JPS623570B2 - - Google Patents

Info

Publication number
JPS623570B2
JPS623570B2 JP51105349A JP10534976A JPS623570B2 JP S623570 B2 JPS623570 B2 JP S623570B2 JP 51105349 A JP51105349 A JP 51105349A JP 10534976 A JP10534976 A JP 10534976A JP S623570 B2 JPS623570 B2 JP S623570B2
Authority
JP
Japan
Prior art keywords
region
base
diffusion
type
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51105349A
Other languages
Japanese (ja)
Other versions
JPS5330285A (en
Inventor
Tadaharu Tsuyuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10534976A priority Critical patent/JPS5330285A/en
Publication of JPS5330285A publication Critical patent/JPS5330285A/en
Publication of JPS623570B2 publication Critical patent/JPS623570B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、半導体集積回路特にI2L装置(イン
テグレイテツド・インジエクシヨン・ロジツク)
の製法に係わる。
[Detailed Description of the Invention] The present invention relates to semiconductor integrated circuits, particularly I 2 L devices (integrated injection logic).
Related to the manufacturing method.

I2L装置の基本構造は、第1図及び第2図に示
す如く例えばN形に高濃度基板1上に之より低濃
度のN形エピタキシヤル層2が設けられ、このエ
ピタキシヤル層2にインバータトランジスタのベ
ース領域に相当する第1のP形領域3とインジエ
クタとして働くトランジスタのエミツタ領域に相
当する第2のP形領域(注入領域)4が拡散によ
つて形成されると共に、第1のP形領域3内に拡
散によつてインバータトランジスタのマルチコレ
クタ領域に相当する複数のN形領域5〔5a,5
b及び5c〕が形成される。そして、エピタキシ
ヤル層2と第1P形領域3と複数のN形領域5を
夫々エミツタ、ベース及びマルチコレクタとした
所謂インバータ用のNPN垂直トランジスタを形
成し、また第2P形領域4とエピタキシヤル層2
と第1P形領域3を夫々エミツタ、ベース及びコ
レクタとした所謂インジエクタ用のPNPラテラル
トランジスタを形成して構成される。尚、6は
夫々アルミニウム等よりなる導電層で、これら導
電層6を介して基板1の裏面より端子Eが、第
1P形領域3より端子Bが、第2P形領域4より端
子Iが、各N形領域5a,5b,5cより端子
C1,C2,C3が夫々導出される。7はSiO2膜等よ
りなる絶縁層である。
The basic structure of the I 2 L device is, as shown in FIGS. 1 and 2, for example, an N-type epitaxial layer 2 with a lower concentration is provided on a highly doped N-type substrate 1. A first P-type region 3 corresponding to the base region of the inverter transistor and a second P-type region (implanted region) 4 corresponding to the emitter region of the transistor functioning as an injector are formed by diffusion, and the first P-type region 3 corresponds to the base region of the inverter transistor. A plurality of N-type regions 5 [5a, 5
b and 5c] are formed. Then, a so-called NPN vertical transistor for an inverter is formed in which the epitaxial layer 2, the first P-type region 3, and the plurality of N-type regions 5 are used as an emitter, a base, and a multi-collector, respectively, and the second P-type region 4 and the epitaxial layer 2
A so-called injector PNP lateral transistor is formed with the first P-type region 3 serving as an emitter, a base, and a collector, respectively. 6 are conductive layers made of aluminum or the like, and the terminals E are connected to the back surface of the substrate 1 through these conductive layers 6.
Terminal B is connected to the 1P type area 3, terminal I is connected to the second P type area 4, and terminal is connected to each of the N type areas 5a, 5b, and 5c.
C 1 , C 2 , and C 3 are derived, respectively. 7 is an insulating layer made of SiO 2 film or the like.

かかるI2L装置は、第1図から明らかなように
通常高濃度基板1上に之より低濃度のエピタキシ
ヤル層を形成したシリコン基体Sを用いて、イン
バータ用のNPNトランジスタとしては基体Sが
エミツタとなる所謂逆トランジスタを用いてい
る。このために、このNPNトランジスタではベ
ースとなる領域3の面積に比較してコレクタとな
る領域5の面積が小さくなり、その電流増巾率h
FEが非常に小さくなる欠点がある。さらに、ベー
スとなる領域3とコレクタとなる領域5との面積
の差が大きいのでコレクタとなる領域5の数が多
いほどI2L装置の全体の面積が大きくなる。
As is clear from FIG. 1, such an I 2 L device normally uses a silicon substrate S with a lower concentration epitaxial layer formed on a high concentration substrate 1, and the substrate S is used as an NPN transistor for an inverter. A so-called reverse transistor, which serves as an emitter, is used. For this reason, in this NPN transistor, the area of the region 5 that becomes the collector is smaller than the area of the region 3 that becomes the base, and the current amplification rate h
The disadvantage is that the FE becomes very small. Furthermore, since the difference in area between the region 3 serving as the base and the region 5 serving as the collector is large, the larger the number of regions 5 serving as the collector, the larger the overall area of the I 2 L device.

