JPH0413421B2 - - Google Patents

Info

Publication number
JPH0413421B2
JPH0413421B2 JP60025752A JP2575285A JPH0413421B2 JP H0413421 B2 JPH0413421 B2 JP H0413421B2 JP 60025752 A JP60025752 A JP 60025752A JP 2575285 A JP2575285 A JP 2575285A JP H0413421 B2 JPH0413421 B2 JP H0413421B2
Authority
JP
Japan
Prior art keywords
iron
weight
tin
hot
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60025752A
Other languages
Japanese (ja)
Other versions
JPS61186441A (en
Inventor
Shinsuke Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2575285A priority Critical patent/JPS61186441A/en
Publication of JPS61186441A publication Critical patent/JPS61186441A/en
Publication of JPH0413421B2 publication Critical patent/JPH0413421B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、強度が高く、且つ耐熱性に優れ、
IC及びLSI用リードフレーム材として用いて好適
な鉄、錫含有銅合金の製造方法に関する。 〔従来の技術〕 近年、半導体回路の集積度の向上によるリード
フレームのリード幅の狭小化、、薄肉化及び封止
技術の進歩による高価なコバール(54Fe−29Ni
−17Co)、Fe−42Ni合金から比較的安価な銅合
金への転換などの趨勢に伴ない、従来にも増して
高強度、高耐熱性、易加工性といつた面で、リー
ドフレーム材としての銅合金の材質に対する要請
が強くなつてきている。具体的には、引張強度は
65Kg/mm2以上、耐熱性は加熱前の引張強度の80%
の引張強度を与える加熱温度(加熱時間60分)即
ち、半軟化温度で500℃以上といつた条件をいず
れも満足する材料が最適であるとされる。 従来、リードフレーム材としての銅合金として
CDA(米国銅開発協会)合金194、燐青銅、銅−
鉄−錫−燐合金、銅−亜鉛−鉄−錫−燐合金等が
ある。しかしながら、これらはいずれも、上記条
件をすべて満足するものではない。即ち、CDA
合金194は、引張強度45Kg/mm2、耐熱性420℃であ
り、二特性をいずれも充分満足しない。燐青銅は
上記特性が夫々70Kg/mm2、375℃であり、強度は
満足するが、耐熱性がかなり低い。 次に、例えば熱0.15〜1重量%、錫3〜9重量
%、燐0.03〜0.3重量%含有する銅−鉄−錫−燐
合金は、鉄と燐との化合物の析出による強化をね
らつたものであるが、引張強度55Kg/mm2、耐熱性
400℃であり、二特性をいずれも満足しない。 更に、例えば亜鉛0.5〜3.0重量%、鉄0.5〜1.5
重量%、錫1.6〜3.0重量%、燐0.005〜0.2重量%
含有する銅−亜鉛−鉄−錫−燐合金は、鉄の微細
な時効析出による強化をねらつたものであるが、
引張強度60Kg/mm2、耐熱性480℃であり、二特性
をいずれも今少し満足しない。 上記銅−鉄−錫−燐合金や銅−亜鉛−鉄−錫−
燐合金のような鉄、錫含有銅合金における鉄は、
その添加により強度及び耐熱性を向上させる作用
を有するものであるから、鉄の添加量を1〜1.5
重量%より更に増加させることによつて、前記二
特性をいずれも満足させ得ることは考えられる。 然るに、従来、上記鉄、錫含有銅合金は、鋳塊
を700〜950℃に加熱し熱間加工した後、該熱間加
工材を水冷し、更に冷間加工した後、時効処理を
行なうような方法を採用して製造されている。 このような方法を採用すると、鉄、錫含有銅合
金中の鉄を1〜1.5重量%より増加させても、上
記鉄の作用は殆んど発揮されない。即ち、強度が
殆んど飽和するばかりでなく、析出物の大きさと
分布が変動し易い。従つて、結局、このような材
料に溶体化処理が必要となるなど経済的な支障を
生じていた。 〔発明が解決しようとする問題点〕 本発明は、上記事情に鑑みてなされたもので、
引張強度65Kg/mm2以上、耐熱性500℃以上の優れ
た特性を有する、鉄を微細に時効析出させた鉄、
錫含有銅合金を安価な量産品として工業的に製造
することのできる製造方法を提供するものであ
る。 〔問題点を解決するための手段〕 本発明の製造方法は、鉄1.5〜3.0重量%、錫0.8
〜2.5重量%、燐0.005〜0.1重量%を含み、残部が
本質的に銅からなる鋳塊を880〜990℃に加熱し熱
間加工した後、該熱間加工材を780℃以上から20
℃/秒以上の冷却速度で冷却し、次いで冷間加工
して、時効処理した後更に冷間加工を行なうこと
にある。 〔作用〕 以下に本発明製造方法に用いる合金の各成分元
素の作用効果及び各組成の限定理由について説明
