JPS623232B2 - - Google Patents

Info

Publication number
JPS623232B2
JPS623232B2 JP25114184A JP25114184A JPS623232B2 JP S623232 B2 JPS623232 B2 JP S623232B2 JP 25114184 A JP25114184 A JP 25114184A JP 25114184 A JP25114184 A JP 25114184A JP S623232 B2 JPS623232 B2 JP S623232B2
Authority
JP
Japan
Prior art keywords
nickel silver
processing
hot
present
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25114184A
Other languages
Japanese (ja)
Other versions
JPS61130477A (en
Inventor
Norihiko Kamyama
Kiichi Akasaka
Toshiaki Takano
Yasuo Maeda
Arata Tokunaga
Yoshihiro Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP25114184A priority Critical patent/JPS61130477A/en
Publication of JPS61130477A publication Critical patent/JPS61130477A/en
Publication of JPS623232B2 publication Critical patent/JPS623232B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は洋白の加工方法の改良に関するもので
あり、特に熱間加工を可能にして製造工程の合理
化を図つたものである。 〔従来の技術〕 一般にNi7〜25%,Zn5〜32%,残部Cuからな
る合金は洋白とよばれ、優れた強度と他の非鉄ば
ね材料に比して優れたばね特性を有するため電気
機器及び電子機器の部品として広く使用されてい
る。然しながら洋白を加工するにおいて、熱間加
工性が悪いため専ら冷間加工のみで加工されてい
るため必然的にその製品はコストアツプになつて
いる。 即ち洋白の鋳塊を熱間圧延を行うと圧延板の表
面に大きな亀裂を生じ、その後の圧延加工を不可
能にする。又洋白は加工硬化が大きいため中間焼
鈍を多数回行なわねばならずこれが製品の工程を
複雑化し且つコストアツプに著しい影響を及ぼし
ているものである。 〔発明が解決しようとする問題点〕 本発明はかかる現状に鑑み鋭意研究を行つた結
果、洋白の加工方法として、洋白の鋳塊を熱間加
圧により圧延するも冷間加工の場合に比して何等
遜色のない表面状態即ち何等割れを発生しない製
品をうる加工方法を開発したものである。 〔問題点を解決するための手段〕 本発明方法はNi7〜25wt%,Zn5〜32wt%,残
部Cuからなる洋白の鋳塊を加工率10〜30%にて
熱間加工を行つた後、冷却し再度加熱して熱間加
工を施すことを特徴とするものである。 即ち洋白の鋳塊について種々の加工率にて熱間
加工例えば熱間圧延を行つたところ、1回目の熱
間圧延率を10〜30%の範囲により行い、一旦冷却
した後、再度加熱することにより通常の銅合金に
て行われている90〜95%程度の熱間圧延を行つて
も何等亀裂を生じないことを見出したものであ
る。 本発明方法は第1回目の熱間加工を10〜30%の
加工率にて行うことが極めて重要であり、この加
工率を10〜30%に限定した理由は、10%未満にて
行つた場合には加工が不十分なため熱間加工後の
冷却過程及び再熱過程において微細な再結晶粒が
十分に生成せず更に熱間加工を行わんとすると表
面に亀裂を生ずるためである。又30%を超えた場
合には圧延板の表面に亀裂を生じ第2回目の熱間
加工時にこれが大きな亀裂に成長するためであ
る。 なお熱間加工の加熱温度は600゜〜800℃の範囲
にて行うことが望ましく、600℃未満では十分に
加工を行うことが出来ず、又800℃を超した場合
には加熱に余分なエネルギーを要し、経済的でな
いためである。 又本発明において熱間加工後冷却するものであ
るが、その温度は常温附近まで冷却することが必
要である。 〔作 用〕 本発明方法は洋白の加工方法において、熱間加
工により行うことが出来るため従来の冷間加工に
対し変形抵抗を極めて小さくして加工することが
出来る。即ち洋白は硬質な銅合金であるため冷間
加工による場合には前記の如く中間焼鈍に加えて
莫大な動力並に特種な工具を必要とするものであ
るが、熱間加工を行うことにより上記の中間焼鈍
を行うことなく、動力費は低減し且つ通常の工具
により加工することが出来る。〔実施例〕 高周波溶触炉により銅を溶触し、これにNiを
添加した後、Znを添加し、これを連続水冷鋳造
により鋳造して第1表に示す組成からなる洋白鋳
塊(厚さ100mm,巾250mm,300Kg/1チヤージ)
を作製した。この鋳塊を600〜800℃の範囲にて加
熱し種々の加工率にて熱間圧延を行い、常温に冷
却せしめた後再度600゜〜800℃の範囲に加熱を行
つて厚さ10mm及び5mmまで熱間圧延を行つて本発
明洋白板をえた。 なお本発明洋白板と比較するために、上記の洋
白鋳塊を第1表に示す如く本発明方法以外の条件
にて圧延を行つて比較例洋白板をえた。 斯くして得た本発明洋白板及び比較例洋白板に
ついて、その表面の割れ発生の有無を試験したそ
の結果は第1表に示す通りである。
[Industrial Field of Application] The present invention relates to an improvement in the processing method for nickel silver, and in particular, to rationalize the manufacturing process by making hot processing possible. [Prior art] Generally, an alloy consisting of 7 to 25% Ni, 5 to 32% Zn, and the balance Cu is called nickel silver, and it is used in electrical equipment and other applications because it has excellent strength and spring properties compared to other non-ferrous spring materials. Widely used as a component in electronic equipment. However, when processing nickel silver, it is processed exclusively by cold processing due to its poor hot workability, which inevitably increases the cost of the product. That is, when a nickel silver ingot is hot rolled, large cracks occur on the surface of the rolled plate, making subsequent rolling impossible. Further, since nickel silver is highly work hardened, intermediate annealing must be performed many times, which complicates the manufacturing process and significantly increases costs. [Problems to be Solved by the Invention] The present invention