JPS6239067A - Manufacture of thin film semiconductor device - Google Patents

Manufacture of thin film semiconductor device

Info

Publication number
JPS6239067A
JPS6239067A JP17812485A JP17812485A JPS6239067A JP S6239067 A JPS6239067 A JP S6239067A JP 17812485 A JP17812485 A JP 17812485A JP 17812485 A JP17812485 A JP 17812485A JP S6239067 A JPS6239067 A JP S6239067A
Authority
JP
Japan
Prior art keywords
semiconductor film
impurity
source
annealing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17812485A
Other languages
Japanese (ja)
Inventor
Nobuhiro Shimizu
信宏 清水
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP17812485A priority Critical patent/JPS6239067A/en
Publication of JPS6239067A publication Critical patent/JPS6239067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To improve the characteristics of TFT by reducing a resistance and improving a contact by subjecting the semiconductor film doped with impurity in source and drain regions to beam annealing. CONSTITUTION:On an insulating substrate 1 of crystal or non-alkali glass, amorphous silicon (a-Si) is deposited as a semiconductor film 2 which is then subjected to beam annealing to be recrystallized. Using a material gas of SiH4 mixed with B2H6 or PH2, P<+> a-Si or N<+> a-Si is deposited as a semiconductor film 3 doped with impurity on the semiconductor film 2. The parts except only source and drain regions of TFT are removed by etching and the semiconductor film 3 is subjected to beam annealing using Ar laser of such energy density that the semiconductor film 2 is not fused. A gate insulating film 4 is formed; a gate electrode 5, a drain electrode 6, and a source electrode 7 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、絶縁基板上に薄膜トランジスタ(TF’r
)を製作した際に、より高速で電気的特性のすぐれた動
作をする製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a thin film transistor (TF'r) on an insulating substrate.
), which operates at higher speed and with excellent electrical characteristics.

〔発明の概要〕[Summary of the invention]

この発明は、絶縁基板上にTFTQ製作する方法におい
て、ソースとドレイン部分の不純物添加の半導体痕ヲビ
ーム了ニールすることにより、ソースとドレインでの抵
抗を減少させ、コンタクト金改善したものである。
This invention is a method for manufacturing TFTQ on an insulating substrate, by beam-annealing the semiconductor traces of impurity doping in the source and drain portions, thereby reducing the resistance at the source and drain and improving the contact gold.

〔従来の技術〕[Conventional technology]

従来、第2図に示すように、絶縁基板上にTFTi製作
する際に、ソース及びドレイン部分の不純物添加の半導
体atビーム了ニールしなかつも〔発明が解決しようと
する問題点〕 TIFTのソースとドレイン部分の抵抗が高く。
Conventionally, when manufacturing TFTi on an insulating substrate, as shown in FIG. The resistance of the drain part is high.

コンタクトが不十分であるため、TXPTの特性が良く
ならないという欠点があった。
There was a drawback that the characteristics of TXPT were not improved due to insufficient contact.

〔間琵点を解決するための手段〕[Means for solving the problem]

TPTのソースとドレイン部分の不純物添加の半導体膜
を下の半導体膜が溶融しない程度にビームアニールする
ことで、ソースとドレイン部分の抵抗を減少させ、コン
タクトを改善する。
By beam annealing the impurity-doped semiconductor film in the source and drain portions of the TPT to an extent that the underlying semiconductor film does not melt, the resistance of the source and drain portions is reduced and contact is improved.

〔作用〕[Effect]

第1図Cb)に示すように不純物添加の半導体装置全半
導体膜2が溶融しない程度にビームアニールすることで
、不純物添加の半導体膜3の不純物が活性化し、不純物
が半導体膜8中にやや拡散することで、比抵抗が低下し
、コンタクトが良くなる〔実施例〕 以下図面によって本発明の詳細な説明する。第1図(ハ
))Fs、、絶縁基板1上に半導体膜2を堆積し。
As shown in FIG. 1Cb), by beam annealing to an extent that the entire semiconductor film 2 of the impurity-doped semiconductor device is not melted, the impurities in the doped semiconductor film 3 are activated and the impurities are slightly diffused into the semiconductor film 8. By doing so, the specific resistance is reduced and the contact is improved. [Example] The present invention will be explained in detail below with reference to the drawings. FIG. 1(c)) Fs. A semiconductor film 2 is deposited on an insulating substrate 1.

ビームアニールにより再結晶化する工程である。This is a process of recrystallization by beam annealing.

