JPS6237537B2 - - Google Patents

Info

Publication number
JPS6237537B2
JPS6237537B2 JP53040979A JP4097978A JPS6237537B2 JP S6237537 B2 JPS6237537 B2 JP S6237537B2 JP 53040979 A JP53040979 A JP 53040979A JP 4097978 A JP4097978 A JP 4097978A JP S6237537 B2 JPS6237537 B2 JP S6237537B2
Authority
JP
Japan
Prior art keywords
region
transistor
conductivity type
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53040979A
Other languages
Japanese (ja)
Other versions
JPS54132179A (en
Inventor
Moichi Matsukuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4097978A priority Critical patent/JPS54132179A/en
Publication of JPS54132179A publication Critical patent/JPS54132179A/en
Publication of JPS6237537B2 publication Critical patent/JPS6237537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0927Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は集積回路として製造される相補形絶縁
ゲート電界効果装置に関するものである。電子卓
上計算器、時計、マイクロコンピユーター等の低
電力、高速度の装置に相補形回路は広く使用され
て来た。従来の構造ではP領域中にNチヤネルト
ランジスタ、N領域中にPチヤネルのトランジス
タを形成している。この場合Nチヤネル及びPチ
ヤネルのトランジスタの間の領域において、P領
域にP+型接点を形成し、N型領域にN型接点を
形成している。このような構造では高密度の回路
を構成した場合、素子間隔が狭くなり、4領域に
よるPNPN構造が形成され、FET回路としての通
常の動作条件の下で、この構造はSCRとして作
用し、条件によつてはラツチ状態になる。その結
果FETは誤動作し、回路が使用不能になる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to complementary insulated gate field effect devices fabricated as integrated circuits. Complementary circuits have been widely used in low power, high speed devices such as electronic desk calculators, clocks, and microcomputers. In the conventional structure, an N-channel transistor is formed in the P region, and a P-channel transistor is formed in the N region. In this case, in the region between the N-channel and P-channel transistors, a P + -type contact is formed in the P region and an N-type contact is formed in the N-type region. In such a structure, when a high-density circuit is configured, the element spacing becomes narrow and a PNPN structure is formed by four regions. Under normal operating conditions as a FET circuit, this structure acts as an SCR, and under the conditions In some cases, it becomes latched. As a result, the FET malfunctions and the circuit becomes unusable.

従来、この問題を避ける為、寄生回路が無視で
きる程度、十分にFETの間隔をとるようにして
いる。従つて、一つの半導体基板に高密度のこの
様な回路を集積化することは困難であつた。
Conventionally, to avoid this problem, the FETs are spaced far enough apart that parasitic circuits can be ignored. Therefore, it has been difficult to integrate such high-density circuits on one semiconductor substrate.

第1図に示す相補形インバーター回路は従来は
第2図に示す如く実現されていた。第2図におい
て、N型半導体基板1にイオン注入、熱拡散等に
よつてP型領域(P−well)2を形成し、その領
域2にN+のソース、ドレイン領域3,4を形成
し、Nチヤネル・トランジスタQ1が形成され
る。このデバイス領域を囲んでP+拡散領域5,
5′が形成され、領域5は寄生電流を防止するた
めのガードリングとして働くと共に領域5′はP
−well2への接点領域としても働く。なお説明の
便宜上及び図面を簡単化する為に金属化層及び絶
縁層は図示していない。
The complementary inverter circuit shown in FIG. 1 has conventionally been realized as shown in FIG. In FIG. 2, a P-type region (P-well) 2 is formed in an N-type semiconductor substrate 1 by ion implantation, thermal diffusion, etc., and N + source and drain regions 3 and 4 are formed in this region 2. , an N-channel transistor Q1 is formed. Surrounding this device area is a P + diffusion region 5,
5' is formed, region 5 acts as a guard ring to prevent parasitic current, and region 5' is P
- Also works as a contact area to well2. Note that the metallized layer and the insulating layer are not shown for convenience of explanation and to simplify the drawing.