本発明は、このような点に鑑みインバータトラ
ンジスタのコレクタに相当する面積を出来るだけ
ベースに相当する領域の面積に近づけるようにな
し、インバータトランジスタ(逆トランジスタ)
の電流増巾率hFEを大ならしめると共に、I2L装
置の全体の面積をより小ならしめるようにした半
導体集積回路即ちI2L装置の製法を提供するもの
である。
In view of these points, the present invention makes the area corresponding to the collector of the inverter transistor as close as possible to the area of the region corresponding to the base, and the inverter transistor (reverse transistor)
The present invention provides a method for manufacturing a semiconductor integrated circuit, that is, an I 2 L device, which increases the current amplification factor h FE and further reduces the overall area of the I 2 L device.

以下、第3図及び第4図を用いて本発明による
I2L装置の製法の一例を説明しよう。なお、第3
図A′〜E′は夫々第3図A〜EのY−Y線上の断
面図、第4図は最終的に得られた平面図である。
Hereinafter, using FIGS. 3 and 4, the present invention will be described.
Let us explain an example of the method for manufacturing an I 2 L device. In addition, the third
Figures A' to E' are sectional views taken along the line Y--Y of Figures 3 A to E, respectively, and Figure 4 is a finally obtained plan view.

先づ、第3図A及びA′に示すように例えば比
抵抗0.01ΩcmのN形高濃度基板10を用意し、こ
の基板10上に比抵抗が5ΩcmのN形エピタキシ
ヤル層11を形成して、N形の半導体基体12を
構成する。13はSiO2膜等よりなる絶縁膜であ
る。
First, as shown in FIGS. 3A and A', an N-type high concentration substrate 10 with a specific resistance of 0.01 Ωcm, for example, is prepared, and an N-type epitaxial layer 11 with a specific resistance of 5 Ωcm is formed on this substrate 10. , constitute an N-type semiconductor substrate 12. 13 is an insulating film made of SiO 2 film or the like.

次に、拡散マスクとなるこの絶縁膜13に対し
てフオトエツチングを行い拡散窓14及び15A
を形成し、その後酸化性雰囲気中で拡散窓14及
び15Aを通して基体12と反対導電形即ちP形
の不純物を拡散し、シート抵抗ρsが30Ω/□程
度のP形領域16及び17を形成する。このP形
領域16は所謂インジエクタとして働くトランジ
スタのエミツタ(即ち注入領域)として用いられ
るものである。又P形領域17はインバータトラ
ンジスタのベースに相当する領域用のリード領域
となるもので、電極取出部17Aと爾後形成され
るマルチコレクタに相当する領域の長さに亘るリ
ード部17Bを有し、上面よりみてL字状に形成
される。拡散処理中に拡散窓14及び15A上に
はSiO2膜が形成される(第3図B及びB′)。
Next, this insulating film 13 serving as a diffusion mask is photoetched to form diffusion windows 14 and 15A.
Thereafter, an impurity of the conductivity type opposite to that of the substrate 12, that is, P type, is diffused through the diffusion windows 14 and 15A in an oxidizing atmosphere to form P type regions 16 and 17 having a sheet resistance ρs of about 30Ω/□. This P-type region 16 is used as an emitter (ie, an injection region) of a transistor functioning as a so-called injector. The P-type region 17 serves as a lead region for a region corresponding to the base of the inverter transistor, and has an electrode lead portion 17A and a lead portion 17B extending over the length of a region corresponding to a multi-collector to be formed later. It is formed in an L-shape when viewed from the top. During the diffusion process, a SiO 2 film is formed on the diffusion windows 14 and 15A (FIGS. 3B and B').

