JPS6235994B2 - - Google Patents

Info

Publication number
JPS6235994B2
JPS6235994B2 JP56190090A JP19009081A JPS6235994B2 JP S6235994 B2 JPS6235994 B2 JP S6235994B2 JP 56190090 A JP56190090 A JP 56190090A JP 19009081 A JP19009081 A JP 19009081A JP S6235994 B2 JPS6235994 B2 JP S6235994B2
Authority
JP
Japan
Prior art keywords
weight
sintered body
powder
silicon nitride
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56190090A
Other languages
Japanese (ja)
Other versions
JPS5891079A (en
Inventor
Tatsuo Maeno
Koichi Yamaguchi
Eiji Umeeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP56190090A priority Critical patent/JPS5891079A/en
Publication of JPS5891079A publication Critical patent/JPS5891079A/en
Publication of JPS6235994B2 publication Critical patent/JPS6235994B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は窒化珪素、窒化珪素固溶体(以下、こ
れらをSi3N4と称す)を主体とする焼結体中に硬
質粒子を分散させ、靭性、耐摩耗性の増大を目的
とした高強度の焼結体とその製造方法に関するも
のである。 〔従来技術及びその問題点〕 近年、鋼、鋳鉄などを切削する業界において、
毎分300m以上の高速切削加工が一般化しつつあ
る。 かかる高速切削領域では、酸化アルミニウム
(Al2O3)系焼結体よりなる白色ツールと、Al2O3
−TiC(炭化チタン)複合系焼結体よりなる黒色
ツールを代表的な切削工具としてあげることがで
きる。 これら切削工具はともに強靭性高耐摩耗性を備
えた高強度の焼結体で構成されていることが必要
である。このうち、酸化アルミニウム(以下、
Al2O3と称す)焼結体は耐酸化性にすぐれ、融鉄
との反応性も低く、鋼や鋳鉄に対してすぐれた切
削特性を示す切削工具材料である。けれどもこの
Al2O3焼結体(アルミナセラミツク)はセラミツ
ク特有の脆さとしての耐チツピング性、耐欠損性
に難点があるため、従来からこれらを改善するこ
とが多く試みられてきた。 そのうち、Al2O3にTiCを20〜40重量%添加し
た、いわゆる黒色ツールはAl2O3系切削工具の欠
点がある程度改善されたものとして、現在セラミ
ツク切削工具のうちで最も多く使用されている。
しかしながら、この黒色ツールにしても、フライ
ス切削のような断続切削に対してはやはり不充分
であり、しかも冷水切削が可能であるほどの耐熱
衝撃性を有するものも見当らない。このような現
状に鑑みて、Al2O3系切削工具よりも、さらに耐
熱衝撃性がすぐれたSi3N4系の焼結体でもつて切
削工具を構成することが検討されてきた。しかし
ながら、このSi3N4系焼結体は大きな靭性を有す
る反面、融鉄との反応性がAl2O3系焼結体にくら
べてきわめて大きく、そのため鋼、鋳鉄の高速切
削に用いる切削工具として場合、工具と被切削材
境界での高温度により、局部的に融解した被切削
材表面と反応して、Al2O3系切削工具の3〜5倍
もの摩耗量を示すため、従来からSi3N4系焼結体
はとりわけ切削工具材として実用に供せられてい
なかつた。 〔問題点を解決するための手段〕 本発明は叙上の諸事情に鑑みて開発されたもの
で、窒化珪素質焼結体の靭性、耐熱衝撃性等の優
れた特性とアルミナ焼結体の融鉄との非反応性、
耐摩耗性等の特性とを組み合わせるべく研究の結
果、焼成時における窒化珪素とアルミナとの反応
を抑制してアルミナを硬質粒子として窒化珪素結
晶粒子からは独立して存在させることにより改善
が図られることを知見した。 以下、本発明を詳述する。 本発明によれば窒化珪素を主体とする焼結体中
に酸化アルミニウム(アルミナ)結晶粒子を組織
上窒化珪素結晶粒子等、他の組織とは独立して存
在させることが重要である。 従来から、アルミナは窒化珪素に対しては焼結
助剤として優れることが知られている。通常、窒
化珪素粉末とアルミナ粉末との混合物あるいはそ
の成形体を1500℃以上の高温雰囲気に曝すとアル
ミナは窒化珪素中に固溶し、Si−Al−O−N等の
反応物が生成されるか、又は窒化珪素粉末表面に
不可避的に存在するSiO2と反応し窒化珪素結晶
粒子間にアルミノシリケートガラスが生成され
る。 従来アルミナを焼結助剤として用いる場合には
添加したアルミナの全てをアルミナとして残存さ
せることなくSi−Al−O−N或いはアルミノシリ
ケートガラス等の反応物として存在させることを
その主旨とするものである。 本発明はこのような考え方とは異なり、添加し
たアルミナ粉末の窒化珪素或いはシリカとの反応
を最小限に抑え、アルミナ粉末をそのままの状態
で積極的に残存させることを主旨とするものであ
る。 具体的にその製造方法を述べると原料粉末とし
て酸化アルミニウム(アルミナ)が30重量%を越
え、80重量%以下、窒化珪素粉末が20重量%、70
重量%未満の割合で配合された混合粉末を所定形
状に成形した後、焼成を行う。焼成は1550乃至
1800℃の温度で窒素、アルゴン等の非酸化性雰囲
気で例えばホツトプレス焼成、非加圧焼成、ガス
加圧焼成を行う。 焼成を進行させるに従つて、添加したアルミナ
粉末粒子の表面から窒化珪素或いはSiO2との反
応が進行するが、本発明はその反応の進行が完了
する前に焼成を中止することにより未反応のアル
ミナを硬質粒子として残存させようとするもので
ある。また、このアルミナの残存量は焼成温度と
焼成時間との兼ね合いにより決定される。即ち、
焼成温度が高い場合には焼成時間を短く設定する
ことにより、アルミナを残存させることができ
る。好ましい焼成時間はその残存量が所定量に成
るように5乃至180分間の間で行う。焼成時間が
5分未満では焼結が不十分で強度が低下し、180
分間を超えるとアルミナが全て反応し、残部アル
ミナが形成されない。 また、原料粉末の酸化アルミニウムの添加量を
前述した範囲に限定した理由は、酸化アルミニウ
ムの量が30重量%以下では窒化珪素或いはシリカ
との反応により硬質粒子としてアルミナを焼結体
中に10乃至50重量%の割合で存在させるのが困難
であり、80重量%を超えると窒化珪素の特性であ
る耐熱衝撃性、高強度を得ることができないため
である。 このようにして得られた焼結体はアルミニウム
を酸化物換算で30重量%を越え、80重量%以下、
珪素を窒化物換算で20重量%、70重量%未満の割
合で含有するものであり、そのうちアルミナとし
ての残存量は切削工具としての性能の点から後述
する実施例からも明らかなように全体量に対し10
乃至50重量%であることが望ましい。 即ち、残存アルミナの量が10重量%を下回ると
本発明の効果が不十分で摩耗量が多く、強度、高
度が低い。一方50重量%を超えると耐摩耗性は向