又、Pチヤネル・トランジスタQ2は、N型基
板1上にP+のソース及びドレイン領域6,7を
備えている。N+領域8はPチヤネル・トランジ
スタのガードリングとして及びN型基板1への接
点として働く。相補形FETとして動作させる為
には第1図の回路に従つてQ1のゲートG1とQ2
ゲートG2とは共通に接続され、バイアスされて
いる。ガードリング領域5は浮遊状態でもよく、
又は基板接点として使用する時には適当なバイア
ス電位に接続してもよい。Pチヤネル・トランジ
スタQ2においては、ソース領域6はドレイン領
域7に対しVDDに接続され、N+領域8は基板領
域1に対する接点として働く。Nチヤネル・トラ
ンジスターにおいては、ソース領域3が接地され
ている。P+領域5′はP−well領域2への接点と
して働く。これらの領域間の相互配線は表面金属
化領域からなされる。
The P-channel transistor Q 2 also includes P + source and drain regions 6 and 7 on the N-type substrate 1 . The N + region 8 serves as a guard ring for the P-channel transistor and as a contact to the N-type substrate 1. To operate as a complementary FET, the gate G 1 of Q 1 and the gate G 2 of Q 2 are commonly connected and biased according to the circuit of FIG. The guard ring region 5 may be in a floating state,
Alternatively, when used as a substrate contact, it may be connected to an appropriate bias potential. In the P-channel transistor Q 2 , the source region 6 is connected to V DD to the drain region 7 and the N + region 8 serves as a contact to the substrate region 1 . In an N-channel transistor, the source region 3 is grounded. P + region 5' serves as a contact to P-well region 2. Interconnections between these regions are made from surface metallized regions.

第1図に示す従来の素子は寄生電流による問題
が生じない様にする為に、トランジスタQ1,Q2
を十分分離して配置してある。たとえば、P+
域7とP−well領域2の間のスペース、及びN領
域1とN+領域4との間のスペースは製造技術上
可能な間隔よりも広くとられている。しかしなが
ら高不純物濃度のP+及びN+領域間のスペースが
不適当な場合には第3図に示す如き回路と等価的
になる。すなわち、高不純物濃度領域6,8,
5′及び3が4層のPNPN構造を形成し、SCRと
して動作する。
The conventional device shown in FIG. 1 uses transistors Q 1 and Q 2 to avoid problems caused by parasitic currents.
are placed sufficiently separated. For example, the space between the P + region 7 and the P-well region 2 and the space between the N region 1 and the N + region 4 are set wider than possible based on manufacturing technology. However, if the spacing between the high impurity concentration P + and N + regions is inadequate, the circuit becomes equivalent to the one shown in FIG. That is, high impurity concentration regions 6, 8,
5' and 3 form a four-layer PNPN structure and operate as an SCR.

ここでは第2図に示した抵抗RN及びRPが第2
図に示すSCRの等価回路に現われる。P領域6
がSCRの陽極となり、N領域3が陰極となる。
N領域8及びP領域5は中間層である。2トラン
ジスター構造として見ると、領域6,8及び5′
はPNPトランジスタのエミツタ、ベース、コレク
タをそれぞれ構成し、領域8,5′及び3は、
NPNトランジスタのコレクタ、ベース、エミツ
タをそれぞれ構成する。電位VDDはP領域6に直
接に接続され、また抵抗RNを介して、N領域8
に接続されている。
Here, the resistors RN and RP shown in Figure 2 are
This appears in the SCR equivalent circuit shown in the figure. P area 6
becomes the anode of the SCR, and the N region 3 becomes the cathode.
N region 8 and P region 5 are intermediate layers. Viewed as a two-transistor structure, regions 6, 8 and 5'
constitute the emitter, base, and collector of the PNP transistor, respectively, and regions 8, 5', and 3 are
Configure the collector, base, and emitter of the NPN transistor. Potential V DD is directly connected to P region 6 and also connected to N region 8 via resistor RN.
It is connected to the.

