JPS6275363A - Laser distance measuring apparatus - Google Patents

Laser distance measuring apparatus

Info

Publication number
JPS6275363A
JPS6275363A JP60217054A JP21705485A JPS6275363A JP S6275363 A JPS6275363 A JP S6275363A JP 60217054 A JP60217054 A JP 60217054A JP 21705485 A JP21705485 A JP 21705485A JP S6275363 A JPS6275363 A JP S6275363A
Authority
JP
Japan
Prior art keywords
light
signal
laser
detector
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60217054A
Other languages
Japanese (ja)
Inventor
Hidemi Takahashi
秀実 高橋
Minoru Kimura
実 木村
Hiroyuki Naito
宏之 内藤
Reiji Sano
佐野 令而
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60217054A priority Critical patent/JPS6275363A/en
Publication of JPS6275363A publication Critical patent/JPS6275363A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate measurement free from effects of background noise, by performing a heterodyne detection with combination of a signal light subjected to a frequency shift and a reference light not subjected to the same. CONSTITUTION:A laser light from a laser oscillator 1 is divided with a beam splitter 4 and one thereof is supplied to a heterodyne detector 16 via a reflecting mirror 15 as reference light. The other thereof is inputted to an acousto-optical light modulation element 13 and subjected to a frequency shift by interaction with a high frequency signal from a high frequency oscillator 5 to generate a diffraction light with a stressed intensity, which irradiates an object 20 via reflecting mirrors 51 and 52. A detector 16 performs a heterodyne detection of a differential frequency signal 17 between the reflected light from the object 20 and the reference light. The phase of the signal 17 is delayed in proportion to the distance to the object 20. A phase difference between the reference signal 5 from an oscillator 5 and the signal 17 is detected with a phase detector 12. This enables measurement of the distance to the object 20 even with a weak reflected light free from effects of any background noise.

Description

【発明の詳細な説明】 産業上の利用分野 従来の技術 対象物までの絶対距離をレーザーを用いて測定すること
はロボットの遠隔操作のための視覚情報源として最近注
目されている。このようなレーザー測距装置は三角法を
用いるものと光の往復時間を測定するものとに大別され
、後者はさらにパルスレーザ−を用いる方式と連続波発
振レーザーを強度変調する方式に分けられる。ロボット
の視覚等の比較的短い距離の測定には連続波発振レーザ
ー強度変調方式が適しており、この方式に関しては例え
ばプロシーディンゲス・オブ・ザ・アイ・イー・イー・
イー第65巻206〜220頁(Proc。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application Prior Art Measuring the absolute distance to an object using a laser has recently attracted attention as a source of visual information for remote control of robots. Such laser distance measuring devices are broadly divided into those that use trigonometry and those that measure the round trip time of light, and the latter can be further divided into those that use pulsed lasers and those that modulate the intensity of continuous wave lasers. . Continuous wave laser intensity modulation is suitable for measuring relatively short distances such as robot vision, and this method is described in, for example, Proceedings of the I.E.
E Vol. 65, pp. 206-220 (Proc.

IEEE vol、55 、 [)I)206〜220
 、1977) ニ記載すしている。以下、第2図を参
照して、従来の強度変調方式レーザー測距装置について
説明する。
IEEE vol, 55, [)I) 206-220
, 1977). Hereinafter, a conventional intensity modulation type laser distance measuring device will be explained with reference to FIG.

