JPS6235617B2 - - Google Patents

Info

Publication number
JPS6235617B2
JPS6235617B2 JP54141072A JP14107279A JPS6235617B2 JP S6235617 B2 JPS6235617 B2 JP S6235617B2 JP 54141072 A JP54141072 A JP 54141072A JP 14107279 A JP14107279 A JP 14107279A JP S6235617 B2 JPS6235617 B2 JP S6235617B2
Authority
JP
Japan
Prior art keywords
slab
time
thickness
laser
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54141072A
Other languages
Japanese (ja)
Other versions
JPS5664655A (en
Inventor
Tooru Inochi
Katsuhiro Minamida
Shoichi Sekiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14107279A priority Critical patent/JPS5664655A/en
Publication of JPS5664655A publication Critical patent/JPS5664655A/en
Publication of JPS6235617B2 publication Critical patent/JPS6235617B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、鋳片内部を占める等軸晶部分の厚み
を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the thickness of an equiaxed crystal portion occupying the inside of a slab.

溶鋼から直接厚鋼板を製造する連続鋳造技術は
省資源、省エネルギの要請に応える優れた方法で
あり、一層の普及が望まれるが、連鋳技術におけ
る問題点の1つは溶鋼内に不可避的に発生する不
純物元素の中心偏析である。中心偏析の程度は鋳
造組織と関係があり、該鋳造組織を構成する柱状
晶と等軸晶のうち後者の割合が多いほどC、N、
S、P、Bなどの不純物元素の中心偏析の度合が
減少する。第1図は鋳片の鋳造組織を模式的に示
す図で、2は連鋳鋳片、dはその厚みを示す。鋳
片2は当然表裏側から冷却凝固するのでこの表裏
側に厚み方向に長く延びた柱状晶2a,2bが発
達し、最後に凝固する中心部には小塊状の等軸晶
2cが生じる。d1は柱状晶の厚みを、d2は等軸晶
の厚みを示す。不純物元素は等軸晶内に分散する
ので等軸晶が広範囲に生じる程中心偏析の度合は
減少する。第2図は鋳片の中心偏析度合Cnax
C0と等軸晶の割合(%)との関係を各不純物に
対して示す。等軸晶の割合は同じスラブ厚みなど
であつても鋼種によつて大幅に変る。
Continuous casting technology, which directly manufactures thick steel plates from molten steel, is an excellent method that meets the demands for resource and energy conservation, and is hoped to become more widespread.However, one of the problems with continuous casting technology is that unavoidable contamination occurs in the molten steel. This is the central segregation of impurity elements that occurs in The degree of center segregation is related to the cast structure, and the higher the proportion of the latter among the columnar crystals and equiaxed crystals that make up the cast structure, the more C, N,
The degree of central segregation of impurity elements such as S, P, and B is reduced. FIG. 1 is a diagram schematically showing the casting structure of a cast slab, where 2 indicates a continuously cast slab and d indicates its thickness. Naturally, the slab 2 is cooled and solidified from the front and back sides, so columnar crystals 2a and 2b extending in the thickness direction develop on the front and back sides, and small-sized equiaxed crystals 2c are formed in the center where the slab 2 finally solidifies. d 1 indicates the thickness of columnar crystals, and d 2 indicates the thickness of equiaxed crystals. Since the impurity elements are dispersed within the equiaxed crystals, the degree of center segregation decreases as the equiaxed crystals occur over a wider area. Figure 2 shows the center segregation degree of the slab, C nax /
The relationship between C 0 and the proportion (%) of equiaxed crystals is shown for each impurity. The proportion of equiaxed crystals varies greatly depending on the steel type even if the slab thickness is the same.

鋳造組織を支配する要因として一応、連鋳機へ
の溶鋼の注入温度、凝固時の注水比、電磁撹拌の
強度および鋳片の引抜速度等が考えられるが、如
何せん鋳片の組織を非破壊的あるいはオンライン
的に判別する手法が確立されていないため、理想
的な鋳片を得るために上記の要因を如何に制御す
べきかに関して何ら具体的な提案はなされていな
い。
Possible factors that control the cast structure include the temperature at which molten steel is poured into the continuous caster, the water injection ratio during solidification, the strength of electromagnetic stirring, and the speed at which the slab is pulled out. Alternatively, since a method for online discrimination has not been established, no concrete proposal has been made regarding how to control the above factors in order to obtain an ideal slab.