has been developed as a result of intensive research in view of the current situation.As a processing method for nickel silver, a nickel silver ingot is rolled by hot pressing, but in the case of cold working. We have developed a processing method that produces a product with a surface condition that is comparable to that of the previous one, that is, without any cracks. [Means for solving the problem] The method of the present invention hot-works a nickel silver ingot consisting of 7 to 25 wt% Ni, 5 to 32 wt% Zn, and the balance Cu at a processing rate of 10 to 30%. It is characterized by hot working by cooling and heating again. That is, when a nickel silver ingot is subjected to hot working, e.g., hot rolling, at various processing rates, the first hot rolling rate is in the range of 10 to 30%, and after cooling once, it is heated again. It has been found that no cracks occur even when hot rolling is carried out to the extent of 90 to 95%, which is the case with ordinary copper alloys. In the method of the present invention, it is extremely important to perform the first hot working at a processing rate of 10 to 30%, and the reason for limiting this processing rate to 10 to 30% is that In some cases, insufficient processing results in insufficient formation of fine recrystallized grains during the cooling and reheating processes after hot working, and cracks occur on the surface when further hot working is attempted. Moreover, if it exceeds 30%, cracks will occur on the surface of the rolled plate, which will grow into large cracks during the second hot working. It is desirable that the heating temperature for hot processing be in the range of 600° to 800°C; if it is less than 600°C, sufficient processing cannot be performed, and if it exceeds 800°C, excess energy is required for heating. This is because it requires a lot of effort and is not economical. Further, in the present invention, cooling is performed after hot working, and the temperature must be cooled to around room temperature. [Function] The method of the present invention is a method for processing nickel silver, and since it can be carried out by hot working, it can be worked with extremely low deformation resistance compared to conventional cold working. Namely, since nickel silver is a hard copper alloy, cold working requires an enormous amount of power and special tools in addition to intermediate annealing as mentioned above, but hot working Without performing the above-mentioned intermediate annealing, the power cost can be reduced and processing can be performed using ordinary tools. [Example] Copper was melted in a high-frequency melting furnace, Ni was added thereto, Zn was added thereto, and this was cast by continuous water-cooled casting to produce a nickel silver ingot (thickness: 100mm, width 250mm, 300Kg/1 charge)
was created. This ingot was heated in the range of 600 to 800°C, hot rolled at various processing rates, cooled to room temperature, and then heated again in the range of 600 to 800°C to give thicknesses of 10 mm and 5 mm. A nickel white board of the present invention was obtained by hot rolling until the end of the test. For comparison with the nickel silver plate of the present invention, a comparative nickel silver plate was obtained by rolling the above-mentioned nickel silver ingot under conditions other than the method of the present invention as shown in Table 1. The thus obtained nickel silver plates of the present invention and comparative nickel silver plates were tested for the presence or absence of cracks on their surfaces, and the results are shown in Table 1.

