JPS6237907A - Field permanent magnet - Google Patents

Field permanent magnet

Info

Publication number
JPS6237907A
JPS6237907A JP60177815A JP17781585A JPS6237907A JP S6237907 A JPS6237907 A JP S6237907A JP 60177815 A JP60177815 A JP 60177815A JP 17781585 A JP17781585 A JP 17781585A JP S6237907 A JPS6237907 A JP S6237907A
Authority
JP
Japan
Prior art keywords
region
permanent magnet
rare earth
magnet
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60177815A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60177815A priority Critical patent/JPS6237907A/en
Publication of JPS6237907A publication Critical patent/JPS6237907A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain high demagnetization resistivity and high output by integrating a rare earth/boron/iron series permanent magnet including heavy rare earth elements and a rare earth/boron/iron series permanent magnet including light rare earth elements. CONSTITUTION:A field permanent magnet 1 is composed of a first region 2 having a high residual magnetic flux density and a second region 2 having a high coersive force and both regions 2, 3 are combined integrally. The region 2 is a sintered magnet having the composition consisting of R1 (where one or more among the elements eliminating Dy, Tb, Ho from the rare earth elements including Y) in the atomic ratio of 8-30%, B of 2-28% and remainder substantially consisting of Fe. The region 3 is a sintered magnet having the composition consisting of R2 (at least one memory Dy, Tb, Ho) in the atomic ratio of 8-30%, B of 2-28% and the remainder substantially consisting of Fe. Thereby, high demagnetization resistivity and high output may be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、永久磁石式発電機あるいは永久m石式電動機
等の永久磁石式回転機に使用される界磁用永久磁石に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a field permanent magnet used in a permanent magnet rotating machine such as a permanent magnet generator or a permanent magnet motor.

(従来の技術) 従来から永久磁石を用いた回転電気機械、特に小型モー
タや発電機等には、界磁用永久磁石としてアークはグメ
ント状のフェライト磁石が一般に使用されている。特に
Tンジン起動用のスタータモータ、空調機のコンプレッ
サー駆動用モータ等の起動時の負荷が非常に大きいモー
タにおいては、電機子反作用による減磁界が大きくなる
ので、減磁耐力の大きいフェライト磁石が使用されてい
る。
(Prior Art) Conventionally, in rotating electric machines using permanent magnets, particularly small motors, generators, etc., ferrite magnets in the form of arc particles have been generally used as field permanent magnets. In particular, in motors that have a very large load during startup, such as starter motors for starting engine engines and motors for driving air conditioner compressors, the demagnetizing field due to armature reaction becomes large, so ferrite magnets with high demagnetization resistance are used. has been done.

しかるに、出力向上のためには残留磁束密度の高いこと
が必要で、しかも高出力になると電機子反作用による減
磁界が増加し、保磁力の高いことも必要となる。しかし
て、単一の組成のフェライト磁石でこのような要求を満
すことは困難であり、出力の向上および減磁時14rの
点で一定の限度が存在していた。
However, in order to improve the output, it is necessary to have a high residual magnetic flux density, and moreover, as the output increases, the demagnetizing field due to armature reaction increases, so it is also necessary to have a high coercive force. However, it is difficult to satisfy these requirements with a ferrite magnet having a single composition, and there are certain limits in terms of output improvement and demagnetization time 14r.

そこでこの限度を乗り越えるために、例えば特開昭52
−3199号及び同55−564!i6号の各公報に記
載されているにうに、互いに巽なった磁気特性を有する
、他方のセグメント部分よりも太きく2残留141束密
度を有づる部分と、他方の[ダメ21〜部分J、りも大
きな保磁力を有する部分とからなり、両者が一体化され
た複合型)■ライ1ル磁石が提案され、実用に供せられ
ている。
Therefore, in order to overcome this limit, for example,
-3199 and 55-564! As described in each publication of No. i6, there is a part that is thicker than the other segment part and has a flux density of 2 residual 141, which has magnetic properties different from each other, and the other part [Dame 21 to part J, A composite type Lyle magnet, which consists of a magnet and a part with a large coercive force, has been proposed and put into practical use.