従来においては冷却された鋳片の一部を切断、
研削、研磨、腐食、顕微鏡観察の過程を経て鋳造
組織を判別するといつた旧態依然たる方法をとつ
ているに過ぎず、鋳造組織に関する情報を直ちに
製造プロセスに反映させることができないばかり
でなく、組織判別に莫大な時間と労力を必要とし
た。また経験に依る所が多いので判定の客観性に
乏しい欠点がある。
In the past, a part of the cooled slab was cut,
The old-fashioned method of identifying the cast structure through the processes of grinding, polishing, corrosion, and microscopic observation is used, and information about the cast structure cannot be immediately reflected in the manufacturing process. Discrimination required a huge amount of time and effort. Also, since much of it depends on experience, there is a drawback that the judgment is not very objective.

そこで本発明者は超音波を利用した鋳造組織の
〓〓〓〓
判別法を開発し、先に提案した(特願昭52−
41850、同52−41851等)。この方法では鋳片に超
音波を発射しまたそれを受信するだけで等軸晶、
柱状晶の各厚みを求めることができ、また有効結
晶粒度を知ることができる。しかし、この方法で
は鋳片に超音波発信子を当接して該鋳片に超音波
を入射し、受信も超音波検出器を鋳片に当接して
行なうという接触方式をとるので、走行中又は高
温のものに対しては適用が難しい。
Therefore, the inventor of the present invention has developed a method for producing cast structures using ultrasonic waves.
We developed a discrimination method and proposed it earlier (patent application 1972-
41850, 52-41851, etc.). This method produces equiaxed crystals by simply emitting ultrasonic waves to the slab and receiving them.
The thickness of each columnar crystal can be determined, and the effective grain size can also be determined. However, this method uses a contact method in which an ultrasonic transmitter is brought into contact with the slab to inject ultrasonic waves into the slab, and reception is also carried out by placing an ultrasonic detector in contact with the slab. It is difficult to apply to high temperature objects.

ところで超音波の発生はパルスレーザによつて
も可能である。即ちルビーレーザやYAGレーザ
などをQスイツチングすると、パルス幅は極めて
狭いが強力なパルスレーザ光が発生し、これを試
料面に投射すると該試料の表面層の物質が瞬時に
蒸発して飛散し、その反力で該試料面にパルス状
の弾性波(超音波)が発生する。この方法によれ
ば非接触で試料中に超音波を発生させることがで
きる。また光ホモダイン法又は電磁誘導法などを
用いると非接触で超音波の検出が可能である。か
かる非接触超音波発、受信法を利用すると移動中
または高温の鋳片の超音波測定が可能である。
By the way, ultrasonic waves can also be generated using a pulsed laser. In other words, Q-switching a ruby laser, a YAG laser, etc. generates a powerful pulsed laser beam with an extremely narrow pulse width, and when this is projected onto the sample surface, the material on the surface layer of the sample instantly evaporates and scatters. The reaction force generates pulsed elastic waves (ultrasonic waves) on the sample surface. According to this method, ultrasonic waves can be generated in the sample without contact. Further, by using the optical homodyne method or the electromagnetic induction method, it is possible to detect ultrasonic waves without contact. By using such a non-contact ultrasonic wave generation and reception method, it is possible to perform ultrasonic measurements on moving or hot slabs.

本発明はかゝる点に着目して連続鋳造される鋳
片の等軸晶の厚みを非接触、オンライン検出し、
延いてはこれを連鋳制御に帰還して所望の組織の
鋳片を得ようとするものである。次に図面を参照
しながらこれを詳細に説明する。
Focusing on this point, the present invention detects the thickness of equiaxed crystals in continuously cast slabs in a non-contact, online manner.
This is then returned to continuous casting control to obtain a slab with a desired structure. Next, this will be explained in detail with reference to the drawings.