接地電位はN領域3に直接に接続され、また抵
抗RPを介してP領域5′に接続されている。この
状態では、陽極接合及び陰極接合が抵抗RN及び
RPによつてバイアスされているので、ベースに
対応した領域5′に過渡的パルスが加えられる
と、NPNトランジスタがタン・オンし、その電
流によつて、PNPトランジスタのベースに対応す
る領域8がバイアスされる。それによりPNPトラ
ンジスタが導通し、その電流がNPNトランジス
タのベースとしての領域5′をバイアスする。つ
まり、一方のトランジスタが他方のトランジスタ
をそれぞれ導通させるので、この回路のループ利
得が1よりも大きくなると、SCR回路がラツチ
状態になる。
The ground potential is connected directly to N region 3 and also to P region 5' via resistor RP. In this state, the anodic and cathodic junctions are connected to the resistance RN and
Since it is biased by RP, a transient pulse applied to region 5' corresponding to the base will turn on the NPN transistor and the current will cause region 8 corresponding to the base of the PNP transistor to turn on. Be biased. This causes the PNP transistor to conduct and the current biases region 5' as the base of the NPN transistor. That is, when the loop gain of the circuit is greater than unity, the SCR circuit becomes latched because one transistor makes the other transistor conductive.

つまり βNPN・βPNP≧1 (βNPN、βPNPはそれ
ぞれNPNトランジスタおよびPNPトランジス
タの電流増巾率) であるとき、一方のトランジスタが他方をそれぞ
れ飽和させ、全部の接合が順バイアスとなり、
SCRの合計電圧降下はPN接合の電圧降下プラス
飽和トランジスタの端子特性にほぼ等しくなり、
陽極電流は外部回路によつてのみ制限されるよう
になる。
In other words, when βNPN・βPNP≧1 (βNPN and βPNP are the current amplification factors of the NPN transistor and PNP transistor, respectively), one transistor saturates the other, and all junctions become forward biased.
The total voltage drop across the SCR is approximately equal to the voltage drop across the PN junction plus the terminal characteristics of the saturated transistor,
The anode current becomes limited only by the external circuit.

従来は、この様なSCR作用を防止する為に、
FET Q2のPチヤネル領域とFET Q1のNチヤネ
ル領域との間隔を大きくして、寄生電流が無視で
きる様にしていたが、これでは回路密度、小型化
が犠牲になる。
Conventionally, in order to prevent this kind of SCR effect,
The distance between the P channel region of FET Q 2 and the N channel region of FET Q 1 was made large so that parasitic current could be ignored, but this sacrificed circuit density and miniaturization.

本発明の目的は、このSCR作用の問題を解決
し、且つ、従来の製造技術で可能な限り、回路密
度を高めることができる。半導体装置を提供する
ことにある。
The object of the present invention is to solve this problem of SCR operation and to be able to increase the circuit density as much as possible with conventional manufacturing techniques. The purpose of the present invention is to provide semiconductor devices.

本発明による相補型絶縁ゲート電界効果半導体
装置は、同一半導体基板に一導電形の絶縁ゲート
電界効果トランジスタ及び逆導電形の絶縁ゲート
電界効果トランジスタを形成してなる相補形半導
体装置において、この両トランジスターの間にお
いて、一導電形トランジスターの基板領域内に一
導電形のガード領域を設け、逆導電形トランジス
タのソース領域と同じバイアス電位に接続した、
又は、両トランジスタの間において、一導電形ト
ランジスタの近くに形成された一導電形ガード領
域を逆導電形トランジスタの基板領域に接し、基
板領域と同じ電位に接続したことを特徴とする。
A complementary insulated gate field effect semiconductor device according to the present invention is a complementary semiconductor device in which an insulated gate field effect transistor of one conductivity type and an insulated gate field effect transistor of an opposite conductivity type are formed on the same semiconductor substrate. A guard region of one conductivity type is provided in the substrate region of the transistor of one conductivity type between the transistors, and the guard region is connected to the same bias potential as the source region of the transistor of the opposite conductivity type.
Alternatively, between the two transistors, a guard region of one conductivity type formed near the transistor of one conductivity type is in contact with the substrate region of the transistor of the opposite conductivity type, and is connected to the same potential as the substrate region.