上するが強度が低下する。 このアルミナは硬質粒子として窒化珪素結晶粒
子等他の組織とは独立した粒子として存在するも
のであつて、その粒径に関しては原料粉末の粒径
に依存するものであり、通常使用される原料粉末
の粒径であれば特にその大きさは問わないもので
ある。 さらに本発明によれば、焼結体の強度を向上さ
せることを目的として他の成分を添加することが
望ましい。用いられる他の成分としてはAlN、
MgOの他、Y2O3等の希土類酸化物等を用いるこ
とができる。これらの好ましい配合量はAlNが1
乃至20重量%、MgOが1乃至8重量%、希土類
酸化物が1乃至8重量%である。これらの添加物
はいずれもその配合量を超えると強度が劣化する
傾向にある。 以下、本発明を次の例で説明する。 実施例 原料粉末として平均粒径0.65μのSi3N4粉末、
同じく2.4μのα−Al2O3粉末を用い第1表に示し
た組成比に調合し、200c.c.のメタノール、650gの
Si3N4製ボールと共に500c.c.ポリ容器に封入して24
時間振動ミルで混合粉砕した。次に乾燥造粒して
得られた粉末を黒鉛型に充填し、1650℃、350
Kg/cm2で20分間のホツトプレス焼成を行つてサン
プルA〜Eを作製した。各組成比ごとのサンプル
A〜Eにおけるα−Al2O3の残存量、曲げ強度、
硬度および切削に供した場合の摩耗量を測定し第
1表に示した。 なお、焼結体中のAl2O3の残存量は、α−
Al2O3としてX線回析法により分析した。 また、切削試験を行つた条件はSNGN432(日
本超工具協会規格)チヤンフアー0.2のテストサ
ンプルを使用し被切削材として鋳鉄(FC25)、切
削条件を速度300m/分、送り0.25mm、切込み0.2
mmとし1分切削を行つた後、フランク部の摩耗量
を測定した。また、曲げ強度はサンプル形状3×
3×15mmスパン10mmのものを3点曲げで測定した
ものである。
[Industrial Application Field] The present invention disperses hard particles in a sintered body mainly composed of silicon nitride or silicon nitride solid solution (hereinafter referred to as Si 3 N 4 ) to increase toughness and wear resistance. The present invention relates to a high-strength sintered body and a method for manufacturing the same. [Prior art and its problems] In recent years, in the industry that cuts steel, cast iron, etc.
High-speed cutting at speeds of 300 m/min or more is becoming commonplace. In such a high-speed cutting region, a white tool made of an aluminum oxide (Al 2 O 3 )-based sintered body and an Al 2 O 3
-A typical cutting tool is a black tool made of TiC (titanium carbide) composite sintered body. Both of these cutting tools must be made of high-strength sintered bodies that are tough and have high wear resistance. Of these, aluminum oxide (hereinafter referred to as
The sintered body (referred to as Al 2 O 3 ) has excellent oxidation resistance, low reactivity with molten iron, and is a cutting tool material that exhibits excellent cutting properties for steel and cast iron. However, this
Al 2 O 3 sintered bodies (alumina ceramics) have drawbacks in chipping resistance and chipping resistance due to the brittleness peculiar to ceramics, and many attempts have been made to improve these. Among them, the so-called black tool, which is made by adding 20 to 40% by weight of TiC to Al 2 O 3 , is the most commonly used ceramic cutting tool at present, as it has improved to some extent the drawbacks of Al 2 O 3 -based cutting tools. There is.
However, even this black tool is still insufficient for interrupted cutting such as milling, and furthermore, no tool has been found that has sufficient thermal shock resistance to enable cold water cutting. In view of the current situation, consideration has been given to constructing cutting tools using Si 3 N 4 based sintered bodies, which have even better thermal shock resistance than Al 2 O 3 based cutting tools. However, although this Si 3 N 4 -based sintered body has great toughness, its reactivity with molten iron is extremely high compared to Al 2 O 3 -based sintered body, so it is not suitable for cutting tools used for high-speed cutting of steel and cast iron. In this case, due to the high temperature at the boundary between the tool and the workpiece, it reacts with the locally melted surface of the workpiece, resulting in wear that is 3 to 5 times that of Al 2 O 3 based cutting tools. Si 3 N 4 based sintered bodies have not been put to practical use especially as cutting tool materials. [Means for solving the problems] The present invention was developed in view of the above-mentioned circumstances, and combines the excellent properties such as toughness and thermal shock resistance of silicon nitride sintered body with the alumina sintered body. Non-reactivity with molten iron,