再び第1図を参照するに、今鋳片2の一面の点
Pから超音波を入射してこれを他面Qで検出した
とすると、超音波の柱状晶2a,2bでの伝播速
度をv1、等軸晶2cでの伝播速度をv2、超音波の
入射から検出までの時間をtとすれば次式が成立
する。
Referring again to FIG. 1, if we now assume that an ultrasonic wave is incident from a point P on one side of the slab 2 and detected on the other side Q, the propagation velocity of the ultrasonic wave in the columnar crystals 2a and 2b is v. 1 , the propagation velocity in the equiaxed crystal 2c is v2 , and the time from incidence to detection of the ultrasonic wave is t, the following equation holds true.

t=d/v+d/v ………(1) こゝでd1は柱状晶2a,2bの厚み、d2は等軸
晶2cの厚みであるからこれらの和の鋳片2の厚
みdに等しい。即ち、 d=d1+d2 ………(2) 従つて t=d−d/v+d/v=d/v+(11
/v−1/v)d2………(3) (3)式でtは測定して得られ、d、v1、v2は既知
であるとすると、等軸晶の厚みd2が求まる。ま
た、これより(2)式から柱状晶の厚みd1も求まり、
等軸晶と柱状晶との比d2/d1などを知ることもで
きる。前記特許出願の明細書で説明したように柱
状晶、等軸晶での伝播速度v1、v2は理論計算で求
まり、下式で表わされる。
t=d 1 /v 1 +d 2 /v 2 ......(1) Here, d 1 is the thickness of the columnar crystals 2a and 2b, and d 2 is the thickness of the equiaxed crystal 2c, so the slab is the sum of these. It is equal to the thickness d of 2. That is, d=d 1 + d 2 ......(2) Therefore, t=d-d 2 /v 1 +d 2 /v 2 =d/v 1 +(11
/v 2 -1/v 1 ) d 2 ......(3) In equation (3), if t is obtained by measurement and d, v 1 and v 2 are known, then the thickness d of the equiaxed crystal is Find 2 . Also, from this, the thickness d 1 of the columnar crystal can be found from equation (2),
It is also possible to know the ratio d 2 /d 1 between equiaxed crystals and columnar crystals. As explained in the specification of the patent application, the propagation velocities v 1 and v 2 in columnar crystals and equiaxed crystals are determined by theoretical calculations and are expressed by the following formulas.