第2図においてレーザー1からの出力光を発振器3によ
って駆動される電気光学光変調器2に、よって強度変調
する。強度変調されたレーザー光は反射鏡5によって対
象物20に照射される。レーザー光の一部はビームスプ
’J yター4によって検出器6に導かれ、レーザー出
力をモニターするさ同時に、測距のための参照信号7を
発生する。対象物20からの反射光は反射鏡8によって
検出器9に導かれ、信号波10を発生する。このとき、
信号波10の振幅はレーザー光に対する対象物20の反
射率ならびに対象物20まての距離に対応して異なるた
め、強度検出器11によって信号波10の強度を検出し
、一方反射鏡5によってレーザー光の走査を行なえば、
テレヒカメラによる測定と同一の画像情報が得られる。
In FIG. 2, the output light from a laser 1 is intensity-modulated by an electro-optic light modulator 2 driven by an oscillator 3. The intensity-modulated laser beam is irradiated onto the object 20 by the reflecting mirror 5. A portion of the laser light is guided by a beam splitter 4 to a detector 6, which monitors the laser output and generates a reference signal 7 for ranging. The reflected light from the object 20 is guided to a detector 9 by a reflecting mirror 8, and a signal wave 10 is generated. At this time,
Since the amplitude of the signal wave 10 differs depending on the reflectance of the object 20 with respect to the laser beam and the distance to the object 20, the intensity of the signal wave 10 is detected by the intensity detector 11, while the intensity of the signal wave 10 is detected by the reflector 5. If you scan the light,
The same image information as that measured by a TV camera can be obtained.

また、信号波10の位相は対象物20まての距離に比例
して遅れる。従って、位相検出器12によって参照信号
7と信号波10との位相差を測定することによって対象
物までの距離が測定できる。
Further, the phase of the signal wave 10 is delayed in proportion to the distance to the object 20. Therefore, by measuring the phase difference between the reference signal 7 and the signal wave 10 using the phase detector 12, the distance to the object can be measured.

発明か解決しようさする問題点 しかし、以上のような構成ではバンクグラウンドに存在
する光がノイズとして影響するため、微弱な反射光を測
定できず、また良い測定精度が得られないという問題を
有していた。本発明は上記問題を解決するもので、ノイ
ズに強く、測定精度のよいレーサー測距装置を提供する
ことを目的としている。
Problems to be Solved by the Invention However, with the above configuration, the light existing in the bank ground affects noise, so weak reflected light cannot be measured and good measurement accuracy cannot be obtained. Was. The present invention solves the above problems, and aims to provide a laser distance measuring device that is resistant to noise and has high measurement accuracy.

問題点を解決するための手段 」二記目的を達成するために、本発明はレーザー光を音
響光学光変調素子(以下AOMと記す)に入射して周波
数がシフトし、強度変調された光を得、これを対象物に
照射して信号光を得、この信号光と周波数シフトしてい
ない参照光とをヘテロダイン検波して得られた差周波信
号の位相遅れにより測距するようにしたレーザー測距装
置である。
In order to achieve the second object of "Means for Solving the Problems", the present invention inputs laser light into an acousto-optic modulator (hereinafter referred to as AOM) to shift the frequency and generate intensity-modulated light. This laser beam is irradiated onto an object to obtain a signal light, and distance measurement is performed by heterodyne detection of this signal light and a reference light whose frequency has not been shifted, and based on the phase delay of the difference frequency signal obtained. It is a distance device.

作    用 本発明は上記構成によりAOMによって周波数シフトし
た光のみを被測定物に照射して信号光とし、これと周波
数シフトしていない参照光とでヘテロダイン検波するた
め、バックグラウンドノイズの影響を受けず、精度のよ
い測定が行なえる。
Function: With the above configuration, the present invention irradiates only the light frequency-shifted by the AOM onto the measured object as signal light, and performs heterodyne detection using this and the reference light whose frequency has not been shifted, so it is not affected by background noise. Therefore, highly accurate measurements can be performed.

実施例 以下本発明の実施例について図面とともに詳細に説明す
る。第1図は本発明によるレーザー測距装置の実施例を
示す全体構成図である。レーザー発振器1からのレーザ
ー光はビームスブリック−4で2光路に分割され、一方
はAOM13に入射する。AOM13では高周波発振器
5からの高周波信号との相互作用により周波数がシフト
し強度変調された回折光を発生し、反射鏡51 、52
を経て対象物20に照射される。このとき回折を受けな
い非回折光がAOM 13を透過するが、この透過光は
検出器14て検出されレーサ゛−出力をモニタする。
EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall configuration diagram showing an embodiment of a laser distance measuring device according to the present invention. The laser beam from the laser oscillator 1 is split into two optical paths by the beam sub-block 4, and one of the beams enters the AOM 13. The AOM 13 generates frequency-shifted and intensity-modulated diffracted light due to interaction with the high-frequency signal from the high-frequency oscillator 5, and the reflected mirrors 51 and 52
The target object 20 is irradiated with the light. At this time, undiffracted light that is not diffracted passes through the AOM 13, and this transmitted light is detected by a detector 14 to monitor the laser output.

