被削性が低下す
るので、1.50%以下に限定した。
Mn: 0.10 to 1.50% This is an effective element for providing a deoxidizing effect during melting and for strengthening the base, and it is necessary to add 0.10% or more. However, if added in a large amount, toughness and machinability will deteriorate, so it is limited to 1.50% or less.

Cr:4.O〜6.0% 基地を強靭性化し、焼入性、耐摩耗性、耐酸化性の確保
に有効な元素であり、4.0%以上添加する。しかしな
がら多量に添加すると靭性が低下し実用に適さなくなる
ため6.0%以下に限定した。
Cr:4. O ~ 6.0% It is an element effective in toughening the matrix and ensuring hardenability, wear resistance, and oxidation resistance, and is added in an amount of 4.0% or more. However, if added in a large amount, the toughness decreases and becomes unsuitable for practical use, so the content was limited to 6.0% or less.

Mo:0.50〜2.0% V : 0.20〜1.5
0%上記元素はいずれも協力な炭化物形成元素で熱処理
硬さ耐摩耗性の確保に有効な元素でありMnは0.50
%以上、■は0.20%以上添加する。
Mo: 0.50-2.0% V: 0.20-1.5
0%The above elements are all cooperative carbide-forming elements and are effective elements for ensuring heat treatment hardness and wear resistance, and Mn is 0.50.
% or more, (■) is added in an amount of 0.20% or more.

しかし多量に添加すると製造が困難になると同時に靭性
が低下し、実用に適さなくなるためMOは2.0%以下
Vは1.50%以下に限定した。
However, if added in a large amount, manufacturing becomes difficult and the toughness decreases, making it unsuitable for practical use, so MO was limited to 2.0% or less and V to 1.50% or less.

S : 0.002〜0.40% 被削性を改善するために有効な介在物であるMnS系介
在物の形成には不可欠であって0.002%以上添加す
る。多量になるほど被削性は向上するが、鋼の清浄度を
害し、靭性が低下するため0゜40%以下に限定した。
S: 0.002 to 0.40% S is essential for the formation of MnS-based inclusions, which are effective inclusions for improving machinability, and is added in an amount of 0.002% or more. The machinability improves as the amount increases, but it impairs the cleanliness of the steel and reduces toughness, so it was limited to 0°40% or less.

Te : 0.0 O1〜0.40% MnS系介在物の形態を調整することと、それ自体で快
削性を与える点で重要な元素であり0.001%以上添
加する。あまり大量では熱間加工性が劣るので0.40
%以下に限定する。また硫化物系介在物の形態を改善す
るためにはTe/Sの重量割合が0.04以上であるこ
とを要する。
Te: 0.0 O1 to 0.40% Te is an important element in terms of adjusting the morphology of MnS-based inclusions and providing free machinability by itself, and is added in an amount of 0.001% or more. If too large a quantity, hot workability will be poor, so 0.40
% or less. Furthermore, in order to improve the morphology of sulfide-based inclusions, the weight ratio of Te/S must be 0.04 or more.

硫化物系介在物の形態と分布 型用鋼の型彫加工性および機械的性質の異方性が鋼中の
硫化物系介在物の形態と分布に大きく依存することを本
発明者等はf!認し、硫化物の形態を種々変化させた鋼
の特性をしらべた。
The present inventors have found that the form of sulfide inclusions and the anisotropy of the die engraving workability and mechanical properties of steel for distribution molding greatly depend on the form and distribution of sulfide inclusions in the steel. ! and investigated the properties of steels with various sulfide morphologies.

その結果、硫化物系介在物のうち長径が2μ以上の比較
的大型のものが強度異方性を左右し、これが長短径比で
10以内にあって極端に繊状に展伸されていない形態を
もつならば悪影響を示さないこと、そしてこのようなも
のが全硫化物系介在物中の個数にもとづいて80%また
はそれ以上の大部分を占めるという条件がみたされてい
ればよいことを知ったのである。
As a result, it was found that relatively large sulfide inclusions with a major axis of 2 μ or more influenced the strength anisotropy, and that these inclusions had a long-to-minor axis ratio of within 10 and were not extremely fibrously elongated. It is understood that if the sulfide-based inclusions contain sulfide-based inclusions, they will not cause any adverse effects, and that the conditions that such sulfide-based inclusions account for 80% or more of the total sulfide-based inclusions based on their number are satisfied. It was.