次に本発明の一実施例を第4図および第5図を
参照して説明する。
Next, one embodiment of the present invention will be described with reference to FIGS. 4 and 5.

第4図において、まずN型基板11にイオン注
入熱拡散等によつて、P型領域(P−well)12
を形成し、その領域にN+のソース、ドレイン領
域13,14を成し、Nチヤネルトランジスタ
Q1が形成される。このデバイス領域12を囲ん
でN+拡散領域15が、N型基板11に接するよ
うに形成され、その領域内に寄生電流を防止する
ためのガードリングとして、又は、P−well12
への接点領域としても働く拡散領域15′を設け
る。又、Pチヤネル・トランジスタにおいては、
N型基板上11にP+のソース及びドレイン領域
16,17を備える。N+領域18はPチヤネ
ル・トランジスターのガードリング及びN型基板
11への接点として働く。ここで第1図に示した
如き相補形FETとして動作させる為に、Nチヤ
ンネルトランジスタQ1のゲートG1とPチヤンネ
ルトランジスタQ2のゲートG2とは共通に接続さ
れ入力INとは共通に接続され入力INとされる。
NチヤンネルトランジスタQ1のドレイン14と
PチヤンネルトランジスタQ2のドレイン17は
共通に接続され出力OUTとされる。P+領域1
5′およびトランジスタQ1のソースは共通に接地
電位に接続され、N+領域15、トランジスタQ2
のソース16およびN+領域18とは共通に電源
DDに接続されている。
In FIG. 4, first, a P-type region (P-well) 12 is formed by ion implantation into an N-type substrate 11 by thermal diffusion, etc.
N + source and drain regions 13 and 14 are formed in these regions, and an N channel transistor is formed.
Q 1 is formed. An N + diffusion region 15 is formed surrounding this device region 12 so as to be in contact with the N type substrate 11, and is used as a guard ring to prevent parasitic current in the region, or as a P-well 12.
A diffusion region 15' is provided, which also serves as a contact region to. Also, in the P channel transistor,
P + source and drain regions 16 and 17 are provided on an N-type substrate 11 . N + region 18 serves as a guard ring for the P-channel transistor and as a contact to N-type substrate 11. Here, in order to operate as a complementary FET as shown in FIG. 1, the gate G1 of the N-channel transistor Q1 and the gate G2 of the P-channel transistor Q2 are connected in common, and the input I It is connected and used as input I N.
The drain 14 of the N-channel transistor Q 1 and the drain 17 of the P-channel transistor Q 2 are commonly connected and output OUT. P + area 1
5' and the source of transistor Q 1 are commonly connected to ground potential, N + region 15, transistor Q 2
The source 16 and the N + region 18 are commonly connected to the power supply VDD .

又、基板11もその裏面部から電源VDDにバイ
アスされている。かくすることにより、逆導電型
(P)型領域12はその表面からによつてのみVS
(接地)電位をとることができないため、寄生
PNPトランジスタのコレクタ電流の一部を吸収
し、又N型基板11は表面およびその裏面からも
電源VDDにバイアスされるためにP+領域16、
基板11、特にN+領域18との抵抗RN′を小さく
してNPNトランジスタのターンオン動作を継続
しないレベルに落す。
Further, the substrate 11 is also biased to the power supply V DD from its back side. By doing this, the opposite conductivity type (P) type region 12 can be exposed to V S only from its surface.
Since it cannot take S (ground) potential, parasitic
The P + region 16 absorbs a part of the collector current of the PNP transistor, and since the N-type substrate 11 is biased to the power supply V DD from both the front and back sides of the N-type substrate 11,
The resistance RN' with respect to the substrate 11, particularly the N + region 18, is reduced to a level that does not continue the turn-on operation of the NPN transistor.