As a result of research to combine properties such as wear resistance, improvements were made by suppressing the reaction between silicon nitride and alumina during firing and allowing alumina to exist as hard particles independently from silicon nitride crystal particles. I found out that. The present invention will be explained in detail below. According to the present invention, it is important that aluminum oxide (alumina) crystal particles are present in the sintered body mainly composed of silicon nitride, independently of other structures such as silicon nitride crystal particles. It has been known that alumina is an excellent sintering aid for silicon nitride. Normally, when a mixture of silicon nitride powder and alumina powder or a compact thereof is exposed to a high temperature atmosphere of 1500℃ or higher, alumina dissolves in silicon nitride and reactants such as Si-Al-O-N are generated. Alternatively, aluminosilicate glass is generated between silicon nitride crystal particles by reacting with SiO 2 that inevitably exists on the surface of the silicon nitride powder. Conventionally, when alumina is used as a sintering aid, the main idea is to allow all of the added alumina to exist as a reactant such as Si-Al-O-N or aluminosilicate glass without remaining as alumina. be. The present invention differs from such a concept, and is aimed at minimizing the reaction of the added alumina powder with silicon nitride or silica, and actively allowing the alumina powder to remain as it is. Specifically, the manufacturing method is as follows: aluminum oxide (alumina) as raw material powder is over 30% by weight and 80% by weight or less, silicon nitride powder is 20% by weight, 70% by weight or less.
After the mixed powder blended at a ratio of less than % by weight is molded into a predetermined shape, it is fired. Firing is from 1550
For example, hot press firing, non-pressure firing, or gas pressure firing is performed at a temperature of 1800° C. in a non-oxidizing atmosphere such as nitrogen or argon. As the firing progresses, a reaction with silicon nitride or SiO 2 progresses from the surface of the added alumina powder particles. However, in the present invention, by stopping the firing before the reaction is completed, unreacted particles can be removed. This is intended to allow alumina to remain as hard particles. Further, the remaining amount of alumina is determined by the balance between firing temperature and firing time. That is,
When the firing temperature is high, alumina can remain by setting the firing time short. The preferable firing time is 5 to 180 minutes so that the remaining amount becomes a predetermined amount. If the firing time is less than 5 minutes, sintering will be insufficient and the strength will decrease.