絶縁基板1の例としては2石英や凛アルカリガラスやガ
ラスの表面に絶縁物?コートしてガラスからの不純物の
拡散全防止したものなどがある。次に半導体膜2の例は
多数おるが、ここではブラダ−r CV D 法1fC
Lる了モルブアスシリコンCa−日i)Kついて説明す
る。堆積温度は室温から約800℃の間で行い、l原料
ガスはおもにシラン(Bi H&) ヤ’) S’77
 (sSs Hs ) ’J:便用する。
An example of an insulating substrate 1 is an insulating material on the surface of 2 quartz, Rin-alkali glass, or glass. There are products that are coated to completely prevent impurities from diffusing from the glass. Next, there are many examples of the semiconductor film 2, but here, the bladder r CV D method 1fC
Let's explain about Molbuas Silicon Ca-day i)K. The deposition temperature was between room temperature and about 800°C, and the raw material gas was mainly silane (Bi H&) S'77.
(sSs Hs) 'J: To use.

また膜厚に、0.05μ雷から0.5μ餌の間に設定す
る。次に半導体膜2のビームアニール方法について1明
する。アニール方法には、レーザや電子ビームまたはラ
ンプやヒータなどを用いる方法があるが、ここでは了ル
ゴyレーザに使用してα−576ア二−ルする方法につ
いて説明する。
Also, the film thickness is set between 0.05μ and 0.5μ. Next, a method of beam annealing the semiconductor film 2 will be briefly explained. Annealing methods include methods using lasers, electron beams, lamps, heaters, etc., but here a method for α-576 annealing using a laser beam will be described.

一般にプラズマcvp法で堆積したα−8ぜには、水素
ガスが金言れているため、このガス全除去スルアニール
(プレアニールンヲ行うことで後述の再結晶子ニール後
の結晶性が良くなる。ブレ丁ニール方法はα−81中の
水素ガスが約500℃以上で除去できることが知られて
おり、この温度まで上昇できるアニール方法であればど
の方法でも可能である。例えば真空または不活性ガス雰
囲気中で、a−B iが溶融しない程度のエネルギー密
度でアルゴンレーザビームを走査させて行うことができ
る。丁ニール条件の一例としてに、パワー127.ビー
ム径340μ岳、走査速度5IM/seeがある。次に
再結晶アニールについて説明する。
In general, α-8 deposited by the plasma CVP method requires hydrogen gas, so performing a pre-anneal to completely remove this gas improves the crystallinity after recrystallization annealing described later. It is known that the hydrogen gas in α-81 can be removed at a temperature of about 500°C or higher, and any annealing method that can raise the temperature to this temperature is possible.For example, in a vacuum or an inert gas atmosphere, This can be done by scanning an argon laser beam with an energy density that does not melt a-Bi. An example of the following conditions is a power of 127, a beam diameter of 340μ, and a scanning speed of 5IM/see.Next, Recrystallization annealing will be explained.

前記のプレアニールと同様に、真空または不活性ガス雰
囲気中でアルゴンレーザを用いて、α−B(が溶融する
パワー密度で行う。アニール条件の一例としては、パワ
ー13W、ビーム径130μm、走査速度50cm/s
eaがある。
Similar to the pre-annealing described above, it is performed using an argon laser in a vacuum or an inert gas atmosphere at a power density that melts α-B. An example of the annealing conditions is a power of 13 W, a beam diameter of 130 μm, and a scanning speed of 50 cm. /s
There is ea.