対象物20からの反射光は部分反射鏡15により反射さ
れヘテロダイン検波器16に入射する。
The reflected light from the object 20 is reflected by the partial reflecting mirror 15 and enters the heterodyne detector 16 .

一方ビームスプリッタ−4で分割された他方のレーサー
光が参照光として部分反射鏡15を通ってヘテロダイン
検波器16に供給される。ヘテロダイン検波器16では
この対象物20からの反射光とビームスブリック−4か
らの参照光との差周波信号17をヘテロダイン検出し、
この差周波信号17の強度を強度検出器11により検出
して画像情報を得る。差周波信号17の位相は対象物2
0まての距離に比例して遅れるため、高周波発振器5か
らの参照信号7と差周波信号17との位相差を位相検出
器12によって検出すれば、対象物までの距離が求まる
。すなわち、位相差をダ、差周波数をν、光速をCとす
ると、対象物までの距離りは4 π ν このように、本実施例によればレーザー光をAOMによ
って高周波発振器5の生ずる周波数だけ周波数シフトさ
せた光のみを選択して対象物からの信号光として使用し
、これと周波数シフトしていないレーザー光とのヘテロ
ダイン検波をとっているためバンクグラウンドに存在す
る光の影響をなくし微弱な反射光でも測定することがで
きる。
The other laser beam split by the beam splitter 4 is supplied as a reference beam to a heterodyne detector 16 through a partially reflecting mirror 15. The heterodyne detector 16 heterodyne detects the difference frequency signal 17 between the reflected light from the object 20 and the reference light from the beam subric-4,
The intensity of this difference frequency signal 17 is detected by the intensity detector 11 to obtain image information. The phase of the difference frequency signal 17 is
Since the delay is proportional to the distance to the object, the distance to the object can be determined by detecting the phase difference between the reference signal 7 from the high frequency oscillator 5 and the difference frequency signal 17 using the phase detector 12. That is, if the phase difference is Da, the difference frequency is ν, and the speed of light is C, the distance to the object is 4 π ν Thus, according to this embodiment, the laser beam is transmitted by the AOM only at the frequency generated by the high-frequency oscillator 5. Only the frequency-shifted light is selected and used as the signal light from the target object, and heterodyne detection is performed between this and the non-frequency-shifted laser light, eliminating the influence of light existing in the bank ground and detecting weak signals. Measurement can also be performed using reflected light.

発明の効果 以上のように、本発明はレーザー光を音響光学光変調素
子に入射して周波数がシフトした光を得、これを被測定
物に照射して得た反射光をヘテロゲイン検波器に加え、
周波数シフトしていないレーサー光との差周波信号をヘ
テロダイン検出して、この信号の位相遅れにより測距す
るようにしたレーザー測距装置で、周波数シフトした信
号光と周波数シフトしていない参照光とのヘテロダイン
検波を用いるため、バックグラウンドノイズの影響を受
けず、また、微弱な反射光の測定も可能な、測定精度の
よいレーザー測距装置を提供する。
Effects of the Invention As described above, the present invention injects a laser beam into an acousto-optic light modulation element to obtain frequency-shifted light, irradiates the object to be measured with the light, and adds the resulting reflected light to a heterogain detector. ,
This is a laser ranging device that heterodyne detects the difference frequency signal between the frequency-shifted laser beam and the laser beam, and measures the distance based on the phase delay of this signal. Since the present invention uses heterodyne detection, it is possible to provide a laser distance measuring device with high measurement accuracy, which is not affected by background noise, and can also measure weak reflected light.

第1図は本発明の一実施例におけるレーザー測距装置の
概略図、第2図は従来のレーザー測距装置の概略図であ
る。
FIG. 1 is a schematic diagram of a laser ranging device according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional laser ranging device.