(発明の解決しようとする問題点) 上述した複合型フェライ1へ磁石は、保磁力(11」c
)は4500〜50’000 eどかなり高い値を示づ
ので、減磁耐力の点では一応満足できるものの、残留磁
束密度(Br )は3700〜4000G程[αであり
、出力の点では必ずしも十分では/rかった。
(Problems to be Solved by the Invention) The magnet for the above-mentioned composite type ferrite 1 has a coercive force (11"c
) shows a fairly high value such as 4,500 to 50'000 e, so although it is somewhat satisfactory in terms of demagnetization resistance, the residual magnetic flux density (Br ) is about 3,700 to 4,000 G [α, so it is not necessarily sufficient in terms of output. Well, it was /r.

特にこの複合型フェライト磁石は、含浸法等の特殊な方
法(例えば西独特許公開第3248846号明細書参照
)により製造されるので、甲−組成のフェライト磁石と
比べて高コストである。したがって]]ス1ヘパフA−
マンの貞Cは必ずしも有利どは言えない。
In particular, this composite type ferrite magnet is manufactured by a special method such as an impregnation method (see, for example, West German Patent Publication No. 3,248,846), and is therefore more expensive than a ferrite magnet having the composition A. Therefore]] S1Hepuff A-
Mann's Sada C cannot necessarily be said to be advantageous.

本発明の目的は、十)ホした従来技術の問題点を解消1
ノ、高い減磁耐力と高出力が得られ、」ストパフォーマ
ンスが大幅に向上した界磁用永久磁石を提供することて
゛ある。
The purpose of the present invention is (10) to solve the problems of the prior art.
Another object of the present invention is to provide a permanent magnet for field use that has high demagnetization resistance and high output, and has significantly improved magnetic field performance.

(問題点を解決覆るための手段) 本発明の界磁用永久磁石は、R7いに異なった磁気時M
を有する、他方よりも高い残留磁束密度を有4る第1の
領域と、他方」;りも高い保磁力を有する第2の領域と
からなり、第1の領域ど第2の端域とが一体的に結合さ
れでいる永久磁石であって、第1の領域が1京子比で8
へ・30%のR+  (但しYを含む希土類元素から、
l)V 、 Tti 、lloを除いた元素の内1秒以
−+1 >、2へ・28%のBおよび残部が実質的にl
−eからなる組成を有する焼結磁石であり、第2の領域
が原子比で8〜30%の1で2(1’lr 、丁b 、
Hoの内の少なくとも1種とR1)、2〜・28%の1
3および残部が実質的に「eからイする組成を有Jる焼
結磁石であることを特徴ど(るものである。
(Means for solving and overcoming the problems) The field permanent magnet of the present invention has R7 different magnetic properties and M
a first region having a higher residual magnetic flux density than the other, and a second region having a higher coercive force than the other, the first region having a second end region. A permanent magnet integrally coupled, the first region of which has a 1K ratio of 8
to 30% R+ (However, from rare earth elements including Y,
l) Within 1 second of the elements excluding V, Tti, llo -+1>, 2 to 28% B and the remainder is substantially l
-e, the second region has an atomic ratio of 8 to 30% of 1 and 2 (1'lr, db,
At least one of Ho and R1), 2 to 28% of 1
3 and the remainder are sintered magnets having a composition substantially ranging from e to i.