する。 鉄1.5重量%未満では鉄の時効析出による引張
強度及び耐熱性の向上が期待できず、鉄3.0重量
%を超えると、鋳造時にγ鉄の粗大な初晶が不均
一に生じ、均一な組成の鋳塊が得にくく、従つ
て、製造されるリードフレーム材の機械的性質の
バラツキが許容される以上に大きくなるので、鉄
を1.5〜3.0重量%の範囲とした。また、錫0.8重量
%未満では引張強度が充分でなく、錫2.5重量%
を超えると、熱間加工時に割れを生じ、該加工の
続行が不可能となるので、錫を0.8〜2.5重量%の
範囲とした。更に、燐0.005重量%未満では健全
な鋳塊が得難く、燐0.1重量%を超えると導電率
の低下が顕著になるので、燐0.005〜0.1重量%の
範囲とした。 次に、本発明方法について説明すると、上記成
分組成の銅合金鋳塊を熱間加工する際、加熱温度
を880〜99℃に限定したのは、880℃未満では鋳造
時に晶出及び析出した鉄が銅合金基地中に十分固
溶せず、最終的に十分な引張強度と耐熱性とを有
する銅合金が得難く、990℃を超えると錫が合金
の結晶粒界に拡散して濃縮し、粒界脆性を生じ易
い。甚だしい場合にはそこで部分融解を生じて次
の熱間加工において割れないし破壊を生じるから
である。 熱間加工後の冷却は、780℃以上から20℃/秒
以上の冷却速度で行なう必要があるが、780℃よ
り低下してからでは、また20℃/秒未満の冷却速
度で冷却すると、鉄の析出が十分阻止できず、最
終的に十分な引張強度と耐熱性とを有する銅合金
が得難いからである。 上記のようにして熱間加工後冷却して得られた
材料は、冷間加工した後、時効処理によつて銅合
金基地中に鉄を微細に析出させることができ、こ
れによつて充分な耐熱性を与え、後の冷間加工に
よつて十分な引張強度を有する銅合金を得ること
ができる。なお、時効処理は公知の、例えば350
〜550℃で4時間以内の処理で良い。 〔実施例〕 次に本発明の銅合金の製造方法を、その実施例
によつて説明する。 実施例 1 通常のピース状電気銅を高周波大気溶解炉で黒
鉛ルツボを用いて溶解した後、直ちに溶湯表面を
木炭系フラツクスで被覆した。続いて目的値に応
じた鉄及び錫を、この順序で夫々電解鉄、粒状金
属錫で加え溶解し、更に目的値に応じた燐を銅と
燐との中間合金(燐15重量%)で加え溶解した
後、複数の鋳型に鋳込んで幅105mm、厚さ35mm、
長さ210mmの鋳塊を複数本得た。鋳塊の組成は第
1表の通りであつた。 これらの鋳塊の品質を、厚さ方向に一面当り5
mm面削した表面のカラーチエツク法による観察及
び鋳塊から採取した検鏡試料のミクロ組織観察を
行なうことにより判定した。得られた判定結果は
やはり第1表に示した。なお、第1表で○印は、
カラーチエツク法による観察で表面欠陥がなく、
且つミクロ組織観察でγ鉄の粗大な初晶が生成し
ていなかつたものであり、×印はその他のもので
ある。
[Industrial Application Field] The present invention has high strength and excellent heat resistance,
The present invention relates to a method for manufacturing an iron- and tin-containing copper alloy suitable for use as a lead frame material for ICs and LSIs. [Prior art] In recent years, the lead width of lead frames has become narrower due to the improvement in the degree of integration of semiconductor circuits, and the cost of expensive Kovar (54Fe-29Ni
-17Co), Fe-42Ni alloy to relatively inexpensive copper alloy, it has become a lead frame material with higher strength, higher heat resistance, and easier workability than before. There are increasing demands for copper alloy materials. Specifically, the tensile strength is
65Kg/mm2 or more , heat resistance is 80% of tensile strength before heating
The optimal material is said to satisfy the following conditions: heating temperature (heating time: 60 minutes) that provides a tensile strength of , that is, a semi-softening temperature of 500°C or higher. Traditionally, copper alloys were used as lead frame materials.