これを、第5図の等価回路を用いて説明する
と、P領域16が陽極をN領域13が陰極を形成
する。領域18,15′は中間層である。領域1
6,18及び15′がPNPトランジスタのエミツ
タ、ベース及びコレクタを形成し、又、領域1
8,15′及び13がNPNトランジスタのエミツ
タ、ベース及びコレクタを形成する。N型のガー
ド領域15はN型基板11及び正電位VDDに接続
されている。したがつて、動作状態においてベー
ス15′に過渡的なパルスが印加され、NPNトラ
ンジスタがターン・オンし、この時ベース15′
からコレクタ13へのコレクタ電流の一部はN領
域15によつて集められ、VDDへ流れる。この為
に、PNPトランジスタのベース18のベース電流
が小さくなり、ターン・オンする傾向が小さくな
り、飽和しなくなる。また、RN′がN型基板の上
下より正電位VDDに接続されている為に非常に小
さく、NPNトランジスタはターン・オンの傾向
が更に小さくなる。
To explain this using the equivalent circuit shown in FIG. 5, the P region 16 forms an anode and the N region 13 forms a cathode. Regions 18, 15' are intermediate layers. Area 1
6, 18 and 15' form the emitter, base and collector of the PNP transistor, and region 1
8, 15' and 13 form the emitter, base and collector of the NPN transistor. N type guard region 15 is connected to N type substrate 11 and positive potential VDD . Therefore, in the operating state, a transient pulse is applied to the base 15', turning on the NPN transistor, at which time the base 15'
A portion of the collector current from to collector 13 is collected by N region 15 and flows to VDD . This reduces the base current in the base 18 of the PNP transistor, reducing its tendency to turn on and preventing saturation. Also, since RN' is connected to the positive potential V DD from above and below the N-type substrate, it is very small, and the NPN transistor has even less tendency to turn on.

従つて、SCR作用によるラツチ現象が小さく
なり、チツプ面積を大きくすることなく、これら
の現象に対処できる。
Therefore, the latch phenomenon caused by the SCR effect is reduced, and these phenomena can be dealt with without increasing the chip area.

つまり、Pチヤネル領域は基板の表裏よりVDD
に接続し、抵抗RN′を小さくし、寄生NPNトラン
ジスターのコレクタ電流の一部を吸収して、ルー
プ利得を1より小さくすることにある。この結
果、本発明の大きな効果としては、隣接する拡散
領域間のスペースを減少させることができること
である。
In other words, the P channel region has V DD from the front and back sides of the board.
The purpose is to reduce the resistance RN' to absorb a part of the collector current of the parasitic NPN transistor and make the loop gain smaller than 1. As a result, a major advantage of the present invention is that the space between adjacent diffusion regions can be reduced.