<100>優先方位の場合 <110>優先方位の場合 こゝでC11、C12、C44は弾性定数 超音波の非接触発受信は、次の如くして行なう
ことができる。即ち第3図を参照するにこの図で
1はQスイツチングにより瞬時的に大出力を発生
するパルスレーザであり、鋼材等の試料2の一面
2aにパルスレーザ光L10を照射する。Qスイツ
チングによりパルスレーザを出力し得るレーザ光
源としてはルビーレーザ、ガラスレーザおよび
YAGレーザなどがある。これらのレーザ光源が
発生するパルスレーザ(ジヤイアントレーザとも
云う)は例えば100MWの大出力、パルス幅20nS
の短時間のものであり、試料表面(傷を付けたく
ない場合は塗料などの保護膜を付ける)層を瞬時
に蒸発、飛散させる。前述のようにこの反作用で
試料内に弾性波が発生し、これは厚さdの試料内
を縦波の伝播速度vで伝播し、レーザ光照射から
〓〓〓〓
時間t=d/v経過後に試料他面2bに到達し微
小変位(点線で示す)を惹き起す。レーザ光L10
の一部(微小部分)L11はビームスプリツタ3に
よりホトセルまたは光電子増倍管等の光検出器4
に入射し、こゝで検出(光電変換)される。光検
出器4の出力S1はレーザ光L10で試料面2aが照
射された時刻情報を与えるが、これをタイマ5で
一定時間遅延させる。そして、タイマ5の出力S2
をトリガ信号として計測用レーザ6を起動し、こ
れを一時的に発振またはQスイツチングさせる。
このトリガ信号S2はまたオシロスコープ11或い
はメモリ12のタイミング用にも使用される。計
測用レーザ6には、ルビー、YAGレーザなどQ
スイツチングの可能なもの(レーザ源1よりは小
出力のもの)を用いる。レーザ6の出力レーザ光
L20はビームスプリツタ7で2分され、一部L21
ミラー8に到達した後反射して、ビームスプリツ
タ7に戻り、これを通過して光検出器9に入射す
る。このレーザ光L21は後述する参照信号光とな
る。一方、ビームスプリツタ7で分割されたレー
ザ光L20の残部L22は試料2の他面2bで反射し、
その反射レーザ光はビームスプリツタ7に戻り、
こゝで反射して光検出器9に入射する。光検出器
9はこうして2入力L21,L22を与えられ、これら
を2乗平均検波して両者の位相差(これは試料他
面2bの変位量情報を持つている)に応じた振幅
値の信号S3を出力する。この信号S3は増幅器10
で増幅された後、オシロスコープ11で表示され
及び又はメモリ12に格納される。
<100> For priority direction <110> In case of priority direction Here, C 11 , C 12 , and C 44 are elastic constants. Non-contact transmission and reception of ultrasonic waves can be performed as follows. That is, referring to FIG. 3, in this figure, reference numeral 1 denotes a pulse laser that instantaneously generates a large output by Q-switching, and irradiates one surface 2a of a sample 2, such as a steel material, with pulse laser light L10 . Laser light sources that can output pulsed laser by Q-switching include ruby laser, glass laser, and
There are YAG lasers, etc. The pulsed laser (also called giant laser) generated by these laser light sources has a high output of, for example, 100MW and a pulse width of 20nS.
This is a short-time process that instantly evaporates and scatters the sample surface layer (apply a protective film such as paint if you do not want to damage it). As mentioned above, this reaction generates an elastic wave within the sample, which propagates at a longitudinal wave propagation speed v within the sample having a thickness of d, and from the laser beam irradiation.
After time t=d/v, it reaches the other surface 2b of the sample and causes a minute displacement (indicated by a dotted line). Laser light L 10
A part (microscopic part) L 11 is connected to a photodetector 4 such as a photocell or photomultiplier tube by a beam splitter 3.
It is detected (photoelectrically converted) here. The output S 1 of the photodetector 4 gives information on the time when the sample surface 2 a was irradiated with the laser beam L 10 , but this is delayed by a timer 5 for a certain period of time. Then, the output S 2 of timer 5
The measurement laser 6 is started using the signal as a trigger signal, and is caused to temporarily oscillate or Q-switch.
This trigger signal S 2 is also used for timing the oscilloscope 11 or memory 12. The measurement laser 6 includes Q lasers such as ruby and YAG lasers.
A switchable laser source (lower output than the laser source 1) is used. Output laser beam of laser 6
L 20 is split into two by beam splitter 7 , and a portion of L 21 reaches mirror 8 , is reflected, returns to beam splitter 7 , passes through this, and enters photodetector 9 . This laser light L21 becomes a reference signal light to be described later. On the other hand, the remainder L22 of the laser beam L20 split by the beam splitter 7 is reflected by the other surface 2b of the sample 2,
The reflected laser light returns to the beam splitter 7,
The light is reflected here and enters the photodetector 9. The photodetector 9 is thus given two inputs L 21 and L 22 and performs root mean square detection of these to obtain an amplitude value corresponding to the phase difference between the two (this has information on the displacement amount of the other surface 2b of the sample). Outputs the signal S3 . This signal S 3 is fed to the amplifier 10
After being amplified by , the signal is displayed on an oscilloscope 11 and/or stored in a memory 12 .

こゝで、計測用レーザ光L20の角周波数をω、
参照信号L21の振幅をAr、試料面2bで反射した
信号光L22の振幅をAs、試料面2bの変位をZと
すると参照信号光L21はAr cosωt、信号光L22
はこれに対して位相差を持つのでAs cos(ωt
+4π/λZsinωlt)で表わすことができ、従つて2 乗平均検波した光検出器9の出力S3の強度Iは次
式で表わされる。
Here, the angular frequency of the measurement laser beam L20 is ω,
If the amplitude of the reference signal L 21 is Ar, the amplitude of the signal light L 22 reflected by the sample surface 2b is As, and the displacement of the sample surface 2b is Z, then the reference signal light L 21 is Ar cosωt, and the signal light L 22
has a phase difference with respect to this, so As cos(ωt
+4π/λZsinωlt), and therefore, the intensity I of the output S3 of the photodetector 9 subjected to root mean square detection is expressed by the following equation.