次に、絶縁膜13に対してフオトエツチングを
行い、インバータトランジスタのベース及びコレ
クタに共通して対応する複数の拡散窓18〔18
A,18B及び18C〕を形成し、その後窒素雰
囲気中で拡散窓18A,18B及び18Cを通し
て基体12と反対導電形即ちP形の不純物を拡散
し、夫々のP形拡散領域19A,19B及び19
Cがエピタキシヤル層11内において互に連結
し、同時に先に形成したリード領域17にも連結
して成るP形拡散領域19を形成する。このP形
拡散領域19は、インバータトランジスタのベー
ス領域に相当するものであり、そのシート抵抗ρ
sとしては250Ω/□程度に選定される。この拡
散処理は窒素雰囲気中で行なわれるので各拡散窓
18A,18B及び18C上にはSiO2膜は形成
されない(第3図C及びC′)。
Next, photoetching is performed on the insulating film 13, and a plurality of diffusion windows 18 [18
A, 18B, and 18C] and then diffuse an impurity of the conductivity type opposite to that of the substrate 12, that is, P type, through the diffusion windows 18A, 18B, and 18C in a nitrogen atmosphere to form the P type diffusion regions 19A, 19B, and 19, respectively.
A P-type diffusion region 19 is formed in which C is connected to each other in the epitaxial layer 11 and is also connected to the previously formed lead region 17. This P-type diffusion region 19 corresponds to the base region of the inverter transistor, and its sheet resistance ρ
s is selected to be approximately 250Ω/□. Since this diffusion process is performed in a nitrogen atmosphere, no SiO 2 film is formed on each diffusion window 18A, 18B, and 18C (FIG. 3C and C').

次に、同一の各拡散窓18A,18B及び18
Cを通して基体12と同導電形即ちN形の不純物
を拡散し(酸化性雰囲気中において)、P形拡散
領域19内に夫々独立した複数のN形拡散領域2
0〔20A,20B及び20C〕を形成する。こ
の各N形拡散領域20A,20B及び20Cは
夫々インバータトランジスタのマルチコレクタ領
域に相当する(第3図D及びD′)。
Next, each of the same diffusion windows 18A, 18B and 18
A plurality of independent N-type diffusion regions 2 are formed in the P-type diffusion region 19 by diffusing an impurity of the same conductivity type as the substrate 12, that is, N-type, through C (in an oxidizing atmosphere).
0 [20A, 20B and 20C]. Each of these N-type diffusion regions 20A, 20B and 20C corresponds to a multi-collector region of an inverter transistor (FIGS. 3D and D').

尚、第3図Cの工程において、その領域19の
拡散を酸化性雰囲気中にて行い、拡散時に各窓1
8A,18B及び18C上を含んで薄いSiO2
を形成し、SiO2膜の厚み差を利用して全面の浅
いエツチングにより窓18A,18B及び18C
を再現し、この再現された窓18A,18B及び
18Cを通して次のN形領域20A,20B及び
20Cの拡散を行うこともできる。
In the process shown in FIG. 3C, the region 19 is diffused in an oxidizing atmosphere, and each window 1 is
A thin SiO 2 film is formed including on 8A, 18B and 18C, and the windows 18A, 18B and 18C are formed by shallow etching on the entire surface using the difference in thickness of the SiO 2 film.
It is also possible to reproduce the following N-type regions 20A, 20B and 20C through the reproduced windows 18A, 18B and 18C.

然る後、電極窓あけを行い、夫々P形拡散領域
16,17A及びN形拡散領域20A,20B及
び20Cに例えばアルミニウム等よりなる電極2
1を形成し、夫々電極より端子I,B,C1,C2
及びC3を導出し、同時に基体12の裏面に電極
21を形成し之より端子Eを導出する。斯くして
第3図E,E′及び第4図に示す如き目的のI2L装
置を得る。
After that, electrode windows are opened, and electrodes 2 made of, for example, aluminum are formed in the P-type diffusion regions 16, 17A and the N-type diffusion regions 20A, 20B, and 20C, respectively.
1 and terminals I, B, C 1 , C 2 from the electrodes respectively.
and C 3 , and at the same time, an electrode 21 is formed on the back surface of the base 12 and a terminal E is led out from there. In this way, the desired I 2 L device as shown in FIGS. 3E, E' and 4 is obtained.