CDA (Copper Development Association) Alloy 194, Phosphor Bronze, Copper
There are iron-tin-phosphorus alloys, copper-zinc-iron-tin-phosphorus alloys, etc. However, none of these satisfies all of the above conditions. That is, C.D.A.
Alloy 194 has a tensile strength of 45 Kg/mm 2 and a heat resistance of 420° C., neither of which fully satisfies these two properties. Phosphor bronze has the above characteristics of 70 kg/mm 2 and 375°C, respectively, and although the strength is satisfactory, the heat resistance is quite low. Next, for example, a copper-iron-tin-phosphorus alloy containing 0.15 to 1% by weight of heat, 3 to 9% by weight of tin, and 0.03 to 0.3% by weight of phosphorus is intended to be strengthened by precipitation of a compound of iron and phosphorus. However, the tensile strength is 55Kg/mm 2 and the heat resistance
400℃, which does not satisfy either of the two characteristics. Furthermore, for example, zinc 0.5-3.0% by weight, iron 0.5-1.5%
wt%, tin 1.6-3.0 wt%, phosphorus 0.005-0.2 wt%
The copper-zinc-iron-tin-phosphorus alloy contained is intended to strengthen through fine aging precipitation of iron.
It has a tensile strength of 60 Kg/mm 2 and a heat resistance of 480°C, both of which are slightly unsatisfactory. The above-mentioned copper-iron-tin-phosphorus alloy and copper-zinc-iron-tin
Iron in phosphorus alloys, iron in tin-containing copper alloys,
The addition of iron has the effect of improving strength and heat resistance, so the amount of iron added should be 1 to 1.5.
It is conceivable that both of the above two characteristics can be satisfied by further increasing the weight percentage. However, conventionally, the above-mentioned iron and tin-containing copper alloys are produced by heating the ingot to 700 to 950°C, hot working, cooling the hot worked material with water, further cold working, and then subjecting it to aging treatment. It is manufactured using a method. When such a method is adopted, even if the amount of iron in the iron-tin-containing copper alloy is increased to more than 1 to 1.5% by weight, the above-mentioned effect of iron is hardly exhibited. That is, not only the strength is almost saturated, but also the size and distribution of precipitates tend to fluctuate. Consequently, such materials eventually require solution treatment, resulting in economical problems. [Problems to be solved by the invention] The present invention has been made in view of the above circumstances, and
Iron made by finely precipitated iron with excellent properties such as tensile strength of 65Kg/mm2 or more and heat resistance of 500℃ or more.
The present invention provides a manufacturing method capable of industrially manufacturing a tin-containing copper alloy as an inexpensive mass-produced product. [Means for solving the problem] The manufacturing method of the present invention uses 1.5 to 3.0% by weight of iron and 0.8% by weight of tin.
After hot-working an ingot containing ~2.5% by weight and 0.005-0.1% by weight of phosphorus, the remainder consisting essentially of copper, the hot-worked material is heated to 780°C or higher for 20 minutes.