I=<{Ar cosωt+As cos(ωt+4π/λZsinωlt)}>=<Ar2cos2ωt+As2cos2(ωt+4π/λZsinω
lt) +2ArAs cosωt cos(ωt+4π/λZsinωlt)>=<1/2(Ar2+As2)+1/2{Ar2cos2ωt+As2cos2(
ω
t +4π/λZsinωlt)}+ArAs cos(2ωt+4π/λZsinωlt)+ArAs cos(4π/λZsinωlt)>=1/2(
Ar2+As2) +ArAs cos(4π/λZsinωlt) ………(7) 上式において、λはレーザ光L20の波長、ωl
はパルスレーザ光L10の半値幅をτlとしたとき
の実効的な角周波数で、ωlとτlの間には次式
の関係がある。
I=<{Ar cosωt+As cos (ωt+4π/λZsinωlt)} 2 >=<Ar 2 cos 2 ωt+As 2 cos 2 (ωt+4π/λZsinω
lt) +2ArAs cosωt cos(ωt+4π/λZsinωlt)>=<1/2(Ar 2 +As 2 )+1/2{Ar 2 cos2ωt+As 2 cos2(
ω
t +4π/λZsinωlt)}+ArAs cos(2ωt+4π/λZsinωlt)+ArAs cos(4π/λZsinωlt)>=1/2(
Ar 2 +As 2 ) +ArAs cos(4π/λZsinωlt) ………(7) In the above formula, λ is the wavelength of the laser beam L 20 , ωl
is the effective angular frequency when the half-width of the pulsed laser beam L10 is τl, and there is the following relationship between ωl and τl.

ωl2π/τl ………(8) ただしsinωltは0t〓2τlの間で成り立
ち、t>2τlでは0である。(7)式において、右
辺第1項、第2項は直流成分であり、第3項が交
流成分である。この交流成分をIaとすると、Iaは
変位Zを含んだ情報であるから、これを適切に取
り出すことによつて振動変位Zを受信することが
できる。ところでこのIaは次式のようにベツセル
関数の級数に展開することぎできる。
ωl2π/τl (8) However, sinωlt holds true between 0t≓2τl, and is 0 when t>2τl. In equation (7), the first and second terms on the right side are DC components, and the third term is AC component. If this alternating current component is Ia, since Ia is information including displacement Z, vibration displacement Z can be received by appropriately extracting this. By the way, this Ia can be expanded into a series of Betzel functions as shown in the following equation.

Ia=ArAs cos(4πz/λsinωlt)=ArAs{J0(4πz/λ)+2J2(4πz/λ)cos2ωlt +2J4(4πz/λ)cos4ωlt+……} ………(9) (3)式においてZがλに比較して小さく4πz/
λ<1であれば J0(4πz/λ)1 J2(4πz/λ)2π(z/λ)2o(4πz/λ)0 (n>2) となる。したがつて IaArAs{1+4π(z/λ)2cosωlt} … ……(10) 〓〓〓〓
と表わすことができ、変位Zは角速度ωlの交流
信号の振幅の平方根として取り出すことができ
る。
Ia=ArAs cos(4πz/λsinωlt)=ArAs{J 0 (4πz/λ)+2J 2 (4πz/λ)cos2ωlt+2J 4 (4πz/λ)cos4ωlt+...} ......(9) In equation (3), Z is smaller than λ and 4πz/
If λ<1, then J 0 (4πz/λ)1 J 2 (4πz/λ)2π 2 (z/λ) 2 J 2o (4πz/λ)0 (n>2). Therefore, IaArAs{1+4π 2 (z/λ) 2 cosωlt} … …(10) 〓〓〓〓
The displacement Z can be expressed as the square root of the amplitude of the AC signal having the angular velocity ωl.