現イ[、永久磁石としては、)Tライj−磁石のほかに
、アルニコ磁石、F e  Cr−co磁石、希土類磁
石が知られているが、アルニコ磁石とFe−Cr −C
o 11石は保磁力が約2000Q e以下とフェライ
ト磁石よりもかなり低いため、実用に供し得ない。これ
に対し、希土類磁石は残留磁束密度および保磁力が大き
いため、性能の点では十分である。しかして希土類磁石
でも、希土類コバルト磁石は高価であり、コストパフォ
ーマンスの点では必ずしも有利とは言えない。
Currently known as permanent magnets are T-Li J-magnets, alnico magnets, Fe-Cr-co magnets, and rare earth magnets; however, alnico magnets and Fe-Cr-C
Since the coercive force of o11 stone is about 2000Qe or less, which is considerably lower than that of ferrite magnets, it cannot be put to practical use. On the other hand, rare earth magnets have a large residual magnetic flux density and a large coercive force, so they are sufficient in terms of performance. However, among rare earth magnets, rare earth cobalt magnets are expensive and cannot necessarily be said to be advantageous in terms of cost performance.

そこで本発明者は、磁気特性が人でありかつ磁気モーメ
ントも大きく、価格的に有利な希土類−ボロン−鉄系焼
結磁石(特開昭59−46008号、同60−3230
6号、同60−34005号等の各公報参照)に注目し
、これを界磁用永久磁石として用いることにより、前記
目的を達成できることを見出した。
Therefore, the present inventor developed rare earth-boron-iron sintered magnets (Japanese Unexamined Patent Application Publication Nos. 59-46008 and 60-3230) that have similar magnetic properties, a large magnetic moment, and are advantageous in price.
6, No. 60-34005, etc.), and found that the above object could be achieved by using this as a permanent magnet for a field.

(構成) 本発明の界磁用永久磁石1は、第1図に示すように高い
残留磁束密度を有する第1の領域2と、高い保母力を有
する第2の領域3とがらなり、両方の領域が一体的に結
合されている。
(Structure) As shown in FIG. 1, the field permanent magnet 1 of the present invention consists of a first region 2 having a high residual magnetic flux density and a second region 3 having a high coercive force. are integrally combined.

第1の領域は、十分なる残留磁束密度を得るために、希
土類元素(R1)とlノで、Yを含む希土類元素からD
V 、Tt+ 、Hoを除いた元素の内1種以上を用い
るものである。これらの希土類元素のうち、磁気特性の
点および価格の点からNdが好適である。
In order to obtain a sufficient residual magnetic flux density, the first region is a rare earth element (R1) and a rare earth element containing Y.
One or more of the elements excluding V, Tt+, and Ho are used. Among these rare earth elements, Nd is preferred from the viewpoint of magnetic properties and cost.

一方、第2の領域は、十分4Tる保磁力を1qるために
、希土類元素(R2)として、重希土類に属するDV 
、 Tb 、 1−to少なくとも1種1ス−VとR1
とを用いるものである。
On the other hand, in the second region, in order to sufficiently increase the coercive force of 4T by 1q, DV belonging to heavy rare earths is used as a rare earth element (R2).
, Tb, 1-to at least one species 1-V and R1
It uses

これら希土類元素R1とR2の含有量は、原子比で(以
下も同様)で8〜30%の範囲がよい。8%未満では保
磁力が低下する。−万福土類元素は燃え易く、取扱いが
難しく、又高価であることがら30%以下とする。
The content of these rare earth elements R1 and R2 is preferably in the range of 8 to 30% in terms of atomic ratio (the same applies hereinafter). If it is less than 8%, the coercive force decreases. - Manpuku earth elements are easily flammable, difficult to handle, and expensive, so the content should be 30% or less.

Bの含有量は2〜28%の範囲がよい。2%未満では十
分な保磁力が得られず、28%を越えると残留磁束密度
が低下する。
The content of B is preferably in the range of 2 to 28%. If it is less than 2%, sufficient coercive force cannot be obtained, and if it exceeds 28%, the residual magnetic flux density will decrease.

残部は不可避の不純物を含むFeであるが、[eの一部
を40%以下のGoで置換(〕てよい。COの添加によ
りキコーリ一点が高くイ1す、可逆調度係数が改善され
る。
The remainder is Fe containing unavoidable impurities, but a portion of e may be replaced with 40% or less of Go.Addition of CO improves the Kikoli point and improves the reversible tone coefficient.