以上記述した本発明の型用鋼を製造する第1のポイント
は成分の適確な調整にある。まず炉内でSを除く快削性
付与元素以外の合金成分の含を量を所定の値に調節した
溶鋼を用意する。なお好ましくは真空脱ガスなどにより
0量を0.015%以下に低下させ、酸化物系介在物の
生成を抑制するとよい0次に炉、取りなべあるいは′タ
ンディシュ中にあるこの溶鋼にTe/Sが0.04〜0
.5の条件をみたすようにTeを添加して、均一に分散
させればよい、Teの添加は注入管中で行うこともでき
る。
The first point in manufacturing the mold steel of the present invention described above is proper adjustment of the components. First, molten steel is prepared in a furnace in which the content of alloying components other than S and other free-cutting properties imparting elements is adjusted to a predetermined value. It is preferable to reduce the amount of Te/S to 0.015% or less by vacuum degassing or the like to suppress the formation of oxide inclusions. is 0.04~0
.. Te may be added so as to satisfy the condition 5 and dispersed uniformly. Te can also be added in an injection tube.

Teの添加に際して、主として酸化物系介在物である大
型の非金属介在物をできるだけ除去することが望ましく
この目的には炉、取りなべまたはタンディツシュ内の溶
鋼中にアルゴンのような非酸化性のガスを導入して強制
攪拌することが効果的である。この操作はTeの添加に
先立って行うこともできるし、またTeを添加しつつ行
なってもよい。
When adding Te, it is desirable to remove as much as possible large nonmetallic inclusions, which are mainly oxide inclusions. It is effective to forcefully stir the mixture by introducing This operation can be performed prior to the addition of Te, or can be performed while adding Te.

以下本発明鋼の特徴を実施例により詳細に説明する。The characteristics of the steel of the present invention will be explained in detail below using examples.

(実施例) 第1表に溶製した供試鋼の成分組成を示す。(Example) Table 1 shows the composition of the melted test steel.

なお綱の溶製にあたっては所定量の合金元素を塩基性電
気炉内で調整した後、Teを溶鋼中のS量に応じて取な
べ中へ添加し、均一に分散させ下注法により造塊した。
In melting steel, a predetermined amount of alloying elements are adjusted in a basic electric furnace, and then Te is added to the ladle according to the amount of S in the molten steel, uniformly dispersed, and ingots are formed by the pouring method. did.

次に第1表の供試材を用いて鍛練比が10程度の熱間鍛
造を行ない金型の粗形を製造した。つづいて所定の条件
で焼入れ、焼もどし処理した後同粗形より試料を採取し
、衝撃試験(JISa号シャルピー試験片)により強度
異方性を調べた。また同時に衝撃試験後の試験片につい
て硫化物系介在物の形態および分布状況を調査した。そ
の結果を第2表にまとめて示した。
Next, using the test materials shown in Table 1, hot forging was carried out at a forging ratio of about 10 to produce a rough mold. Subsequently, after quenching and tempering under predetermined conditions, a sample was taken from the same rough shape, and the strength anisotropy was examined by an impact test (JISa No. Charpy test piece). At the same time, the morphology and distribution of sulfide inclusions were investigated on the specimens after the impact test. The results are summarized in Table 2.

同表にみられるごとくいずれの鋼においても従来から用
いられている鋼は鍛造方向と直角方向の衝撃特性は著る
しく低く鍛造方向のそれにくらべて各以下の衝撃値を示
しており機械的性質の異方性が強いことが確認できる。
As can be seen in the table, the impact properties of the conventionally used steels in the direction perpendicular to the forging direction are significantly lower, and the impact values are lower than those in the forging direction, indicating mechanical properties. It can be confirmed that the anisotropy is strong.

これにたいしてSおよびTe量を調整して添加した本発
明鋼はいずれも鍛造方向と直角方向の衝撃特性の低下は
少なく、鍛造方向の衝撃値に比べて〃以上の衝撃値を示
すことがW1認できた。すなわち本発明鋼は鍛造または
圧延後における機械的性質異方性がそれほど強くなく、
安定な特性を有することを確認した。この事実の根拠と
しては鋼中の硫化物系介在物の形態および世にある。す
なわち従来鋼では長短径比10以下の比較的球状に近い
硫化物系介在物は全体の20%程度しか分布していず他
は長短径比10以上の展伸された硫化物系介在物である
のにたいして本発明鋼では長短径比10以下の比較的球
状に近い硫化物系介在物が大半を占めている。
On the other hand, all of the steels of the present invention in which S and Te amounts were adjusted and added showed little decrease in the impact properties in the direction perpendicular to the forging direction, and were approved by W1 to show an impact value of 〃 or more compared to the impact value in the forging direction. did it. In other words, the steel of the present invention does not have very strong anisotropy in mechanical properties after forging or rolling.
It was confirmed that it has stable characteristics. The basis for this fact lies in the form and nature of sulfide inclusions in steel. In other words, in conventional steel, relatively spherical sulfide inclusions with an axis ratio of 10 or less are distributed in only about 20% of the total, and the rest are elongated sulfide inclusions with an axis ratio of 10 or more. In contrast, in the steel of the present invention, relatively spherical sulfide-based inclusions with a major axis ratio of 10 or less occupy the majority.