斯る製法によれば、インバータトランジスタの
ベース領域及びマルチコレクタ領域に相当する領
域19及び20の形成に際して、実質的に同一の
拡散窓18A,18B及び18Cを通して夫々の
不純物を拡散し、領域19は各拡散窓を通しての
拡散領域をエピタキシヤル層11内で互に連結し
て構成し、領域20は夫々独立に形成するように
したので、ベース領域に相当する領域19の面積
とマルチコレクタ領域に相当する領域20の面積
との差を極めて小ならしめることができる。因み
に、一例としてコレクタ領域に相当する領域の面
積を1050μ一定としたとき、第2図の従来製法
による場合はベース領域に相当する領域3の面積
が3562.5μであるのに対して、第4図の本発明
製法による場合はベース領域に相当する領域17
及び19の面積が2925.0μとなり第2図の場合
の約82%になる。そして、ベースに相当する領域
の面積を1.0としたときのコレクタ及びベースの
面積比は第2図の従来の場合が0.29、第4図の本
発明の場合が0.36となる。従つて、このようにマ
ルチコレクタに相当する領域20の面積がベース
に相当する領域19に近づけることができるの
で、インバータ用のNPN垂直トランジスタの電
流増巾率hFEが従来に比して大きくなり、さらに
I2L装置全体の面積がより小さくなる。また、各
拡散窓18A,18B,18Cを通じて個々の領
域19A,19B,19Cを形成し互に連結して
ベース領域19が形成される。従つて、各領域1
9A,19B,19Cにおいて横方向の周辺に拡
散した部分は拡散窓の部分より不純物濃度が低
く、たとえ、それが隣り合う領域の部分で重なつ
ても拡散窓の部分の不純物濃度よりも低くなる。
それ故、ベース領域19のうち各領域19A,1
9B,19Cの重なつた連結部分は低濃度で高抵
抗であるからベース電流が流れにくく実効的なベ
ースとしては働きにくい。従つてNPN垂直トラ
ンジスタの電流増副率hFEがより大きくなるもの
である。
According to this manufacturing method, when forming regions 19 and 20 corresponding to the base region and multi-collector region of the inverter transistor, impurities are diffused through substantially the same diffusion windows 18A, 18B and 18C, and region 19 is Since the diffusion regions through each diffusion window are connected to each other in the epitaxial layer 11, and the regions 20 are formed independently, the area of the region 19 corresponding to the base region and the multi-collector region are different. The difference in area from the area of the region 20 can be made extremely small. Incidentally, as an example, when the area of the region corresponding to the collector region is constant 1050μ2 , the area of region 3 corresponding to the base region is 3562.5μ2 in the case of the conventional manufacturing method shown in FIG. In the case of the manufacturing method of the present invention shown in Figure 4, the area 17 corresponds to the base area.
The area of 19 and 19 is 2925.0μ2 , which is about 82% of that in the case of FIG. When the area of the region corresponding to the base is 1.0, the area ratio of the collector and the base is 0.29 in the conventional case shown in FIG. 2 and 0.36 in the case of the present invention shown in FIG. Therefore, since the area of the region 20 corresponding to the multi-collector can be made closer to the region 19 corresponding to the base in this way, the current amplification factor h FE of the NPN vertical transistor for the inverter can be increased compared to the conventional one. ,moreover
The overall area of the I 2 L device is smaller. Furthermore, individual regions 19A, 19B, and 19C are formed through each diffusion window 18A, 18B, and 18C, and are interconnected to form a base region 19. Therefore, each area 1
In 9A, 19B, and 19C, the impurity concentration of the portions diffused to the lateral periphery is lower than that of the diffusion window portion, and even if they overlap in adjacent regions, the impurity concentration will be lower than the impurity concentration of the diffusion window portion. .
Therefore, each area 19A, 1 of the base area 19
Since the overlapping connection portion of 9B and 19C has a low concentration and high resistance, it is difficult for base current to flow and it is difficult to function as an effective base. Therefore, the current increase rate h FE of the NPN vertical transistor becomes larger.

又、第3図及び第4図の場合、インバータ用ト
ランジスタのベースに相当する領域には、高不純
物濃度のリード領域17が設けられているのでマ
ルチコレクタの数が多い場合にもベース抵抗を小
ならしめ得る。
In addition, in the case of FIGS. 3 and 4, the lead region 17 with high impurity concentration is provided in the region corresponding to the base of the inverter transistor, so the base resistance can be reduced even when there are a large number of multi-collectors. You can get used to it.

上述せる本発明製法によれば、I2L装置のイン
バータ用トランジスタの電流増巾率hFEを向上
し、且つ装置全体の面積をさらに小ならしめるも
のであり、特性の向上と相俟つて素子の小型化を
促進できるものである。
According to the manufacturing method of the present invention described above, the current amplification factor h FE of the inverter transistor of the I 2 L device is improved, and the area of the entire device is further reduced. It is possible to promote downsizing of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はI2L装置の基本構造を示す
断面図及び平面図、第3図A〜Eは本発明による
製法の一例を示す工程順の断面図、第3図A′〜
E′は夫々第3図A〜EのY−Y線上の断面図、
第4図は第3図Dの平面図である。 12は第1導電形の半導体基体、13は拡散マ
スクとなる絶縁膜、14,15,18A,18
B,18Cは拡散窓、16は注入領域、17,1
9はベースに相当する領域、20はコレクタに相
当する領域である。
1 and 2 are a sectional view and a plan view showing the basic structure of the I 2 L device, FIGS. 3A to 3E are sectional views showing an example of the manufacturing method according to the present invention in the order of steps, and FIGS. 3A' to
E' is a cross-sectional view on the Y-Y line of FIGS. 3 A to E, respectively;
FIG. 4 is a plan view of FIG. 3D. 12 is a semiconductor substrate of the first conductivity type; 13 is an insulating film serving as a diffusion mask; 14, 15, 18A, 18
B, 18C is a diffusion window, 16 is an injection region, 17, 1
9 is a region corresponding to the base, and 20 is a region corresponding to the collector.