If the time exceeds 1 minute, all the alumina will react and no remaining alumina will be formed. Furthermore, the reason why the amount of aluminum oxide added to the raw material powder was limited to the above-mentioned range is that if the amount of aluminum oxide is less than 30% by weight, it will react with silicon nitride or silica to form hard particles of alumina into the sintered body. This is because it is difficult to make it exist in a proportion of 50% by weight, and if it exceeds 80% by weight, the thermal shock resistance and high strength, which are the characteristics of silicon nitride, cannot be obtained. The sintered body thus obtained contains aluminum in an amount of more than 30% by weight and less than 80% by weight in terms of oxide.
It contains silicon at a ratio of 20% by weight, less than 70% by weight in terms of nitride, of which the remaining amount as alumina is smaller than the total amount from the viewpoint of performance as a cutting tool, as is clear from the examples described later. against 10
The content is preferably from 50% by weight. That is, if the amount of residual alumina is less than 10% by weight, the effect of the present invention is insufficient, the amount of wear is large, and the strength and height are low. On the other hand, if it exceeds 50% by weight, wear resistance improves but strength decreases. This alumina exists as hard particles that are independent of other structures such as silicon nitride crystal particles, and its particle size depends on the particle size of the raw material powder. The particle size is not particularly limited as long as the particle size is . Furthermore, according to the present invention, it is desirable to add other components for the purpose of improving the strength of the sintered body. Other components used include AlN,
In addition to MgO, rare earth oxides such as Y 2 O 3 can be used. The preferred blending amount of these is 1 AlN.
MgO is 1 to 8% by weight, and rare earth oxides are 1 to 8% by weight. If the amount of any of these additives is exceeded, the strength tends to deteriorate. The invention will now be explained with the following examples. Example: Si 3 N 4 powder with an average particle size of 0.65μ as raw material powder,
Using the same 2.4 μ α-Al 2 O 3 powder, the composition was prepared as shown in Table 1, and 200 c.c. of methanol and 650 g of
24 sealed in a 500c.c. poly container with Si 3 N 4 balls
The mixture was mixed and ground in a vibrating mill for hours. Next, the powder obtained by dry granulation was filled into a graphite mold and heated at 1650℃ and 350℃.
Samples A to E were prepared by hot press firing at Kg/cm 2 for 20 minutes. The residual amount of α-Al 2 O 3 in samples A to E for each composition ratio, bending strength,
The hardness and amount of wear when subjected to cutting were measured and shown in Table 1. Note that the remaining amount of Al 2 O 3 in the sintered body is α−
It was analyzed as Al 2 O 3 by X-ray diffraction method. The conditions under which the cutting test was carried out were as follows: using a test sample of SNGN432 (Japanese Super Tool Association standard) chamfer 0.2, cast iron (FC25) as the cut material, cutting conditions: speed 300 m/min, feed 0.25 mm, depth of cut 0.2
mm, and after cutting for 1 minute, the amount of wear on the flank was measured. In addition, the bending strength was determined by sample shape 3×
Measurements were made using 3-point bending on a 3 x 15 mm span of 10 mm.