この2乗平均検波は光ホモダイン法に準拠した
ものであるが、従来と異なる点は、振幅変位によ
る位相差4πz/λsinωltがパルスレーザ光L10のパル ス幅に相当する時間しか存しないことである。
This root-mean-square detection is based on the optical homodyne method, but the difference from the conventional method is that the phase difference 4πz/λsinωlt due to amplitude displacement only exists for a time corresponding to the pulse width of the pulsed laser beam L10 . .

こうして光ホモダイン法により変位Zの検出、
従つて超音波の非接触受信が可能になるが、こゝ
で問題なのは信号光L21、L22の強度および継続時
間である。前述のようにパルスレーザL10の持続
時間は極めて短く、従つて変位Zの生起時間およ
びその測定可能時間も極めて短かい。かゝる短時
間に充分な信号つまり光量子を光検出器9に与え
て確実な検出を行なわせる必要がある。また検出
する変位Zは極めて微小であり、また高温環境で
は測定光のゆらぎによつても擬似信号が生じるか
ら、かゝるものを検出してしまわないように何ら
かのフイルタ機能を持たせることが重要である。
そこで本装置ではパルスレーザL10によつて試料
2内に発生したパルス状の超音波が試料面2bに
到達して該面に機械的変位を生じさせる時刻を中
心にした微小時間だけ計測を行なうようにする。
タイマ5はかゝる目的で設けられたものでその遅
延時間は試料2の厚みdおよび超音波伝播速度に
応じて設定する。即ち、前述のようにレーザ光
L10を時刻t=0で試料面2aに照射すると該面
に発生した超音波パルス(弾性波)は試料内を速
度vで伝播して時刻t=tに試料面2bに到達
し、該面に微小変化を生じさせるからタイマ5の
遅延時間はd/vを中心にした微小幅に設定す
る。具体例を挙げるとパルスレーザ1がパルス幅
20n sec、出力100MWのパルスレーザ光L10を時
刻t=0で試料面2aに照射したとすると、光検
出器4の出力にはほとんど同時に(遅れても0.1n
sec程度)信号S1が現われる。こゝで試料2の厚
みdをmmと仮定すれば超音波(縦波)の伝播速度
は6mm/1μsec程度であるから、約5μsec後に
試料面2bに機械的変位が発生する。計測用レー
ザ光L20はこの変位を捉える訳であるが、これに
はタイマ5の遅延時間を4μSとし、計測用レー
ザ6の持続時間を2μSとするのがよい。なおレ
ーザ6をQスイツチングしてパルスレーザを生じ
させるのに要する時間は数10nS程度であり、こ
れも無視してよい。
In this way, the displacement Z can be detected using the optical homodyne method.
Therefore, non-contact reception of ultrasonic waves becomes possible, but the problem here is the intensity and duration of the signal lights L 21 and L 22 . As mentioned above, the duration of the pulsed laser L 10 is extremely short, and therefore the generation time of the displacement Z and the measurable time are also extremely short. It is necessary to provide sufficient signals, ie, photons, to the photodetector 9 in such a short period of time to ensure reliable detection. In addition, the displacement Z to be detected is extremely small, and in high-temperature environments, fluctuations in the measurement light can also cause false signals, so it is important to provide some kind of filter function to prevent such things from being detected. It is.
Therefore, this device measures only a minute period centered around the time when the pulsed ultrasonic waves generated in the sample 2 by the pulsed laser L10 reach the sample surface 2b and cause mechanical displacement on that surface. Do it like this.
The timer 5 is provided for this purpose, and its delay time is set depending on the thickness d of the sample 2 and the ultrasonic propagation speed. That is, as mentioned above, laser light
When L 10 is irradiated onto the sample surface 2a at time t = 0, the ultrasonic pulse (elastic wave) generated on that surface propagates within the sample at a speed v and reaches the sample surface 2b at time t = t, and the Since the delay time of the timer 5 is set to a minute width centered on d/v, the delay time of the timer 5 is set to a minute width centered on d/v. To give a specific example, pulse laser 1 has a pulse width of
If we irradiate the sample surface 2a with a pulsed laser beam L 10 of 20n sec and an output of 100MW at time t=0, the output of the photodetector 4 will be applied almost simultaneously (even with a delay of 0.1n).
sec) signal S 1 appears. Here, assuming that the thickness d of the sample 2 is mm, the propagation speed of the ultrasonic wave (longitudinal wave) is about 6 mm/1 μsec, so a mechanical displacement occurs on the sample surface 2b after about 5 μsec. The measurement laser beam L 20 captures this displacement, and for this purpose, it is preferable to set the delay time of the timer 5 to 4 μS and the duration of the measurement laser 6 to 2 μS. Note that the time required to Q-switch the laser 6 to generate a pulsed laser is about several tens of nanoseconds, and this can also be ignored.