Claims (1)

【特許請求の範囲】[Claims] 1 エミツタに相当する半導体基体に該基体と反
対導電形でベースのリード領域に相当する高不純
物濃度の拡散領域を形成し、上記半導体基体の表
面にベースに対応する複数の窓を有した拡散マス
クを形成し、該窓から上記半導体基体と反対導電
形の不純物を拡散し複数の拡散領域を半導体基体
内で互に連結させてベースに相当する領域を形成
すると共に、該複数の拡散領域を上記ベースのリ
ード領域に相当する高不純物濃度の拡散領域にも
連結せしめ、上記窓と実質的に同一の窓を用いて
上記半導体基体と同一導電形の不純物を拡散し上
記ベースに相当する領域内に独立した複数のコレ
クタに相当する領域を形成することを特徴とする
半導体集積回路の製法。
1. A diffusion mask in which a diffusion region having a conductivity type opposite to that of the substrate and having a high impurity concentration and corresponding to the lead region of the base is formed in a semiconductor substrate corresponding to an emitter, and having a plurality of windows corresponding to the base on the surface of the semiconductor substrate. forming an impurity having a conductivity type opposite to that of the semiconductor substrate through the window, interconnecting the plurality of diffusion regions within the semiconductor substrate to form a region corresponding to the base, and connecting the plurality of diffusion regions to the above-mentioned one. It is also connected to a diffusion region with a high impurity concentration corresponding to the lead region of the base, and an impurity having the same conductivity type as the semiconductor substrate is diffused into the region corresponding to the base using substantially the same window as the above window. A method for manufacturing a semiconductor integrated circuit characterized by forming regions corresponding to a plurality of independent collectors.
JP10534976A 1976-09-02 1976-09-02 Production of semiconductor i ntegrated circuit Granted JPS5330285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10534976A JPS5330285A (en) 1976-09-02 1976-09-02 Production of semiconductor i ntegrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10534976A JPS5330285A (en) 1976-09-02 1976-09-02 Production of semiconductor i ntegrated circuit

Publications (2)

Publication Number Publication Date
JPS5330285A JPS5330285A (en) 1978-03-22
JPS623570B2 true JPS623570B2 (en) 1987-01-26

Family

ID=14405245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10534976A Granted JPS5330285A (en) 1976-09-02 1976-09-02 Production of semiconductor i ntegrated circuit

Country Status (1)

Country Link
JP (1) JPS5330285A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528673U (en) * 1978-08-16 1980-02-25

Also Published As

Publication number Publication date
JPS5330285A (en) 1978-03-22

Similar Documents

Publication Publication Date Title
US4404738A (en) Method of fabricating an I2 L element and a linear transistor on one chip
US4647958A (en) Bipolar transistor construction
US4109273A (en) Contact electrode for semiconductor component
JPS623570B2 (en)
JPS58170062A (en) Semiconductor device
JPS6360550B2 (en)
JP3300530B2 (en) Method of manufacturing mesa-type semiconductor device
US4905070A (en) Semiconductor device exhibiting no degradation of low current gain
JPH0358172B2 (en)
JPS6060753A (en) Semiconductor device
JPS6158981B2 (en)
JPH0425711B2 (en)
JPH0436578B2 (en)
JPS63146466A (en) Bipolar transistor with polycrystalline silicon vertical base contact
JPS60119769A (en) Semiconductor device
JPH02114645A (en) Bipolar transistor
JP2783888B2 (en) Semiconductor device and manufacturing method thereof
JPH02278736A (en) Semiconductor device
JPS6152575B2 (en)
JPH0157506B2 (en)
JPS625657A (en) Semiconductor integrated circuit device
JPH06181215A (en) Semiconductor integrated circuit
JPS63257261A (en) Manufacture of semiconductor device
JPS6319870A (en) Semiconductor integrated circuit
JPS62189752A (en) Semiconductor device