以上本発明をN型の基板を用いた場合について
説明したが、本発明はP型基板を用いた場合にも
同様に適用しうるものである。また各FETの回
路接続は何らインバータに制限されるものではな
い。
Although the present invention has been described above with respect to the case where an N-type substrate is used, the present invention can be similarly applied to the case where a P-type substrate is used. Further, the circuit connection of each FET is not limited to an inverter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、相補形絶縁ゲート電界効果トランジ
スターによるインバーター回路を示す図である。
第2図は、従来の相補形絶縁ゲート電界効果半導
体装置の断面構造を示す図、第3図は第1図の構
造から生じるSCR構造の等価回路を示す図、第
4図は本発明による相補形絶縁ゲート電界効果半
導体装置の断面構造を示したものである。第5図
は第3図の構造から生じるSCR構造の等価回路
を示した図である。 1,11……N型半導体基板、2,12……P
−well、3,13……N+ソース、4,14……
N+ドレイン、5,15′……P+ガードリング、1
5……N+ガードリング、6,16……P+ソー
ス、7,17……P+ドレイン、8,18……N+
ガードリング。
FIG. 1 is a diagram showing an inverter circuit using complementary insulated gate field effect transistors.
FIG. 2 is a diagram showing a cross-sectional structure of a conventional complementary insulated gate field effect semiconductor device, FIG. 3 is a diagram showing an equivalent circuit of an SCR structure resulting from the structure of FIG. 1, and FIG. 4 is a diagram showing a complementary insulated gate field effect semiconductor device according to the present invention. 1 shows a cross-sectional structure of an insulated gate field effect semiconductor device. FIG. 5 is a diagram showing an equivalent circuit of the SCR structure resulting from the structure of FIG. 3. 1, 11...N-type semiconductor substrate, 2, 12...P
-well, 3, 13...N + source, 4, 14...
N + drain, 5,15'...P + guard ring, 1
5...N + guard ring, 6,16...P + source, 7,17...P + drain, 8,18...N +
Guard ring.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板に逆導電型ウエル領域を
設け、該ウエル領域内に一導電型の絶縁ゲート電
界効果トランジスタを前記基板に逆導電型の絶縁
ゲート電界効果トランジスタをそれぞれ形成して
なる相補型半導体装置において、前記逆導電型ウ
エル領域表面と前記一導電型半導体基板表面とに
またがり前記一導電型半導体基板より高不純物濃
度の一導電型のガード領域を設け、該ガード領域
を前記逆導電型トランジスタのソース・ドレイン
の一方および前記逆導電型トランジスタの基板領
域の少なくとも一方と同じ電位に接続したことを
特徴とする相補型絶縁ゲート電界効果半導体装
置。
1 Complementary type in which an opposite conductivity type well region is provided in a semiconductor substrate of one conductivity type, an insulated gate field effect transistor of one conductivity type is formed in the well region, and an insulated gate field effect transistor of the opposite conductivity type is formed in the substrate. In the semiconductor device, a guard region of one conductivity type with higher impurity concentration than the one conductivity type semiconductor substrate is provided spanning the surface of the well region of the opposite conductivity type and the surface of the semiconductor substrate of the one conductivity type, and the guard region is of the opposite conductivity type. A complementary insulated gate field effect semiconductor device, characterized in that it is connected to the same potential as one of the source and drain of the transistor and at least one of the substrate region of the opposite conductivity type transistor.
JP4097978A 1978-04-06 1978-04-06 Complementary insulating gate field effect semiconductor device Granted JPS54132179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4097978A JPS54132179A (en) 1978-04-06 1978-04-06 Complementary insulating gate field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4097978A JPS54132179A (en) 1978-04-06 1978-04-06 Complementary insulating gate field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS54132179A JPS54132179A (en) 1979-10-13
JPS6237537B2 true JPS6237537B2 (en) 1987-08-13

Family

ID=12595549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4097978A Granted JPS54132179A (en) 1978-04-06 1978-04-06 Complementary insulating gate field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS54132179A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59501766A (en) * 1982-09-20 1984-10-18 セミ・プロセシ−ズ・インコ−ポレ−テッド CMOS integrated circuit with guard band for latch-up protection
JPS632370A (en) * 1986-06-23 1988-01-07 Nissan Motor Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS54132179A (en) 1979-10-13

Similar Documents

Publication Publication Date Title
US4044373A (en) IGFET with gate protection diode and antiparasitic isolation means
KR890004472B1 (en) Cmos ic circuit
US3955210A (en) Elimination of SCR structure
JPS604594B2 (en) Integrated linear amplifier circuit
US5604655A (en) Semiconductor protection circuit and semiconductor protection device
JPH0318347B2 (en)
KR100226508B1 (en) Semiconductor device having pull-up or pull-down resistor
JPS6237537B2 (en)
JPH044755B2 (en)
JP3521321B2 (en) Semiconductor device
JP2004207702A (en) Power transistor and semiconductor integrated circuit using it
WO1981000924A1 (en) Current source having saturation protection
JPS6130431B2 (en)
JPS58186947A (en) Semiconductor device
JP2601664B2 (en) Insulated gate field effect semiconductor device
JPS60223154A (en) Semiconductor device
JPS5819137B2 (en) Complementary MOS transistor
JPS63252464A (en) Semiconductor device
JPH0144023B2 (en)
JP2553600B2 (en) BiMOS semiconductor integrated circuit
JPS60123053A (en) Semiconductor device
JPH0787240B2 (en) Semiconductor integrated circuit
JP3057698B2 (en) Semiconductor device
KR890005033Y1 (en) Cmos accumulation of opposite electric current output circuit
JPH0351103B2 (en)