COと同様の目的で、下記所定%以下のA元素の1種皮
トを含有させてもよい。但し、2種以上を含む場合は、
へ元素の含有量は当該へ元素のうち最大値を有するもの
の値以下とする。
For the same purpose as CO, a predetermined percentage or less of element A may be included. However, if two or more types are included,
The content of the hex element shall be less than or equal to the value of the hex element having the maximum value.

1−i  4.5%以下 N18%以下 1315%以
下V  9,5     Nb 12,5    Ta
 10,5Cr  8.5     Ma  9,5 
   W  9.5Mn  8      AcL9,
5    Sb  2,5Ge  7      Sn
  3.5    Zr  5.511f  5.5 
    CLI  3,5   8  2C4Ca8 
    M(18 Si8     01     P3.5本発明の永久
磁石は次のような方法で製造することができる。
1-i 4.5% or less N18% or less 1315% or lessV 9,5 Nb 12,5 Ta
10,5Cr 8.5 Ma 9,5
W 9.5Mn 8 AcL9,
5 Sb 2,5Ge 7 Sn
3.5 Zr 5.511f 5.5
CLI 3,5 8 2C4Ca8
M(18 Si8 01 P3.5 The permanent magnet of the present invention can be manufactured by the following method.

所定成分に調整し2種類のインボッ1〜を準備し、各々
のインボッ1へをショークラッシャーおJ:びブラウン
ミルにて粗粉砕し、ついでボールミルまたはジェットミ
ルなどの粉砕手段にて微粉砕して平均粒径1〜20μm
の磁石粉末を得る。1μm未満または20μmを越える
と、保磁力が低下する。
Two types of inbots 1 to 1 are prepared by adjusting the specified composition, and each inbot 1 is coarsely pulverized using a show crusher or a brown mill, and then finely pulverized using a pulverizing means such as a ball mill or jet mill. Average particle size 1-20μm
obtain magnetic powder. When it is less than 1 μm or more than 20 μm, the coercive force decreases.

1uられた2種類の磁石粉末を、例えば、上下動可能な
仕切板により2つの領域に区画された成形空間に充填し
、次いで(1切板を除去してから圧縮成形づる。成形圧
力は1〜10t /cm2の範囲がよく、j:り好まし
くは2〜7110m2の範囲である。
For example, a molding space divided into two areas by a vertically movable partition plate is filled with two types of magnetic powders of 1μ, and then compression molding is performed after removing one cut plate.The molding pressure is 1μ. -10t/cm2 is preferable, and j: more preferably ranges from 2 to 7110m2.

成形時に磁界(5KOeL′1.上)を印加することに
より、周方11化が進み、高性能化することは言うまで
もない。
It goes without saying that by applying a magnetic field (above 5 KOeL'1.) during molding, the circumference is increased to 11 and the performance is improved.

このようにして得られた成形体を、真空中あるいは、)
!元↑1ガス又は不活性ガスを使用する非酸化fり雰囲
気中にて900〜1200℃の温度にて焼結して、2種
類の1i11?−i粉末が一体的に結合された焼結体が
1昇られる。ここで、希土類元素の酸化防止のために非
酸化性雰囲気中で焼結を行なうことが必要となる。焼結
調度が900℃未満では密度が高くならないので十分な
残留磁束密度が得られず、1200℃を越えると残留磁
束密度と角形性が低下りる。上記の焼結体は適当な熱処
理(例えば500〜800℃の温度で時効処理)を施し
て永久磁石化される。
The molded product obtained in this way is placed in a vacuum or
! Two types of 1i11? -i The sintered body in which the powders are integrally bonded is raised by one. Here, it is necessary to perform sintering in a non-oxidizing atmosphere to prevent oxidation of the rare earth element. If the sintering temperature is less than 900°C, the density will not be high and sufficient residual magnetic flux density will not be obtained, and if it exceeds 1200°C, the residual magnetic flux density and squareness will decrease. The above-mentioned sintered body is subjected to appropriate heat treatment (for example, aging treatment at a temperature of 500 to 800°C) to become a permanent magnet.