〔効 果〕〔effect〕

以上詳述した如く本発明方法によれば製造工程
を短縮しうると共に製造コストを著しく低減しう
る等工業的に極めて有用である。
As detailed above, the method of the present invention is extremely useful industrially, as it can shorten the manufacturing process and significantly reduce manufacturing costs.

Claims (1)

【特許請求の範囲】 1 Ni7〜25wt%,Zn5〜32wt%,残部Cuからな
る洋白の鋳塊を加工率10〜30%にて熱間加工を行
つた後、冷却し再度加熱して熱間加工を施すこと
を特徴とする洋白の加工方法。 2 熱間加工温度を600゜〜800℃の範囲にて行う
ことを特徴とする特許請求の範囲第1項記載の洋
白の加工方法。
[Claims] 1. After hot working a nickel silver ingot consisting of 7 to 25 wt% Ni, 5 to 32 wt% Zn, and the balance Cu at a working rate of 10 to 30%, it is cooled and heated again. A method of processing nickel silver that is characterized by performing temporary processing. 2. The method for processing nickel silver according to claim 1, characterized in that the hot working is carried out at a temperature in the range of 600° to 800°C.
JP25114184A 1984-11-28 1984-11-28 Working method of nickel silver Granted JPS61130477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25114184A JPS61130477A (en) 1984-11-28 1984-11-28 Working method of nickel silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25114184A JPS61130477A (en) 1984-11-28 1984-11-28 Working method of nickel silver

Publications (2)

Publication Number Publication Date
JPS61130477A JPS61130477A (en) 1986-06-18
JPS623232B2 true JPS623232B2 (en) 1987-01-23

Family

ID=17218280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25114184A Granted JPS61130477A (en) 1984-11-28 1984-11-28 Working method of nickel silver

Country Status (1)

Country Link
JP (1) JPS61130477A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2930080T3 (en) * 2013-03-15 2022-12-07 Materion Corp Uniform grain size in hot worked spinodal copper alloy

Also Published As

Publication number Publication date
JPS61130477A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
ES475808A1 (en) Al-Mn Alloy and process of manufacturing semifinished products having improved strength properties
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
KR900006690B1 (en) Method of producing thin sheet of high si-fe alloy
US4439247A (en) Method for manufacture of high-strength high-electroconductivity copper alloy
JPS61143566A (en) Manufacture of high strength and highly conductive copper base alloy
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JPS58113334A (en) Phosphor bronze with superior hot workability
JPS623232B2 (en)
JPH0571659B2 (en)
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPH0314896B2 (en)
JPS6146534B2 (en)
JPH0424420B2 (en)
US3376171A (en) Copper alloy
JPS5911651B2 (en) Superplastic aluminum alloy and its manufacturing method
JPS628491B2 (en)
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JP3872753B2 (en) Aluminum alloy for hole expansion processing and manufacturing method
JPH01162736A (en) High strength and high toughness cu alloy having less characteristic anisotropy
JPH02111850A (en) Manufacture of copper alloy for lead frame
JPH0413421B2 (en)
JPH02111828A (en) Manufacture of copper alloy for lead frame
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture