JPH03232773A - Production of sintered base of silicon nitride base having high toughness and high strength - Google Patents

Production of sintered base of silicon nitride base having high toughness and high strength

Info

Publication number
JPH03232773A
JPH03232773A JP2027717A JP2771790A JPH03232773A JP H03232773 A JPH03232773 A JP H03232773A JP 2027717 A JP2027717 A JP 2027717A JP 2771790 A JP2771790 A JP 2771790A JP H03232773 A JPH03232773 A JP H03232773A
Authority
JP
Japan
Prior art keywords
powder
sintering
si3n4
zrn
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2027717A
Other languages
Japanese (ja)
Other versions
JP2778179B2 (en
Inventor
Takashi Koyama
孝 小山
Hideo Oshima
秀夫 大島
Yasutaka Aikawa
相川 安孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2027717A priority Critical patent/JP2778179B2/en
Priority to US07/649,482 priority patent/US5130279A/en
Priority to EP91101513A priority patent/EP0441316B1/en
Priority to DE69102892T priority patent/DE69102892T2/en
Publication of JPH03232773A publication Critical patent/JPH03232773A/en
Application granted granted Critical
Publication of JP2778179B2 publication Critical patent/JP2778179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered material of Si3N4 base having both high toughness and high strength, exhibiting excellent cutting performances as a cutting tool, by press molding a powder mixture of raw material of Si3N4, ZrN, SiO2 and MgO and burning in a nitrogen atmosphere at two stages by heating under pressure. CONSTITUTION:Mixed powder comprising (A) 1-27wt.% ZrN powder, (B) 0.1-5wt.% SiO2 powder, (C) 1-10wt.% MgO powder and (D) the rest of Si3N4 (preferably consisting essentially of alpha type) powder is molded into pressed powder, primarily sintered in a N2 gas atmosphere at 1,500-2,000 deg.C under 1-50atm. Successively the sintered material is secondarily sintered in a N2 gas atmosphere at 1,700-2,000 deg.C under 100-2,000atm. once or twice continuously or intermittently. By the secondary sintering, ZrO2 is formed as a dispersed phase, needle formation of Si3N4 as a hard layer is promoted to improve toughness and O content in a bonded phase of Mg-Si-O-N or Mg-Si-Zr-O-N is reduced and N content is increased to improve heat resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高靭性および高強度を有し、特にこれらの
特性が要求される切削工具として適用した場合にすぐれ
た切削性能を発揮する窒化けい素(以下Si3N4で示
す)基焼結材料の製造法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a nitrided material that has high toughness and high strength and exhibits excellent cutting performance especially when applied as a cutting tool that requires these properties. The present invention relates to a method for producing a silicon (hereinafter referred to as Si3N4)-based sintered material.

〔従来の技術〕[Conventional technology]

従来、513N4基焼結材料の製造法としては、例えば
特公昭60−2034Ei号公報に記載される方法が知
られている。
Conventionally, as a method for producing 513N four-base sintered material, for example, the method described in Japanese Patent Publication No. 60-2034Ei is known.

この従来方法は、原料粉末として、513N4粉末、酸
化ジルコニウム(以下Z r O2で示す)粉末、およ
び酸化マグネシウム(以下MgOで示す)粉末を用い、
これら原料粉末を、所定の配合組成に配合し、通常の条
件で混合し、圧粉体に成形した後、この圧粉体に、 窒素または窒素+不活性ガスの雰囲気中、温度=160
0〜2100℃、圧力=1.5〜130気圧、の条件で
焼結することにより813N4基焼結材料を製造する方
法である。
This conventional method uses 513N4 powder, zirconium oxide (hereinafter referred to as Z r O2) powder, and magnesium oxide (hereinafter referred to as MgO) powder as raw material powders,
These raw material powders are blended into a predetermined composition, mixed under normal conditions, and formed into a green compact.The green compact is then heated at a temperature of 160 in an atmosphere of nitrogen or nitrogen + inert gas.
This is a method for producing an 813N4-based sintered material by sintering under the conditions of 0 to 2100°C and a pressure of 1.5 to 130 atm.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の従来方法によって製造されたSiaN4
基焼結材料は、高強度をもつものの、十分な靭性をもつ
ものでないため、これを例えば鋳鉄の湿式連続高速切削
や粗フライス切削などに切削工具として用いた場合に、
靭性不足が原因で切刃に欠損やチッピングが発生し易く
、比較的短時間で使用寿命に至るのが現状である。
However, SiaN4 produced by the above conventional method
Although the base sintered material has high strength, it does not have sufficient toughness, so when it is used as a cutting tool for, for example, wet continuous high-speed cutting of cast iron or rough milling,
Due to lack of toughness, the cutting edge is prone to breakage and chipping, and the current usage life is reached in a relatively short period of time.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、高靭性
と高強度を合せもったSisN4基焼結材料を開発すべ
く研究を行なった結果、 原料粉末として、SiN(α−813N44 を主成分とするものが望ましい)粉末、窒化ジルコニウ
ム(以下ZrNで示す)粉末、酸化けい素(以下S i
O2で示す)粉末、およびMgO粉末を用い、これら原
料粉末を所定の配合組成に配合し、通常の条件で、混合
しか椀、圧粉体に成形した後、この圧粉体に、 窒素雰囲気中、相対的に低い圧力で1次焼結を施すと、
この1次焼結では、α−813N4かやや針状化したβ
−8i3N4に変化し、結合相として粘性が低く、ぬれ
性の良好なMg−5jO−NまたはMg −Si  −
Zr −0−N系の液相が形成されるために良好な焼結
性か確保され、引続いて、同じく窒素雰囲気中、相対的
に高い圧力で2次焼結を施すと、分散相としてのZrN
の一部が、 ZrN+5IO2+N2→ Z r O2+ S ia N4−      ・・・
(1)ZrN十結合相(1次焼結)十N2→ Z r O2+結合相(2次焼結)・(2)以上(1)
および(2)の反応によってZ r O2となり、この
ZrNからZ r 02の生成時に、内在するマイクロ
ポアが吸収されて緻密化されると共に、β−3iaN4
の針状化が一段と進行し、さらに1次焼結時に形成され
た結合相に比して酸素含有量が減少し、窒素含有量が増
加した結合相が形成されるようになり、この結果製造さ
れたSi3N4基焼結材料は、残留する熱伝導率が高く
、硬さの高いZrNによって、すぐれた耐熱衝撃性と耐
摩耗性が確保され、また化学的に安定で、耐酸化性の向
上に寄与し、かつクラックが進展してきた時にマルテン
サイト変態により破壊エネルギーを吸収する作用を有す
るZ r O2と、著しく針状化したβ−8i3N4に
よって高靭性か確保され、かつ高緻密化と含まって高強
度も有するようになり、この場合のZ「02は、Mgか
固溶(StやNが固溶する場合もある)して、立方晶あ
るいは正方品を呈するものであり、さらに相対的に窒素
が多く、酸素が少ない結合相が耐熱性向上に寄与し、か
つ、この結合相はガラス相、フォルステライト相、ある
いはユンステタイト相などからなるなどの研究結果を得
たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a SisN4-based sintered material that has both high toughness and high strength. powder, zirconium nitride (hereinafter referred to as ZrN) powder, silicon oxide (hereinafter referred to as Si
Using O2) powder and MgO powder, these raw material powders are blended into a predetermined composition, mixed under normal conditions, and then shaped into a bowl or green compact. , when primary sintering is performed at a relatively low pressure,
In this primary sintering, α-813N4 or slightly acicular β
Mg-5jO-N or Mg-Si- which changes to -8i3N4 and has low viscosity and good wettability as a binder phase
Good sinterability is ensured due to the formation of a Zr-0-N liquid phase, and subsequently, when secondary sintering is performed at a relatively high pressure in the same nitrogen atmosphere, as a dispersed phase. ZrN
A part of ZrN+5IO2+N2→ Z r O2+ S ia N4− ...
(1) ZrN ten bonded phase (primary sintering) ten N2 → Z r O2 + bonded phase (secondary sintering)・(2) Above (1)
The reaction (2) results in ZrO2, and when Zr02 is produced from ZrN, the inherent micropores are absorbed and densified, and β-3iaN4
The needle-like shape of the particles further progresses, and a binder phase with a lower oxygen content and an increased nitrogen content is formed compared to the binder phase formed during the primary sintering. The resulting Si3N4-based sintered material has excellent thermal shock resistance and wear resistance due to the residual ZrN with high thermal conductivity and high hardness, and is chemically stable and has improved oxidation resistance. High toughness is ensured by ZrO2, which contributes to the structure and absorbs fracture energy through martensitic transformation when a crack develops, and β-8i3N4, which has become extremely acicular, and includes high densification. It also has high strength, and in this case, Z'02 has Mg in solid solution (St and N may also be in solid solution) and exhibits cubic or tetragonal crystals. Research results showed that a bonded phase with a high nitrogen content and a low oxygen content contributes to improved heat resistance, and that this bonded phase consists of a glass phase, forsterite phase, or unstedtite phase.

この発明は、上記研究結果にもとづいてなされたもので
あって、原料粉末として、513N4粉末、望ましくは
α−S i3N 4粉末、ZrN粉末、SiO2粉末、
およびMgO粉末を用い、これら原料粉末を、重量%で
、 ZrN   :1〜27%、 S iO2: 0.5〜5%、 MgO:1〜10%、 Si3N4 :残り、 の配合組成に配合し、通常の条件で混合し、圧粉体に成
形した後、この圧粉体に、 窒素(N2)雰囲気中、温度:1500〜20oo℃、
圧力=1〜50気圧、 の良好な焼結性が得られる条件で1次焼結し、っいで、 N2雰囲気中、1700〜2000℃の温度にして、1
次焼結における圧力より高い100〜2000気圧の圧
力、 の条件で1回または2回以上の2次焼結を、1次焼結に
引続いて連続的に、あるいは1次焼結とは別に、さらに
2回以上の2次焼結を行なう場合には最初の2次焼結と
は別に断続的に施し、この2次焼結にて、ZrNからZ
 r O2を分散相として生成させ、この時点て内在す
るボアの吸収が起って緻密化し、かっβ−813N4の
針状化を一段と進行せしめ、もって高靭性と高強度を確
保するようにし、さらに1次焼結で形成されたMgSi
  −0−NまたはMg −Si  −Zr −0−N
系の結合相における酸素含有量を減少させ、窒素含有量
を増加させて耐熱性向上をはかる513N4基焼結材料
の製造法に特徴を有するものである。
This invention was made based on the above research results, and raw material powders include 513N4 powder, preferably α-Si3N4 powder, ZrN powder, SiO2 powder,
and MgO powder, these raw material powders are blended into a composition of ZrN: 1 to 27%, SiO2: 0.5 to 5%, MgO: 1 to 10%, Si3N4: remainder, in weight percent, After mixing under normal conditions and forming into a green compact, the green compact is heated in a nitrogen (N2) atmosphere at a temperature of 1500 to 20 oo℃.
Primary sintering was carried out under the conditions of pressure = 1 to 50 atm to obtain good sinterability, and then the temperature was 1700 to 2000°C in a N2 atmosphere.
Secondary sintering is performed once or twice at a pressure of 100 to 2000 atmospheres higher than the pressure in the secondary sintering, either continuously following the primary sintering or separately from the primary sintering. In addition, when secondary sintering is performed two or more times, it is performed intermittently separately from the first secondary sintering, and in this secondary sintering, the ZrN to Z
r O2 is generated as a dispersed phase, and at this point, the internal bores are absorbed and densified, further promoting the acicular formation of β-813N4, thereby ensuring high toughness and high strength. MgSi formed by primary sintering
-0-N or Mg -Si -Zr -0-N
This method is characterized by a method for producing a 513N4-based sintered material, which aims to improve heat resistance by reducing the oxygen content and increasing the nitrogen content in the binder phase of the system.

したがって、この発明の方法で製造されるSiaN4基
焼結材料は、容量%て、 Z r O2: 0.1〜20%、 ZrN   :0.1 〜14%、 Mg −Si  −0−NまたはMg −5j  −Z
rO−N系の結合相:1〜1596、 を含有し、残りかβ−8i3N4と不可避不純物からな
る組成をもつものである。
Therefore, the SiaN four-based sintered material produced by the method of the present invention has the following content in volume %: ZrO2: 0.1-20%, ZrN: 0.1-14%, Mg-Si-0-N or Mg -5j -Z
rO-N type bonded phase: 1 to 1596, with the remainder consisting of β-8i3N4 and inevitable impurities.

つぎに、この発明の方法において、製造条件を上記の通
りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method of this invention will be explained.

(1)  配合組成 (a)ZrN粉末 ZrNには、1次焼結ではそのままの状態で存在して良
好な焼結性を確保するか、2次焼結では、その1部から
Z r O2を生成させ、残存するZrNによって焼結
材料にすぐれた耐熱衝撃性と耐摩耗性を付与せしめ、一
方生成したZrOのもつ破壊エネルギー吸収作用によっ
て靭性向上をはかる作用があり、したかってその配合割
合が1重量%未満では、焼結材料におけるZrO2の含
有量が0,1容量%未満となるほか、残存するZrNの
含有量も0.1容量%未満となってしまい、前記作用に
所望の効果を得ることができないものであり、一方その
配合割合が27重量%を越えると、焼結材料におけるZ
 r O2の含有量が20容量%を越えて多くなりすぎ
、硬さが低下して所望の耐摩耗性を確保することができ
ず、同時にZrNの含有量も14容量%を越えて多くな
り、耐酸化性の低下をきたすようになることから、その
配合割合を1〜27重量%と定めた。
(1) Blend composition (a) ZrN powder ZrN is either present as it is in the primary sintering to ensure good sinterability, or ZrO2 is added to a part of it in the secondary sintering. The remaining ZrN imparts excellent thermal shock resistance and wear resistance to the sintered material, while the generated ZrO has the effect of absorbing fracture energy to improve toughness. If the content is less than 0.1% by weight, the content of ZrO2 in the sintered material will be less than 0.1% by volume, and the content of remaining ZrN will also be less than 0.1% by volume, thereby achieving the desired effect on the above action. On the other hand, if the blending ratio exceeds 27% by weight, Z in the sintered material
r The content of O2 becomes too large, exceeding 20% by volume, and the hardness decreases, making it impossible to secure the desired wear resistance, and at the same time, the content of ZrN also increases, exceeding 14% by volume, Since this causes a decrease in oxidation resistance, the blending ratio was set at 1 to 27% by weight.

(b)  S iO2およびMgO粉末S IO2およ
びMgOには、1次焼結時にSi  N  粉末の表面
に存在するSiO2、さら4 に必要に応じてZrN粉末の一部と反応して相対的に酸
素含有量が高く、窒素含有量が低い、これによって粘性
が低いMg −5t  −0−NまたはMg −Si 
 −Zr−0−N系の液相を生成し、この液相によって
良好な焼結を進行せしめ、結合相を形成する作用があり
、また2次焼結では前記結合相は相対的に酸素含有量か
減少し、窒素含有量が増加して耐熱性が向上したものに
なるが、その配合割合が、S iQ 2 : o、 1
重量96未満およびMgO:1重量%未満では焼結材料
における結合相の含有量が1容量%未満となってしまい
、所望のすぐれた焼結性を確保することができず、一方
その配合割合がS iO2: 5重量%およびMgO:
10重量%を越えると結合相の含有量が15容量%を越
えて多くなってしまい、焼結材料の耐熱性が低下するよ
うになることから、その配合割合を、それぞれSiO2
:0.1〜5重量%、MgO:1〜10重量%と定めた
(b) SiO2 and MgO powder SIO2 and MgO contain SiO2 present on the surface of the SiN powder during primary sintering, and if necessary reacts with a part of the ZrN powder to create a relative amount of oxygen. Mg -5t -0-N or Mg -Si with high content and low nitrogen content, which results in low viscosity
-Zr-0-N system liquid phase is generated, and this liquid phase promotes good sintering and has the effect of forming a binder phase, and in the secondary sintering, the binder phase is relatively oxygen-containing. The nitrogen content decreases, the nitrogen content increases, and the heat resistance improves, but the blending ratio is SiQ2: o, 1
If the weight is less than 96% and MgO: less than 1% by weight, the content of the binder phase in the sintered material will be less than 1% by volume, making it impossible to secure the desired excellent sinterability. SiO2: 5% by weight and MgO:
If it exceeds 10% by weight, the binder phase content will exceed 15% by volume and the heat resistance of the sintered material will decrease.
: 0.1 to 5% by weight, and MgO: 1 to 10% by weight.

(c) Si3N4粉末 Si3N4は、1次焼結で粉末表面に存在するS iO
2と他の助剤成分であるMgOおよびSiO2、さらに
必要に応じてZrNから生成する液相への溶解−析出に
よりβ−8i3N4粒子となり、このβ−813N4粒
子の成長は1次焼結では僅かであるが、2次焼結では上
記の(+)の反応により針状に粒成長して靭性が著しく
向上し、かつ焼結材料中に内在するボアが吸収されて緻
密化するようになるものであり、この場合均一にして良
好な焼結性を確保するためには微粒で、かつ粒度分布か
狭いものを使用するのが好ましい。
(c) Si3N4 powder Si3N4 has SiO present on the powder surface during primary sintering.
2, other auxiliary components MgO and SiO2, and if necessary, ZrN to form β-8i3N4 particles by dissolution and precipitation in the liquid phase, and the growth of these β-813N4 particles is slight in the primary sintering. However, in secondary sintering, the grains grow into acicular shapes due to the above (+) reaction, significantly improving toughness, and the bores inherent in the sintered material are absorbed and become densified. In this case, in order to ensure uniformity and good sinterability, it is preferable to use fine particles with a narrow particle size distribution.

(2)1次焼結条件 上記の通り1次焼結では粘性が低く、良好な焼結を促進
させる相対的に酸素含有量が高く、窒素含有量か低い結
合相を形成させる必要があるが、温度か1500℃未満
であったり、圧力が1気圧未満であったりすると、前記
結合相の形成が不十分となり、満足な焼結を行なうこと
かできず、一方圧力か50気圧を越えると、高圧のN2
ガスが焼結体内に封し込められてしまい、このN2ガス
によって焼結性か阻害されるようになるばかりでなく、
2次焼結でのボア吸収による緻密化並びにβSi3N4
粒子の針状化成長も抑制されるようになり、また200
0℃を越えた温度は設備的に大がかりとなることから、
その条件を温度: 1500〜2000℃、圧力=1〜
50気圧と定めた。
(2) Primary sintering conditions As mentioned above, in the primary sintering, it is necessary to form a binder phase with low viscosity and relatively high oxygen content and low nitrogen content to promote good sintering. If the temperature is less than 1500°C or the pressure is less than 1 atm, the formation of the binder phase will be insufficient and satisfactory sintering cannot be achieved, while if the pressure exceeds 50 atm, high pressure N2
Gas is trapped inside the sintered body, and this N2 gas not only impairs sintering properties, but also
Densification and βSi3N4 due to bore absorption in secondary sintering
Acicular growth of particles is also suppressed, and 200
Temperatures exceeding 0°C require extensive equipment, so
The conditions are temperature: 1500~2000℃, pressure = 1~
The pressure was set at 50 atm.

(3)2次焼結条件 2次焼結で、上記の(1)および(2)の反応を行なわ
しめ、酸素減少と窒素増加による結合相の耐熱性向上を
はかり、ZrNの一部からZ r O2を生成させ、か
つβ−8i3N4粒子の針状化を著しく促進させ、さら
に焼結体内に内在するボアを吸収して緻密化し、もって
高靭性と高強度を確保するが、温度が1700℃未満で
も、圧力が100気圧未満でも上記の(1)および(2
)の反応が十分に行なわれず、この結果焼結材料に上記
のすぐれた特性を付与させることができず、一方200
0℃を越えた温度、並びに2000気圧を越えた圧力は
設備的に大がかりとなり、コスト高となることから、そ
の条件を温度: 1700〜2000℃、圧カニ100
〜2000気圧と定めた。
(3) Secondary sintering conditions In the secondary sintering, the reactions in (1) and (2) above are carried out to improve the heat resistance of the binder phase by reducing oxygen and increasing nitrogen. rO2 is generated, and the acicularization of β-8i3N4 particles is significantly promoted, and the bores inherent in the sintered body are absorbed and densified, thereby ensuring high toughness and high strength, but at a temperature of 1700℃. Even if the pressure is less than 100 atmospheres, the above (1) and (2)
) reaction was not carried out sufficiently, and as a result, the sintered material could not be given the above-mentioned excellent properties;
Temperatures exceeding 0℃ and pressures exceeding 2000 atm require large-scale equipment and increase costs, so the conditions are: temperature: 1700 to 2000℃, pressure crab 100
~2000 atm.

なお、1次および2次焼結条件は配合組成によって定め
られるが、実施条件での圧力は1次焼結に比して2次焼
結の方が相対的に高くなることは勿論である。
Although the primary and secondary sintering conditions are determined by the composition, it goes without saying that the pressure under the actual conditions is relatively higher in the secondary sintering than in the primary sintering.