(実施例) 以下発明の詳細を実施例により説明するが、本発明はこ
れに限定されるものではない。
(Example) The details of the invention will be explained below with reference to Examples, but the invention is not limited thereto.

実施例1 所定組成となるように秤量した原11をArガス中にて
溶解、鋳造して、原子比で15%Nd−8%B−残部F
eからなる組成(組成a)のインゴットと、13%Nd
−2%Dy−8%B−残部Feからなる組成(III成
り)のインゴットとを製作した。
Example 1 A raw material 11 weighed to have a predetermined composition was melted and cast in Ar gas to obtain an atomic ratio of 15% Nd, 8% B, and the balance F.
An ingot with a composition (composition a) consisting of e and 13% Nd
An ingot having a composition (composed of III) consisting of -2% Dy-8% B-the remainder Fe was produced.

上記2種類のインゴットをいずれもショークラッシャー
およびブラウンミルにて平均粒径3.0〜3.3μmに
微粉砕した。
Both of the above two types of ingots were pulverized to an average particle size of 3.0 to 3.3 μm using a show crusher and a brown mill.

得られた2種類の微粉砕粉を仕切板にてl切られたアー
クセグメンI・状の成形空間内に充填し、仕切板を除去
後、10KOeの磁場中で5t/cm2の圧力にて圧縮
成形した。
The two types of finely pulverized powder obtained were filled into the arc segment I-shaped molding space cut by a partition plate, and after removing the partition plate, it was compressed at a pressure of 5t/cm2 in a magnetic field of 10KOe. Molded.

この成形体を真空(10−4torr)中にU1100
’Cx2hの条件で焼結【ノだ。得られた焼結体に68
0’Cx211の熱処理を施してから急冷し、所定寸法
に加工して第1図に示す永久磁石(No1)を得た。
This molded body was heated to U1100 in vacuum (10-4 torr).
Sintered under the conditions of 'Cx2h. 68 to the obtained sintered body
After being subjected to a heat treatment of 0'Cx211, it was rapidly cooled and processed to a predetermined size to obtain a permanent magnet (No. 1) shown in FIG.

この永久磁石の寸法は、γ1=35mm、γ2−26m
m、θ−53°であり、高r l−I 0部となる端部
3の体積は全体の1/4である。永久磁石1の磁気特性
を測定した結果、中央部2(組成a)では(3r=11
.9KGXrl−1c = 9.5KOe T:あり、
端部3(組成a)では[3r = 11.2K G、r
 HC= 19.4KQeであった。また中央部のキコ
ーリ一点温麿(Tc )は314℃であった。
The dimensions of this permanent magnet are γ1=35mm, γ2-26m
m, θ-53°, and the volume of the end portion 3 where the high r l-I 0 part is 1/4 of the whole. As a result of measuring the magnetic properties of the permanent magnet 1, in the central part 2 (composition a) (3r=11
.. 9KGXrl-1c = 9.5KOe T: Yes,
At end 3 (composition a) [3r = 11.2K G, r
HC=19.4KQe. The temperature at one point (Tc) in the center was 314°C.

実施例2 組成aのインゴットの代りに、15%Nd−8%B−1
2%C〇−残部Feからなる組成(a′)のインゴット
を製作し、このインゴットを用いたJx外は実施例1と
同様の条件で永久磁石(NO2)を製作した。
Example 2 Instead of the ingot of composition a, 15%Nd-8%B-1
An ingot having a composition (a') consisting of 2% C0--balance Fe was produced, and a permanent magnet (NO2) was produced using this ingot under the same conditions as in Example 1 except for Jx.