したがって従来鋼の衝撃特性は硫化物系介在物が展伸さ
れているため試料の採取方向によって太き(゛影響され
るのにたいして本発明鋼の硫化物系介在物はそのほとん
どが球状に近いものであるため、試料の採取方向の影響
は受けに(いことから本発明鋼の機械的性質異方性が少
ないことは容易に理解できる。
Therefore, the impact properties of conventional steel are influenced by the direction in which the sample is taken because the sulfide inclusions are elongated. Therefore, it is easy to understand that the mechanical property anisotropy of the steel of the present invention is small because it is not affected by the direction in which the sample is taken.

次に第1表の供試材から製造した金型用粗形を用いて、
カウンターギヤー製造用の金型を型彫加工し、これを実
用に供した。
Next, using a rough mold for a mold manufactured from the sample materials in Table 1,
A mold for manufacturing counter gears was carved and put into practical use.

第3表にそれぞれの供試材の型彫加工性(比較鋼を基準
にした、型彫加工に要した時間比)および金型の耐久性
(比較鋼を基準にした型寿命比)を示した。
Table 3 shows the die-sinking workability (ratio of time required for die-sinking based on comparative steel) and mold durability (mold life ratio based on comparative steel) of each sample material. Ta.

同表にみられるごと〈従来鋼に比してSおよびTeの量
を調整して添加した本発明鋼はいずれも型彫加工時間は
少なくかつ製造された金型の耐久性は1.3〜1.4倍
を示している。
As seen in the same table, compared to conventional steels, the steels of the present invention, in which the amounts of S and Te are adjusted, require less die-scabbing time and the durability of the manufactured molds is 1.3~1. It shows 1.4 times.

(実施例2) 第4表に溶製した供試鋼の成分組成を示す。(Example 2) Table 4 shows the composition of the melted test steel.

なお鋼の溶製にあたっては所定量の合金元素を塩基性電
気炉内で調整した後Teを溶鋼中のS量に応じて取なべ
中へ添加し、均一に分散させ下注法により造塊した0次
に第4表の供試材を用いて鍛練比が10程度の熱間鍛造
を行ない金型の粗形を製造した。つづいて所定の条件で
焼入れ、焼もどし処理を施し、プラスチック金型として
要求される鏡面仕上げ性およびシボ加工性を調査した。
In melting the steel, a predetermined amount of alloying elements were adjusted in a basic electric furnace, and then Te was added to the ladle according to the amount of S in the molten steel, uniformly dispersed, and agglomerated by the pouring method. Next, using the test materials shown in Table 4, hot forging was carried out at a forging ratio of about 10 to produce a rough mold. Subsequently, the molds were hardened and tempered under predetermined conditions, and the mirror finish and texture required for plastic molds were investigated.

また同時に硫化物系介在物の分布形態を調査した。At the same time, the distribution form of sulfide inclusions was investigated.

その結果をまとめて第5表に示した。The results are summarized in Table 5.

同表にみられるごとく比較鋼に(らべて本発明鋼はいず
れも鏡面仕上げ性、シボ加工性ともに優れておりプラス
チック金型用鋼として好適であることを示している。ま
た本発明鋼の場合第4表にみられるごとく長短径比10
以下の比較的球状に近い硫化物系介在物がほとんどを占
めており比較鋼にくらべて均一に分布しているため、鏡
面仕上げ性およびシボ加工性にも好影響を及ぼしている
ものと思われる。
As seen in the same table, compared to the comparative steels, all the steels of the present invention have excellent mirror finishing properties and graining properties, indicating that they are suitable as steels for plastic molds. In the case, as shown in Table 4, the major axis ratio is 10
Most of the following relatively spherical sulfide inclusions are distributed more uniformly than in the comparison steel, which is thought to have a positive effect on mirror finish and graining properties. .