1・・・レーザー発振器、5・・高周波発振器、7・・
・参照信号、12  位相検出器、13・・音響光学光
変調器、16・・・ヘテロダイン検波、17・差周波信
号。
1... Laser oscillator, 5... High frequency oscillator, 7...
-Reference signal, 12. Phase detector, 13.. Acousto-optic optical modulator, 16.. Heterodyne detection, 17. Difference frequency signal.

代理人の氏名 弁理士 中 尾 敏 男 はか1名第1
図 第2図
Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2

Claims (1)

【特許請求の範囲】[Claims] レーザー光から音響光学光変調素子によって強度変調さ
れ、周波数シフトされた回折光を発生し、これを対象物
に照射し、反射光を周波数シフトしていない参照光とヘ
テロダイン検波した信号の位相遅れにより対象物までの
距離を測定するレーザー測距装置。
A laser beam is intensity-modulated by an acousto-optic light modulation element to generate frequency-shifted diffracted light, which is irradiated onto the target object, and the reflected light is generated by a phase delay between the non-frequency-shifted reference light and the heterodyne-detected signal. A laser distance measuring device that measures the distance to an object.
JP60217054A 1985-09-30 1985-09-30 Laser distance measuring apparatus Pending JPS6275363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217054A JPS6275363A (en) 1985-09-30 1985-09-30 Laser distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217054A JPS6275363A (en) 1985-09-30 1985-09-30 Laser distance measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6275363A true JPS6275363A (en) 1987-04-07

Family

ID=16698103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217054A Pending JPS6275363A (en) 1985-09-30 1985-09-30 Laser distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6275363A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488175A (en) * 1987-09-30 1989-04-03 Agency Ind Science Techn Laser distance measuring instrument
US5329467A (en) * 1990-03-30 1994-07-12 Nkk Corporation Distance measuring method and apparatus therefor
WO2002071097A3 (en) * 2001-03-06 2003-10-16 Univ California Optical distance measurement device and method thereof
JP2008039640A (en) * 2006-08-08 2008-02-21 Mitsubishi Electric Corp Coherent rider device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488175A (en) * 1987-09-30 1989-04-03 Agency Ind Science Techn Laser distance measuring instrument
JPH05677B2 (en) * 1987-09-30 1993-01-06 Kogyo Gijutsuin
US5329467A (en) * 1990-03-30 1994-07-12 Nkk Corporation Distance measuring method and apparatus therefor
WO2002071097A3 (en) * 2001-03-06 2003-10-16 Univ California Optical distance measurement device and method thereof
JP2008039640A (en) * 2006-08-08 2008-02-21 Mitsubishi Electric Corp Coherent rider device

Similar Documents

Publication Publication Date Title
US5610705A (en) Doppler velocimeter
US5827971A (en) Optical vibration detection spectral analysis assembly and method for detecting vibration in an object of interest
US6876441B2 (en) Optical sensor for distance measurement
EP0819924A2 (en) Apparatus and method for measuring characteristics of optical pulses
JPS6235051B2 (en)
JP3450446B2 (en) Optical displacement detector
JPS6371674A (en) Laser distance measuring instrument
JPS6319822B2 (en)
JPS62127685A (en) Laser distance measuring instrument
JPS6275363A (en) Laser distance measuring apparatus
US4832492A (en) Heterodyne michelson interferometer for polarization measurements
JPH06186337A (en) Laser distance measuring equipment
JPS6371675A (en) Laser distance measuring instrument
JP2717600B2 (en) Thin film evaluation equipment
US5539516A (en) Scanning pulsed profilometer
JPH01124785A (en) Laser distance measuring instrument
JP3500215B2 (en) Voltage measuring device
US4270388A (en) Method and apparatus employing zero order Raman-Nath diffraction information to visualize longitudinal character of an acoustic wave field
EP0307451A1 (en) Apparatus and method for locating the direction of an atomic beam.
JPH04121673A (en) Light sampler
JPS6379082A (en) Laser distance measuring apparatus
KR100270365B1 (en) High Speed Scanning Interferometer System
JP2000002690A (en) Optical interferometer for detection ultrasonic oscillation
JPH05264516A (en) Noncontact detection method and device for ultrasonic wave
RU2208803C1 (en) Radio signal frequency meter