この永久磁石の磁気特性を測定した結果、端部3(組成
())では実施例1と同様であり、中央部2(組成a’
)ではB r = 11.8K G 、  r HC=
 9.21(Qeであった。また中央部2のキューリ一
温度(Tc )は、419℃であり、Feの一部をC0
で置換することにより、実施例1より 105℃だけ向
上したことがわかる。
As a result of measuring the magnetic properties of this permanent magnet, it was found that the end portion 3 (composition ()) was the same as in Example 1, and the center portion 2 (composition a'
) then B r = 11.8K G , r HC =
9.21 (Qe). Also, the Curie temperature (Tc) of the central part 2 was 419°C, and part of the Fe was CO
It can be seen that the temperature was improved by 105°C compared to Example 1 by substituting with.

実施例3 表1に示す種々の組成のインボッ]へを準備し、これら
を用いて実施例1と同様の条件で、中央部2が組成1か
らなり、端部3が組成2からなる永久磁石(No3〜N
01)を製作した。表2にこれらの永久磁石の磁気特性
とキューリ一温度(Tc )を示す。
Example 3 Ingots with various compositions shown in Table 1 were prepared and used to create a permanent magnet in which the center part 2 was made of composition 1 and the end parts 3 were made of composition 2 under the same conditions as in Example 1. (No.3~N
01) was produced. Table 2 shows the magnetic properties and Curie temperature (Tc) of these permanent magnets.

(以下余白) (以下余白) 上記各実施例の永久磁石を自動車用スタータモータに組
み込み、通常の使用条件でテストをしたところ、複合型
3rフエライト磁石(高13 r部のBr = 4.0
KG1高IHc部の11−10 = 5.0KOe)と
比べて、モータ出力は1.5〜3倍に向上することが確
認できた。
(Hereinafter in the margin) (Hereinafter in the margin) When the permanent magnets of each of the above examples were incorporated into an automobile starter motor and tested under normal usage conditions, it was found that the composite 3r ferrite magnet (height 13r part Br = 4.0
It was confirmed that the motor output was improved by 1.5 to 3 times compared to the KG1 high IHc section (11-10 = 5.0 KOe).

(発明の効果) 以上に記述の如く、本発明の界磁用永久磁石は、重希土
類元素を含む希土類・ホウ素・鉄系永久磁石と、軽希土
類元素を含む希土類・ホウ素・鉄系永久磁石とが一体化
された複合永久磁石であるため、スタータモータに使用
した場合に、従来よりも大幅に高い出力を得ることがで
きる。
(Effects of the Invention) As described above, the field permanent magnet of the present invention includes a rare earth/boron/iron based permanent magnet containing a heavy rare earth element, and a rare earth/boron/iron based permanent magnet containing a light rare earth element. Since it is a composite permanent magnet with an integrated magnet, it is possible to obtain significantly higher output than conventional ones when used in a starter motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアークセグメン1〜型永久磁石の断面図である
FIG. 1 is a sectional view of an arc segment 1-type permanent magnet.

Claims (2)