第1図の)tjl、−半導体膜2上に不純物添mct半
導体膜8を堆積し、パターニングした優、不純物添加の
半導体膜3を半導体膜2が溶融しない程度のエネルギー
密度でビームアニールする工程である。不純物添加の半
導体18の例としては、PチャネルTFTi製作する場
合にはP童の不純物を添刀口してア+とする。Nチャネ
ルTPTの場合には、X型の不純物を添加してN+とす
る。ここでは前述したプラズマcvD法により、N十〇
−s4を堆積する場合全説明する。堆積温度は室温から
約300℃の間で原料ガス1jj3iH,に0.1チか
ら1チのホスフィン(”s)e添加して、0.02μ常
から0゜1μ情の間で堆積する。tたr十〇−g4の場
合には、sem、にジボラン(B* Hs )k添加し
て堆積する。次にフォトリソ技術により不純物添刀口の
半導体[3iTFTのソースとドレイン部分のみ残し、
他tエツチングして除去する。次の工程は、不紳物添の
口の半導体膜3t−ビームアニールして、比抵抗を下げ
、コンタクトを改善する工程である。アニール条件例と
しテハ0丁ルアルゴンザを用いて、前述のプレレーザア
ニールと同一条件で行うことができる。
In the process of depositing an impurity-doped MCT semiconductor film 8 on the semiconductor film 2 (FIG. 1) and patterning it, the impurity-doped semiconductor film 3 is beam annealed at an energy density that does not melt the semiconductor film 2. be. As an example of the impurity-doped semiconductor 18, when manufacturing a P-channel TFTi, a P-type impurity is added to form A+. In the case of an N-channel TPT, an X-type impurity is added to make it N+. Here, the entire case of depositing N10-s4 by the plasma CVD method described above will be explained. The deposition temperature is between room temperature and about 300° C., and 0.1 to 1 t of phosphine (s)e is added to the raw material gas, and the deposition is carried out at a thickness of 0.02 μ to 0.1 μ. In the case of r10-g4, diborane (B*Hs) is added to SEM and deposited.Next, the impurity-doped semiconductor [3i, leaving only the source and drain portions of the TFT, is deposited using photolithography.
Remove by etching. The next step is to perform t-beam annealing on the semiconductor film 3 with an additive to lower the resistivity and improve the contact. As an example of the annealing conditions, the annealing can be performed under the same conditions as the pre-laser annealing described above, using a TEHA 0-tonal laser gonza.

第1図(C)は、前記半導体膜2上にゲート絶R膜4を
形成し、さらにゲート電極5.ドレイン電極、ソース電
極7を形成する工程を示す図面である。ゲート絶R膜4
の例は、酸化ケイ素(8i0z]や窒化ケイ素(siN
2)などがある、ここではsum、の堆積方法について
説明する。プラズマOVD法金用いて、原料ガスには、
おもにs6H,とNH′、’i使って0.2pm、から
0.Sttm間で堆積する。ゲート絶縁層4の膜厚や膜
質は。
In FIG. 1C, a gate isolation film 4 is formed on the semiconductor film 2, and a gate electrode 5. 7 is a drawing showing a process of forming a drain electrode and a source electrode 7. FIG. Gate isolation R film 4
Examples include silicon oxide (8i0z) and silicon nitride (siN).
2), etc. Here, the deposition method of sum will be explained. Using the plasma OVD method, the raw material gas is:
Mainly s6H, and NH', 'i using 0.2pm, to 0. Deposited between Sttm. What is the thickness and quality of the gate insulating layer 4?

TF’T設計値や特性によって変えることができる。次
にソースとドレイン部分のコンタクトホールと7オトリ
ソ技術で形成した後に、ゲート電極5、ドレイン電極6
.ソース電極7t−形成する工程について説明する。堆
積方法の例としては、各種スパッタ法や蒸着法などがあ
り、材料にもAt−54,M(、−ss、w−s4など
の金属シリサイドがある。−例には、マグネトロンスパ
ッタ法でAz−s<金0.4μmから1μmの間で堆積
する方法がある。
It can be changed depending on the TF'T design value and characteristics. Next, after forming contact holes for the source and drain portions 7 using otolithography, a gate electrode 5 and a drain electrode 6 are formed.
.. The process of forming the source electrode 7t will be explained. Examples of deposition methods include various sputtering methods and vapor deposition methods, and materials include metal silicides such as At-54, M(, -ss, and w-s4). -s<gold There is a method of depositing between 0.4 μm and 1 μm.

〔発明の効果〕〔Effect of the invention〕

この発明は、前述の例で説明したように、TFT製作時
に、ドレインとソース部分の不純物添加の半導体膜3t
−ビームアニールすることにより。
As explained in the above example, the present invention is advantageous in that when manufacturing a TFT, the semiconductor film 3t is doped with impurities in the drain and source portions.
- By beam annealing.