以上のごとく本発明鋼はSおよびTeを適量添加して硫
化物系介在物の形agl整を行なった熱間加工用型用鋼
であって、型彫加工性が良好であると同時に硫化物系介
在物の形態に基づく機械的性質異方性が少なく、また金
型の鏡面仕上げ性、シボ加工性なども良好であり、各種
金型を使用した場合に優れた耐久性が得られる等総合的
に優れた型用鋼である。
As described above, the steel of the present invention is a mold steel for hot working in which the shape of sulfide-based inclusions is adjusted by adding appropriate amounts of S and Te, and it has good die-sinking workability and also contains sulfide-based inclusions. The mechanical properties based on the form of inclusions in the system have little anisotropy, and the mold has good mirror finishing and graining properties, and excellent durability can be obtained when using various molds. It is an excellent mold steel.

Claims (1)

【特許請求の範囲】[Claims] (1)重量%でC:0.30〜0.50%、Si:0.
10〜1.50%、Mn:0.10〜1.50%、Cr
:4.0〜6.0%、Mo:0.50〜2.0%、V:
0.20〜1.50%とTe/S:0.04〜0.5の
範囲でS:0.002〜0.40%、Te:0.001
〜0.40%を含有し、残余が実質的にFeからなる組
成を有し、鋼中に存在する長径2μ以上の硫化物系介在
物のうち、少なくとも80%が長短径比10以下である
ことを特徴とする被削性の優れた型用鋼。
(1) C: 0.30-0.50%, Si: 0.
10-1.50%, Mn: 0.10-1.50%, Cr
:4.0~6.0%, Mo:0.50~2.0%, V:
S: 0.002-0.40%, Te: 0.001 in the range of 0.20-1.50% and Te/S: 0.04-0.5
~0.40%, with the remainder essentially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10 or less A mold steel with excellent machinability.
JP25723985A 1985-11-16 1985-11-16 Steel for die Granted JPS61130467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25723985A JPS61130467A (en) 1985-11-16 1985-11-16 Steel for die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25723985A JPS61130467A (en) 1985-11-16 1985-11-16 Steel for die

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8141279A Division JPS566758A (en) 1979-06-29 1979-06-29 Steel for mold and its production

Publications (2)

Publication Number Publication Date
JPS61130467A true JPS61130467A (en) 1986-06-18
JPH0121866B2 JPH0121866B2 (en) 1989-04-24

Family

ID=17303616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25723985A Granted JPS61130467A (en) 1985-11-16 1985-11-16 Steel for die

Country Status (1)

Country Link
JP (1) JPS61130467A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425950A (en) * 1987-07-18 1989-01-27 Kanto Special Steel Works Ltd Mold material for injection molding of plastics and its production
EP0648852A1 (en) * 1993-09-27 1995-04-19 Crucible Materials Corporation Hot-isostatically-compacted martensitic steel article for molds and die components and its method of manufacture
EP0648854A1 (en) * 1993-09-27 1995-04-19 Crucible Materials Corporation Martensitic hot work tool steel die block article and method of manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425950A (en) * 1987-07-18 1989-01-27 Kanto Special Steel Works Ltd Mold material for injection molding of plastics and its production
EP0648852A1 (en) * 1993-09-27 1995-04-19 Crucible Materials Corporation Hot-isostatically-compacted martensitic steel article for molds and die components and its method of manufacture
EP0648854A1 (en) * 1993-09-27 1995-04-19 Crucible Materials Corporation Martensitic hot work tool steel die block article and method of manufacture

Also Published As

Publication number Publication date
JPH0121866B2 (en) 1989-04-24

Similar Documents

Publication Publication Date Title
JP3141735B2 (en) Steel for plastic molding dies
JPS6338418B2 (en)
JPH0138847B2 (en)
JPH0555585B2 (en)
JPS61130467A (en) Steel for die
JPS61272349A (en) Bearing steel
JPS6358216B2 (en)
JP2755301B2 (en) Tool steel for hot working
JP3589619B2 (en) Steel for free-cutting plastic molds with excellent finished surface roughness
JPS6120625B2 (en)
JPS61130473A (en) Steel for die
JPS61130474A (en) Steel for die
JPS61130469A (en) Steel for die
JPS61130466A (en) Steel for die
JPS61130468A (en) Steel for die
JPS61130471A (en) Steel for die
JPS61130472A (en) Steel for die
JPS6240420B2 (en)
JPS582585B2 (en) Cold work tool steel and its manufacturing method
JPH0545661B2 (en)
JPS61217559A (en) Free-cutting ball-bearing steel
JPS59153869A (en) Material for roll for rolling amorphous metal
JP2917468B2 (en) Plastic molding pre-hardened steel for mold
JPH0796696B2 (en) Alloy tool steel
JPS62211354A (en) Manufacture of high-speed tool steel