【表】 第1表によれば、原料組成として10〜80重量%
のAl2O3粉末を混入し、焼成したサンプルにおい
て耐摩耗性は残存Al2O3量の増加にともなつて向
上しているが、残存Al2O3の量が10重量%未満で
は耐摩耗性の効果が不十分で、50重量%を超える
と曲げ強度の低下傾向がみられ10重量%以上から
50重量%における残存Al2O3量のものがフランク
摩耗量、曲げ強度、硬度等いずれにおいても優れ
ていることが判明した。 実施例 原料粉末として平均0.65μのSi3N4粉末、同じ
く2.4μのAl2O3粉末を使用し、Si3N4粉末60重量
%、Al2O3、40重量%に固定し、実施例1と同様
に調製した後ホツトプレス条件を変えてサンプル
(イ)乃至(ト)を作成した。 さらに、添加物として平均粒径2.0μのAIN
(窒化アルミニウム)粉末、同じく0.5μのMgO
粉末、同じく1.0μのY2O3を使用し第2表に示し
た組成比に調合した後、200c.c.のメタノール、650
gのSi3N4ボールとともに500c.c.ポリ容器に封入し
て24時間振動ミルご混合粉砕した。乾燥造粒後、
得られた粉体を黒鉛型を用いて350Kg/cm2及び第
2表に記載した条件のもとでホツトプレス焼成を
行つた。
[Table] According to Table 1, the raw material composition is 10 to 80% by weight.
In samples mixed with Al 2 O 3 powder of The abrasive effect is insufficient, and bending strength tends to decrease when it exceeds 50% by weight, and when it exceeds 10% by weight.
It was found that those with a residual Al 2 O 3 content of 50% by weight were superior in terms of flank wear amount, bending strength, hardness, etc. Example Using Si 3 N 4 powder with an average of 0.65μ and Al 2 O 3 powder with an average diameter of 2.4μ as raw material powder, the Si 3 N 4 powder was fixed at 60% by weight and Al 2 O 3 was fixed at 40% by weight. Samples were prepared in the same manner as Example 1, then the hot pressing conditions were changed.
(a) to (g) were created. In addition, as an additive, AIN with an average particle size of 2.0 μ
(aluminum nitride) powder, also 0.5μ MgO
Powder, also using 1.0 μ of Y 2 O 3, was mixed to the composition ratio shown in Table 2, and then 200 c.c. of methanol and 650 c.c.
The mixture was sealed in a 500 c.c. polyethylene container with 4 g of Si 3 N balls, and mixed and pulverized in a vibrating mill for 24 hours. After dry granulation,
The obtained powder was hot press fired using a graphite mold at 350 kg/cm 2 under the conditions listed in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上、詳述した通り、本発明の切削工具用焼結
体は、窒化珪素を主体とする焼結体中に酸化アル
ミニウムを硬質粒子として存在させることによつ
て窒化珪素質焼結体の靭性、強度を保持しつつ耐
摩耗性を向上させることができると共に融鉄との
反応性をも改善することができ、それによつて
鋼、鋳鉄の高速切削にも用いることができる。
As described above in detail, the sintered body for cutting tools of the present invention improves the toughness of the silicon nitride sintered body by making aluminum oxide exist as hard particles in the sintered body mainly composed of silicon nitride. It is possible to improve wear resistance while maintaining strength, and also to improve reactivity with molten iron, thereby making it possible to use it for high-speed cutting of steel and cast iron.