第2図に示した従来のTPTに比べ、比抵抗が低下し、
コンタクトが改善されるため、TPTの特性が良くなる
という効果がある。
Compared to the conventional TPT shown in Figure 2, the specific resistance is lower,
Since the contact is improved, there is an effect that the characteristics of TPT are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(ω〜(C)は本発明のTF’I’の製造工程順
の断面図、第2図は従来のTPTの断面図であ71゜1
、。絶縁基板、  2.。半導体膜 8、、不純物添加の半導体膜 31 、。ビームアニールしない不純物添加の半導体膜 4゜、絶縁膜    6゜、ゲートIE極60.ドレイ
ン電極 7.、ソース電極 」牡出願人 セイコー電子
工業株式会社 代理人 弁理士 最 上    務 TPTの類造工程啼−■図 第1図
Fig. 1 (ω to (C) is a cross-sectional view of the manufacturing process of TF'I' of the present invention, and Fig. 2 is a cross-sectional view of a conventional TPT.
,. Insulating substrate, 2. . Semiconductor film 8, impurity-doped semiconductor film 31. Impurity-doped semiconductor film without beam annealing: 4°, insulating film: 6°, gate IE electrode: 60°. Drain electrode 7. , Source Electrode” Applicant: Seiko Electronic Industries Co., Ltd., Patent Attorney, Mutsumi Mogami TPT Manufacturing Process – ■Figure 1

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上に半導体膜を堆積後ビームアニールにより
前記半導体膜を結晶化する工程と、前記半導体膜上に不
純物添加の半導体膜を堆積し、ソースとドレイン領域を
パターニング後、前記不純物添加の半導体膜をビームア
ニールする工程と、前記半導体膜上にゲート絶縁膜を形
成し、前記不純物添加の半導体膜と前記ゲート絶縁膜上
にソース電極とドレイン電極及びゲート電極を形成する
工程とから成る薄膜半導体装置の製造方法。
A step of depositing a semiconductor film on an insulating substrate and crystallizing the semiconductor film by beam annealing, depositing an impurity-doped semiconductor film on the semiconductor film, patterning source and drain regions, and then depositing the impurity-doped semiconductor film on the semiconductor film. A thin film semiconductor device comprising the steps of beam annealing the semiconductor film, forming a gate insulating film on the semiconductor film, and forming a source electrode, a drain electrode, and a gate electrode on the impurity-doped semiconductor film and the gate insulating film. manufacturing method.
JP17812485A 1985-08-13 1985-08-13 Manufacture of thin film semiconductor device Pending JPS6239067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17812485A JPS6239067A (en) 1985-08-13 1985-08-13 Manufacture of thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17812485A JPS6239067A (en) 1985-08-13 1985-08-13 Manufacture of thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS6239067A true JPS6239067A (en) 1987-02-20

Family

ID=16043069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17812485A Pending JPS6239067A (en) 1985-08-13 1985-08-13 Manufacture of thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS6239067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352883B1 (en) 1991-02-22 2002-03-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6458200B1 (en) 1990-06-01 2002-10-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin-film transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458200B1 (en) 1990-06-01 2002-10-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin-film transistor
US6740547B2 (en) 1990-06-01 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin-film transistor
US7018874B2 (en) 1990-06-01 2006-03-28 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin-film transistor
US6352883B1 (en) 1991-02-22 2002-03-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6717180B2 (en) 1991-02-22 2004-04-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Similar Documents

Publication Publication Date Title
KR100473996B1 (en) Cystallization method of amorphous silicon
JP2616741B2 (en) Method for manufacturing polycrystalline silicon-germanium thin film transistor
JP2001007024A (en) Method of forming of polycrystalline silicon film
JPS60105216A (en) Manufacture of thin film semiconductor device
JPH03292741A (en) Manufacture of thin film semiconductor device
JPS6178119A (en) Manufacture of semiconductor
JPS63200572A (en) Manufacture of thin film semiconductor device
JPS6239067A (en) Manufacture of thin film semiconductor device
JPH04245482A (en) Non-single crystal semiconductor device and manufacture thereof
KR100469503B1 (en) How to crystallize amorphous film
JP3125931B2 (en) Semiconductor fabrication method
JP3203652B2 (en) Semiconductor thin film manufacturing method
JPS61131413A (en) Formation of semiconductor thin film
JPS6230314A (en) Manufacture of crystalline semiconductor thin film
JPS63250178A (en) Manufacture of thin film semiconductor device
KR960004902B1 (en) Preparation of polycrystalline silicon thin film
JPS63292682A (en) Manufacture of thin film semiconductor device
JP3535465B2 (en) Method for manufacturing semiconductor device
JPH0562899A (en) Formation of semiconductor thin film
JP2501451B2 (en) Thin film transistor and manufacturing method thereof
JPH04206837A (en) Manufacture of semiconductor device
JPS63136673A (en) Manufacture of thin film semiconductor device
JPS62254466A (en) Manufacture of thin film semiconductor device
JPH0488643A (en) Manufacture of polycrystalline silicon semiconductor device
JPH02208942A (en) Manufacture of thin film transistor