〔実 施 例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

原料粉末として、いずれも0.1〜0.5即の範囲内の
平均粒径を有する813N4 (α/β:容量比で97
/3 、酸素=2重量%含有)粉末、ZrN(酸素=3
重量%含有)粉末、S L 02粉末、MgO粉末、お
よびZ r O2粉末を用意し、これら原料粉末をそれ
ぞれ第1表に示される配合組成に配合し、ボールミルに
て72時間の湿式混合を行ない、乾燥した後、平面: 
30mm X 30m11%厚さ=]Owの寸法をもっ
た圧粉体、並びにJIS・5NGN432の切削チップ
形状の圧粉体にプレス成形し、ついでこれらの圧粉体を
同じく第1表に示される条件で焼結することにより本発
明法1〜】4、比較法1〜8、および従来法を実施し、
本発明Si  N  基焼結材料1〜14、比較Si3
N44 基焼結材料1〜8、および従来SiaN4基焼結材料を
それぞれ製造した。
As raw material powder, 813N4 (α/β: 97 in volume ratio) has an average particle size within the range of 0.1 to 0.5
/3, oxygen = 2% by weight) powder, ZrN (oxygen = 3
(% by weight) powder, S L 02 powder, MgO powder, and Z r O2 powder were prepared, and these raw material powders were blended into the composition shown in Table 1, and wet mixed for 72 hours in a ball mill. , after drying, plane:
A green compact with dimensions of 30 mm x 30 m 11% thickness =]Ow and a green compact in the shape of a cutting tip according to JIS 5NGN432 were press-formed, and then these green compacts were subjected to the same conditions shown in Table 1. Methods 1 to 4 of the present invention, comparative methods 1 to 8, and conventional methods were carried out by sintering with
Present invention Si N -based sintered materials 1 to 14, comparative Si3
N44-based sintered materials 1 to 8 and conventional SiaN4-based sintered materials were manufactured, respectively.

つぎに、この結果得られた各種のSi3N4基焼結材料
について、成分組成を測定し、この場合Z r 02お
よびZrNの割合は、X線回折によりβ−Si  N 
  ZrO2,およびZrNの回折3 4 ′ ピークの強度を測定し、この測定結果にもとづいて計算
により求め、また、Mg−3t−0−NまたはMg −
Si  −Zr −0−N系の結合相の割合は、鏡面研
磨面をEPMA(X線マイクロアナライザー)により観
察して求め、さらに理論密度比、ロックウェル硬さ(A
スケール)、抗折力、および1M法(インデンテーショ
ン法)による破壊靭性値を測定した。また、縦型フライ
ス盤を用い、被削材:幅:150m+eX長さ:300
+nmの寸法をもったFC25製穴あき角材、 切削速度: 200m / l1ins切込み:2mm
Next, the component compositions of the various Si3N4-based sintered materials obtained as a result were measured. In this case, the proportions of Zr02 and ZrN were determined by X-ray diffraction.
The intensity of the diffraction 34' peak of ZrO2 and ZrN was measured and calculated based on the measurement results.
The proportion of the Si-Zr-0-N bonded phase was determined by observing the mirror-polished surface using an EPMA (X-ray microanalyzer), and was also determined by theoretical density ratio and Rockwell hardness (A
scale), transverse rupture strength, and fracture toughness values by the 1M method (indentation method) were measured. In addition, using a vertical milling machine, workpiece material: width: 150m + eX length: 300
FC25 perforated square material with dimensions +nm, Cutting speed: 200m / 1ins Depth of cut: 2mm
.

送   リ: 0.25mm/rev。Feed: 0.25mm/rev.

刃   先: 0.15mm X −25″の条件で鋳
鉄の湿式フライス(断続)切削試験を行ない、切刃に欠
損が発生するまでの切削時間を測定した。これらの結果
を第2表にまとめて示した。
Cutting edge: A wet milling (intermittent) cutting test was conducted on cast iron under the conditions of 0.15mm x -25'', and the cutting time until a breakage occurred on the cutting edge was measured.These results are summarized in Table 2. Indicated.

なお、比較法1〜8は、いずれも製造条件のうちのいず
れかの条件(第1表に※部を付す)かこの発明の範囲か
ら外れた条件で行なったものである。
In addition, Comparative Methods 1 to 8 were all conducted under one of the manufacturing conditions (marked with * in Table 1) or under conditions outside the scope of the present invention.