Claims (1)

【特許請求の範囲】 1 主として窒化珪素および酸化アルミニウムか
ら成る切削工具用焼結体であつて、該焼結体中に
硬質粒子として酸化アルミニウムが10乃至50重量
%の割合で存在することを特徴とする切削工具用
焼結体。 2 酸化アルミニウム粉末が30重量%を越え、80
重量%以下、窒化珪素粉末が20重量%、70重量%
未満の割合で配合された混合粉末を所定形状に成
型した後、1550乃至1800℃の温度のもとで5乃至
180分間焼成して、酸化アルミニウムを硬質粒子
として10乃至50重量%の割合で残存させたことを
特徴とする切削工具用焼結体の製造方法。
[Scope of Claims] 1. A sintered body for a cutting tool consisting mainly of silicon nitride and aluminum oxide, characterized in that aluminum oxide is present as hard particles in the sintered body in a proportion of 10 to 50% by weight. A sintered body for cutting tools. 2 Aluminum oxide powder exceeds 30% by weight, 80
Weight% or less, silicon nitride powder is 20% by weight, 70% by weight
After molding the mixed powder in a proportion of less than
A method for producing a sintered body for a cutting tool, characterized in that aluminum oxide remains as hard particles at a ratio of 10 to 50% by weight by firing for 180 minutes.
JP56190090A 1981-11-26 1981-11-26 Sintered body for cutting tool and manufacture Granted JPS5891079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56190090A JPS5891079A (en) 1981-11-26 1981-11-26 Sintered body for cutting tool and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56190090A JPS5891079A (en) 1981-11-26 1981-11-26 Sintered body for cutting tool and manufacture

Publications (2)

Publication Number Publication Date
JPS5891079A JPS5891079A (en) 1983-05-30
JPS6235994B2 true JPS6235994B2 (en) 1987-08-05

Family

ID=16252194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56190090A Granted JPS5891079A (en) 1981-11-26 1981-11-26 Sintered body for cutting tool and manufacture

Country Status (1)

Country Link
JP (1) JPS5891079A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110779B2 (en) * 1987-11-09 1995-11-29 晧一 新原 Si Lower 3 N Lower 4 Al-Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115850A (en) * 1974-06-20 1976-02-07 Hoechst Ag
JPS5231910A (en) * 1975-09-08 1977-03-10 Toshiba Corp Cutting tool
JPS5257100A (en) * 1975-11-07 1977-05-11 Toshiba Corp Method for production of sintered material of silicon nitride system
JPS5460310A (en) * 1977-10-13 1979-05-15 Tokyo Shibaura Electric Co Method of making heattresistant sintered body
JPS5673670A (en) * 1979-11-14 1981-06-18 Ford Motor Co Manufacture of high effeciency cutting tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115850A (en) * 1974-06-20 1976-02-07 Hoechst Ag
JPS5231910A (en) * 1975-09-08 1977-03-10 Toshiba Corp Cutting tool
JPS5257100A (en) * 1975-11-07 1977-05-11 Toshiba Corp Method for production of sintered material of silicon nitride system
JPS5460310A (en) * 1977-10-13 1979-05-15 Tokyo Shibaura Electric Co Method of making heattresistant sintered body
JPS5673670A (en) * 1979-11-14 1981-06-18 Ford Motor Co Manufacture of high effeciency cutting tool

Also Published As

Publication number Publication date
JPS5891079A (en) 1983-05-30

Similar Documents

Publication Publication Date Title
KR890002888B1 (en) Sliding materials
JPS59199581A (en) Abrasion resistant sialon base ceramics
KR100386364B1 (en) Reaction-bonded silicon carbide refractory product
US4552851A (en) Formation of yttrium aluminate as sintering aid for silicon nitride bodies
US4607017A (en) Silicon nitride based cutting tool
JPS6235994B2 (en)
US5130279A (en) Silicon nitride based sintered material and process of manufacturing same
JPS6222951B2 (en)
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
US4876227A (en) Reaction sintered boride-oxide-silicon nitride for ceramic cutting tools
JPH0832584B2 (en) Alumina-based ceramic cutting tool with high toughness
JPH03141161A (en) Composite sintered compact
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPS6215505B2 (en)
JPS5895644A (en) High strength composite sintered body
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JPS6337075B2 (en)
JPH06321641A (en) Composite ceramics
JPS598670A (en) High tenacity silicon nitride base sintered body
JP2794121B2 (en) Fiber reinforced ceramics
JPS6183681A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
CA1260505A (en) Reaction sintered boride-oxide-silicon nitride for ceramic cutting tools
JPH03232773A (en) Production of sintered base of silicon nitride base having high toughness and high strength
JPS6257596B2 (en)
JPS6246513B2 (en)