光検出器9に充分な光量子を与えるには計測用
レーザ光源6の出力(連続出力)を大にしてもよ
いが、該光源6をQスイツチングしてパルスレー
ザを出力させるのが有効であり、そしてこのQス
イツチングを前記タイミングで行なえば無用な雑
音を拾わない利点も得られる。こうして本装置に
よれば検出感度を充分なレベルにあげることがで
きると共に、測定試料に生ずる機械的振動による
雑音や、とくに熱間、すなわち高温環境で測定す
るときに生ずる光のゆらぎによる雑音等を効果的
に除くことができる。
In order to provide sufficient photons to the photodetector 9, the output (continuous output) of the measurement laser light source 6 may be increased, but it is effective to Q-switch the light source 6 to output a pulsed laser. If this Q switching is performed at the above-mentioned timing, there is an advantage that unnecessary noise is not picked up. In this way, this device can raise the detection sensitivity to a sufficient level, and also eliminates noise caused by mechanical vibrations occurring in the measurement sample and noise caused by light fluctuations that occur especially when measuring in hot, high-temperature environments. can be effectively removed.

以上説明したように本発明によれば連続鋳造さ
れる鋳片の等軸晶率をオンライン測定することが
でき、甚だ有効である。勿論本発明は連続鋳造中
の鋳片の等軸晶率測定に限らず、一般の鋳片又は
鋳塊の等軸晶率の測定に利用できる。
As explained above, according to the present invention, the equiaxed crystallinity of continuously cast slabs can be measured on-line, which is extremely effective. Of course, the present invention is not limited to measuring the equiaxed crystallinity of slabs during continuous casting, but can also be used to measure the equiaxed crystallinity of general slabs or ingots.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋳片の組織の説明図、第2図は等軸晶
率と偏析度合を示すグラフ、第3図は本発明の実
施例を示す説明図である。 図面で、2は鋳片、2a,2bは柱状晶部分、
2cは等軸晶部分、1はパルスレーザ源、6〜1
1は超音波検出器である。 〓〓〓〓
FIG. 1 is an explanatory diagram of the structure of a slab, FIG. 2 is a graph showing equiaxed crystallinity and degree of segregation, and FIG. 3 is an explanatory diagram showing an example of the present invention. In the drawing, 2 is a slab, 2a and 2b are columnar crystal parts,
2c is an equiaxed crystal part, 1 is a pulsed laser source, 6-1
1 is an ultrasonic detector. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 高出力パルスレーザ光を鋳片の一面に照射し
て超音波パルスを発生せしめ、該超音波パルスに
よつて前記鋳片の他面が変位を生じる時刻を中心
に微小時間のみ計測用レーザ装置を動作させて、
該鋳片内を伝播して他面に達した超音波により生
起する該他面の変位を該計測用レーザ装置により
検出して、該超音波発生から検出までの時間を測
定し、該時間と、鋳片の厚み及び等軸晶、柱状晶
各部分の超音波伝播速度とから等軸晶部分の厚み
を求めることを特徴とする鋳片の等軸晶率の測定
法。
1 A laser device for measuring only a minute period of time centered on the time when the other side of the slab is displaced by the ultrasonic pulse by irradiating high-power pulsed laser light onto one side of the slab to generate an ultrasonic pulse. Run the
The measurement laser device detects the displacement of the other surface caused by the ultrasonic wave that propagates within the slab and reaches the other surface, measures the time from generation of the ultrasonic wave to detection, and calculates the time and time. A method for measuring the equiaxed crystal ratio of a slab, characterized in that the thickness of the equiaxed crystal portion is determined from the thickness of the slab and the ultrasonic propagation velocity of each portion of the equiaxed crystal and columnar crystal.
JP14107279A 1979-10-31 1979-10-31 Measurement method of isometric ratio of cast-iron piece Granted JPS5664655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14107279A JPS5664655A (en) 1979-10-31 1979-10-31 Measurement method of isometric ratio of cast-iron piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14107279A JPS5664655A (en) 1979-10-31 1979-10-31 Measurement method of isometric ratio of cast-iron piece