〔発明の効果〕〔Effect of the invention〕

第1表および第2表に示される結果から、本発明法1〜
14で製造された本発明Si3N4基焼結材料1〜14
は、いずれも99%以上の理論密度比をもち、緻密で、
ボアの形成もきわめて少なく、従来法で製造された従来
Si3N4基焼結材料に比して一段とすぐれた靭性を示
し、かつこれと同等あるいはこれ以上の高強度と高硬度
を有するので、強度および硬さのほかに、特に高靭性が
要求される条件での切削に切削工具として用いた場合に
は、すぐれた性能を長期に亘って発揮するのに対して、
比較法1〜8で製造された比較813N4基焼結材料1
〜8に見られるように、製造条件のうちのいずれかの条
件でもこの発明の範囲から外れると、上記特性のうちの
少なくともいずれかの特性か劣るようになり、また切削
工具として用いた場合にも短かい使用寿命しか示さない
ことが明らかである。
From the results shown in Tables 1 and 2, it can be seen that methods 1 to 1 of the present invention
Invention Si3N4-based sintered materials 1 to 14 produced in 14
All have a theoretical density ratio of 99% or more, are dense,
The formation of bores is extremely small, and it exhibits superior toughness compared to conventional Si3N4-based sintered materials manufactured by conventional methods, and has high strength and hardness that are equal to or greater than this, so it has excellent strength and hardness. In addition, when used as a cutting tool for cutting under conditions that require particularly high toughness, it exhibits excellent performance over a long period of time.
Comparative 813N four-base sintered material 1 produced by comparative methods 1 to 8
-8, if any of the manufacturing conditions deviates from the scope of the present invention, at least one of the above characteristics will be inferior, and when used as a cutting tool. It is clear that the same also has a short service life.

上述のように、この発明の方法によれば、高靭性および
高強度を有し、かつ耐熱衝撃性および耐摩耗性にもすぐ
れたSi3N4基焼結材料を製造することができ、した
がってこれを、例えばこれらの特性が要求される切削工
具として用いた場合にはすぐれた切削性能を著しく長期
に亘って発揮し、長い使用寿命を示すなど工業上有用な
効果がもたらされるのである。
As described above, according to the method of the present invention, it is possible to produce a Si3N4-based sintered material that has high toughness and strength, and also has excellent thermal shock resistance and wear resistance. For example, when used as a cutting tool that requires these characteristics, it exhibits excellent cutting performance over a long period of time and has industrially useful effects such as a long service life.

出 願 人 三菱金属株式会社 代 理 人 晶 田 和 夫 外1名Out wish Man Mitsubishi Metals Corporation teenager Reason Man Akira Field sum husband 1 other person

Claims (1)

【特許請求の範囲】[Claims] (1) 原料粉末として、窒化けい素粉末、窒化ジルコ
ニウム粉末、酸化けい素粉末、および酸化マグネシウム
粉末を用い、これら原料粉末を、重量%で、 窒化ジルコニウム:1〜27%、 酸化けい素:0.1〜5%、 酸化マグネシウム:1〜10%、 窒化けい素:残り、 の割合に配合し、通常の条件で混合し、圧粉体に成形し
た後、この圧粉体に、 窒素雰囲気中、温度:1500〜2000℃、圧力:1
〜50気圧、 の良好な焼結性条件で1次焼結を施し、引続いて窒素雰
囲気中、温度:1700〜2000℃、圧力:1次焼結
における圧力より高い100〜2000気圧、の条件で
1回または2回以上の2次焼結を連続的または断続的に
施し、該2次焼結にて、 酸化ジルコニウムを分散相として生成させると共に、硬
質相としての窒化けい素の針状化を一段と促進させて靭
性の向上をはかり、 かつ、Mg−Si−O−NまたはMg−Si−Zr−O
−N系の結合相における酸素含有量の減少と窒素含有量
の増加をはかって耐熱性を向上させることを特徴とする
高靭性および高強度を有する窒化けい素基焼結材料の製
造法。
(1) Silicon nitride powder, zirconium nitride powder, silicon oxide powder, and magnesium oxide powder are used as raw material powders, and these raw material powders are divided into the following by weight%: zirconium nitride: 1 to 27%, silicon oxide: 0 .1 to 5%, magnesium oxide: 1 to 10%, and silicon nitride: the remainder, mixed under normal conditions, molded into a compact, and then placed into the compact in a nitrogen atmosphere. , temperature: 1500-2000℃, pressure: 1
Primary sintering is performed under good sintering conditions of ~50 atm, followed by conditions of temperature: 1700~2000°C and pressure: 100~2000 atm higher than the pressure in the primary sintering in a nitrogen atmosphere. Secondary sintering is performed continuously or intermittently one or more times, and in the secondary sintering, zirconium oxide is produced as a dispersed phase, and silicon nitride as a hard phase is made into needles. In order to improve the toughness by further promoting the
- A method for producing a silicon nitride-based sintered material having high toughness and strength, which improves heat resistance by reducing oxygen content and increasing nitrogen content in an N-based binder phase.
JP2027717A 1990-02-07 1990-02-07 Manufacturing method of silicon nitride based sintered material with high toughness and high strength Expired - Lifetime JP2778179B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2027717A JP2778179B2 (en) 1990-02-07 1990-02-07 Manufacturing method of silicon nitride based sintered material with high toughness and high strength
US07/649,482 US5130279A (en) 1990-02-07 1991-02-01 Silicon nitride based sintered material and process of manufacturing same
EP91101513A EP0441316B1 (en) 1990-02-07 1991-02-05 Silicon nitride based sintered material and process of manufacturing same
DE69102892T DE69102892T2 (en) 1990-02-07 1991-02-05 Sintered material based on silicon nitride and method for producing the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2027717A JP2778179B2 (en) 1990-02-07 1990-02-07 Manufacturing method of silicon nitride based sintered material with high toughness and high strength

Publications (2)

Publication Number Publication Date
JPH03232773A true JPH03232773A (en) 1991-10-16
JP2778179B2 JP2778179B2 (en) 1998-07-23

Family

ID=12228761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2027717A Expired - Lifetime JP2778179B2 (en) 1990-02-07 1990-02-07 Manufacturing method of silicon nitride based sintered material with high toughness and high strength

Country Status (1)

Country Link
JP (1) JP2778179B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742182A1 (en) 1995-05-09 1996-11-13 Mitsubishi Materials Corporation Silicon nitride based sintered material, method for preparing the same and its use as a deficiency resistance cutting tool
CN112679211A (en) * 2021-01-29 2021-04-20 北方民族大学 ZrN-lanthanum oxide complex phase ceramic and pressureless reaction sintering preparation method thereof
CN113880592A (en) * 2021-11-08 2022-01-04 北京理工大学 Preparation process of high-hardness high-toughness silicon nitride ceramic complex structural member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742182A1 (en) 1995-05-09 1996-11-13 Mitsubishi Materials Corporation Silicon nitride based sintered material, method for preparing the same and its use as a deficiency resistance cutting tool
CN112679211A (en) * 2021-01-29 2021-04-20 北方民族大学 ZrN-lanthanum oxide complex phase ceramic and pressureless reaction sintering preparation method thereof
CN112679211B (en) * 2021-01-29 2022-05-06 北方民族大学 ZrN-lanthanum oxide complex phase ceramic and pressureless reaction sintering preparation method thereof
CN113880592A (en) * 2021-11-08 2022-01-04 北京理工大学 Preparation process of high-hardness high-toughness silicon nitride ceramic complex structural member
CN113880592B (en) * 2021-11-08 2022-07-05 北京理工大学 Preparation process of high-hardness high-toughness silicon nitride ceramic complex structural member

Also Published As

Publication number Publication date
JP2778179B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
JPH03232773A (en) Production of sintered base of silicon nitride base having high toughness and high strength
JP3266200B2 (en) Silicon nitride based sintered body
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
US5130279A (en) Silicon nitride based sintered material and process of manufacturing same
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JPS5833187B2 (en) Manufacturing method of ceramic materials for tools
JPS5895662A (en) Silicon nitride-titanium nitride composite sintered body
JPH0531514B2 (en)
JPS6257597B2 (en)
JP2778189B2 (en) Fracture resistant silicon nitride based sintered material with high toughness and high strength
JPH0158150B2 (en)
JPH01119558A (en) Alumina-based sintered compact for cutting tool and its production
JPS6251228B2 (en)
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JP3082432B2 (en) Manufacturing method of aluminum oxide based ceramic cutting tool with excellent toughness
JPH03290356A (en) Aluminum oxide based ceramics having high toughness and strength and production thereof
JPS6253474B2 (en)
JPH07115928B2 (en) Method for producing fiber-reinforced silicon oxynitride sintered body
JPS6366796B2 (en)
JPH0470270B2 (en)
JPH0379308B2 (en)
JPS6241194B2 (en)
JPH0512297B2 (en)
JPS6257596B2 (en)