【特許請求の範囲】[Claims] (1)互いに異なった磁気特性を有する、他方よりも高
い残留磁束密度を有する第1の領域と、他方よりも高い
保磁力を有する第2の領域とからなり、前記第1の領域
と前記第2の領域とが一体的に結合されている界磁用永
久磁石において、前記第1の領域が原子比で8〜30%
のR_1(但しYを含む希土類元素から、Dy、Tb、
Hoを除いた元素の内1種以上)、2〜28%のBおよ
び残部が実質的にFeからなる組成を有する焼結磁石で
あり、前記第2の領域が原子比で8〜30%のR_2(
Dy、Tb、Hoの内の少なくとも1種とR_1)、2
〜28%のBおよび残部が実質的にFeからなる組成を
有する焼結磁石であることを特徴とする界磁用永久磁石
(1) Consisting of a first region having different magnetic properties and having a higher residual magnetic flux density than the other, and a second region having a higher coercive force than the other, the first region and the first region have different magnetic properties. In the field permanent magnet in which the second region is integrally combined, the first region has an atomic ratio of 8 to 30%.
R_1 (However, from rare earth elements including Y, Dy, Tb,
A sintered magnet having a composition consisting of at least one element (excluding Ho), 2 to 28% B, and the remainder substantially Fe, and the second region has an atomic ratio of 8 to 30% B. R_2(
At least one of Dy, Tb, and Ho and R_1), 2
A permanent magnet for a field, characterized in that it is a sintered magnet having a composition of ~28% B and the remainder substantially Fe.
(2)前記焼結磁石の少なくとも一方がFeの一部を原
子比で40%以下のCuで置換した磁石であることを特
徴とする特許請求の範囲第1項記載の界磁用永久磁石。
(2) The permanent magnet for a field according to claim 1, wherein at least one of the sintered magnets is a magnet in which a portion of Fe is replaced with Cu of 40% or less in atomic ratio.
JP60177815A 1985-08-13 1985-08-13 Field permanent magnet Pending JPS6237907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177815A JPS6237907A (en) 1985-08-13 1985-08-13 Field permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177815A JPS6237907A (en) 1985-08-13 1985-08-13 Field permanent magnet

Publications (1)

Publication Number Publication Date
JPS6237907A true JPS6237907A (en) 1987-02-18

Family

ID=16037576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177815A Pending JPS6237907A (en) 1985-08-13 1985-08-13 Field permanent magnet

Country Status (1)

Country Link
JP (1) JPS6237907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504446A (en) * 2016-12-23 2020-02-06 アーベーベー・シュバイツ・アーゲー Sintered magnet, electric equipment, use of sintered magnet for electric equipment, and method of manufacturing sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504446A (en) * 2016-12-23 2020-02-06 アーベーベー・シュバイツ・アーゲー Sintered magnet, electric equipment, use of sintered magnet for electric equipment, and method of manufacturing sintered magnet
US11315711B2 (en) 2016-12-23 2022-04-26 Abb Schweiz Ag Sintered magnet, electrical machine, use of the sintered magnet for an electrical machine and manufacturing method of a sintered magnet

Similar Documents

Publication Publication Date Title
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
DE69318147D1 (en) R-Fe-B permanent magnet materials and their manufacturing processes
WO2012043139A1 (en) Alloy material for r-t-b system rare earth permanent magnet, method for producing r-t-b system rare earth permanent magnet, and motor
JP2006100847A (en) R-t-b based rare earth permanent magnet
JPS61263201A (en) Manufacture of generator
JP3296507B2 (en) Rare earth permanent magnet
JP2000082610A (en) High electric resitivity rare earth permanent magnet and its manufacture
JP2004296848A (en) R-t-b system rare earth permanent magnet
JP3622652B2 (en) Anisotropic bulk exchange spring magnet and manufacturing method thereof
JPS6237907A (en) Field permanent magnet
JP2747236B2 (en) Rare earth iron permanent magnet
JP2011210838A (en) Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
JPH10303008A (en) R-ef-b based rare earth sintered magnet and its manufacturing method, and superconducting magnetic bearing device using it
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JP3623564B2 (en) Anisotropic bonded magnet
JP3652751B2 (en) Anisotropic bonded magnet
JP4150983B2 (en) Permanent magnet having gradient function of electrical resistivity and manufacturing method thereof
JP2000235909A (en) Rare earth/iron/boron magnet and manufacture thereof
JP3995677B2 (en) Method for producing RTB-based rare earth permanent magnet
JP2000323310A (en) Rare-earth containing permanent magnet
JP2868062B2 (en) Manufacturing method of permanent magnet
JP2825449B2 (en) Manufacturing method of permanent magnet
JP2577373B2 (en) Sintered permanent magnet
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP3247460B2 (en) Production method of raw material powder for rare earth magnet