Publications (2)

Publication Number Publication Date
JPS5664655A JPS5664655A (en) 1981-06-01
JPS6235617B2 true JPS6235617B2 (en) 1987-08-03

Family

ID=15283572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14107279A Granted JPS5664655A (en) 1979-10-31 1979-10-31 Measurement method of isometric ratio of cast-iron piece

Country Status (1)

Country Link
JP (1) JPS5664655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625797Y2 (en) * 1987-03-25 1994-07-06 株式会社コロナ Oil burning appliances

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131557A (en) * 1982-01-12 1983-08-05 Nippon Steel Corp Non-contact measuring method for ultrasonic wave

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126992A (en) * 1977-04-12 1978-11-06 Nippon Steel Corp Discriminating method of casting structure by ultrasonic waves
JPS5492387A (en) * 1977-12-29 1979-07-21 Sumitomo Metal Ind Noncontact supersonic inspecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126992A (en) * 1977-04-12 1978-11-06 Nippon Steel Corp Discriminating method of casting structure by ultrasonic waves
JPS5492387A (en) * 1977-12-29 1979-07-21 Sumitomo Metal Ind Noncontact supersonic inspecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625797Y2 (en) * 1987-03-25 1994-07-06 株式会社コロナ Oil burning appliances

Also Published As

Publication number Publication date
JPS5664655A (en) 1981-06-01

Similar Documents

Publication Publication Date Title
US5680212A (en) Sensitive and fast response optical detection of transient motion from a scattering surface by two-wave mixing
CN108280824B (en) Laser shearing speckle interference defect detection system based on image registration and fusion
CN110687204A (en) Laser ultrasonic detection method and device
JPH08285823A (en) Ultrasonic inspection apparatus
CN211627451U (en) Laser ultrasonic detection device
KR100496826B1 (en) Apparatus and method of noncontact measurement of crystal grain size
JPS6235617B2 (en)
Liu et al. Accuracy control of three-dimensional Nd: YAG laser shaping by ablation
JPS6014298B2 (en) Ultrasonic transmission and reception method using laser light
JPS5831872B2 (en) Non-contact ultrasonic flaw detection method
Mitra et al. An optical fibre interferometer for remote detection of laser generated ultrasonics
US5042302A (en) Phase-accurate imaging and measuring of elastic wave fields with a laser probe
JPS6243497B2 (en)
JPH04178538A (en) Method and apparatus for generating and detecting ultrasonic waves in sample
JP4104487B2 (en) Grain aspect ratio measuring apparatus and grain aspect ratio measuring method
JPH08285822A (en) Ultrasonic inspection apparatus
JPH1183812A (en) Ultrasonic wave detecting method by laser beam and device therefor
KR100951233B1 (en) An apparatus and method for measuring the grain aspect ratio
JPS6275363A (en) Laser distance measuring apparatus
JP4471713B2 (en) Method and apparatus for separating and measuring recrystallization rate and grain aspect ratio
Ueha et al. Research note: Vibration amplitude measurement using a fringe-counting technique
Mizutani et al. Measurement of fine-particle-velocity under spatial frequency domain using a Fourier transform spectrometer
Matsuda et al. Precise laser ultrasonic technique with application to silicon velocity measurements
JP2623782B2 (en) Optical fiber temperature distribution measurement method
Garcia et al. Noncontacting laser ultrasonic generation and detection at the surface of molten metal