The purpose is to cool the material at a cooling rate of .degree. C./second or more, then cold work it, and after aging treatment, further cold work it. [Function] The function and effect of each component element of the alloy used in the manufacturing method of the present invention and the reasons for limiting each composition will be explained below. If it is less than 1.5% by weight of iron, no improvement in tensile strength or heat resistance can be expected due to aging precipitation of iron, and if it exceeds 3.0% by weight, coarse primary crystals of γ iron will be formed non-uniformly during casting, making it difficult to maintain a uniform composition. Since it is difficult to obtain an ingot and, therefore, the variation in mechanical properties of the manufactured lead frame material becomes larger than permissible, the iron content was set in the range of 1.5 to 3.0% by weight. In addition, if the tin content is less than 0.8% by weight, the tensile strength will not be sufficient, and if the tin content is less than 0.8% by weight, the tensile strength will not be sufficient.
If it exceeds this amount, cracks will occur during hot working, making it impossible to continue the working, so the tin content is set in the range of 0.8 to 2.5% by weight. Further, if the phosphorus content is less than 0.005% by weight, it is difficult to obtain a sound ingot, and if the phosphorus content exceeds 0.1% by weight, the electrical conductivity decreases significantly, so the phosphorus content is set in the range of 0.005 to 0.1% by weight. Next, to explain the method of the present invention, when hot working a copper alloy ingot having the above-mentioned composition, the heating temperature was limited to 880 to 99°C. tin does not form a solid solution in the copper alloy matrix, making it difficult to obtain a copper alloy with sufficient tensile strength and heat resistance.When the temperature exceeds 990℃, tin diffuses into the grain boundaries of the alloy and becomes concentrated. Grain boundary embrittlement is likely to occur. In extreme cases, partial melting may occur there, resulting in cracking or destruction during the subsequent hot working. Cooling after hot working must be carried out at a cooling rate of 20°C/sec or more from 780°C or above, but if cooling is performed after the temperature drops below 780°C or at a cooling rate of less than 20°C/sec, the steel This is because the precipitation of copper cannot be sufficiently inhibited, and it is ultimately difficult to obtain a copper alloy having sufficient tensile strength and heat resistance. The material obtained by cooling after hot working as described above can be subjected to aging treatment after cold working to finely precipitate iron in the copper alloy matrix, thereby achieving sufficient It is possible to obtain a copper alloy that provides heat resistance and has sufficient tensile strength through subsequent cold working. In addition, the aging treatment is a well-known method, for example, 350
Processing within 4 hours at ~550°C is sufficient. [Example] Next, the method for producing a copper alloy of the present invention will be explained with reference to Examples. Example 1 After melting ordinary piece-shaped electrolytic copper in a graphite crucible in a high-frequency atmospheric melting furnace, the surface of the molten metal was immediately coated with a charcoal flux. Next, iron and tin according to the target value are added and dissolved in this order as electrolytic iron and granular metal tin, respectively, and phosphorus according to the target value is added as an intermediate alloy of copper and phosphorus (15% by weight of phosphorus). After melting, it is cast into multiple molds to create a product with a width of 105 mm and a thickness of 35 mm.
Multiple ingots with a length of 210 mm were obtained. The composition of the ingot was as shown in Table 1. The quality of these ingots was determined by
Judgment was made by observing the milled surface using the color check method and observing the microstructure of a microscopic specimen taken from the ingot. The obtained judgment results are also shown in Table 1. In addition, in Table 1, the ○ marks are
No surface defects observed by color check method.
In addition, microstructural observation revealed that coarse primary crystals of γ iron were not formed, and the x marks indicate other cases.

【表】 第1表から、燐を適量含有している鋳塊は、鉄
量が過剰でさえなければ(鋳塊No.1〜13)、品質
が良好であり、燐量が過少な鋳塊(鋳塊No.14)及
び鉄量が過剰な鋳塊(鋳塊No.15)は、品質が不良
であることが判る。 実施例 2 実施例1で厚さ方向に一面当り5mm面削した鋳
塊から幅30mm、厚さ25mm、長さ100mmの試片を採
取した。これらの試片を850、900、950、980及び
1000℃に加熱し、12mmの板厚まで熱間圧延した。
熱間圧延中、材料の温度を赤外線温度計で測定し
熱間圧延を800℃以上で行なうようにした。 従つて、熱間圧延が780℃未満で行なわれると
判断した場合は、再び最初の加熱温度まで加熱し
た後、熱間圧延した。そして、12mmの板厚を得る
まで必要によりこの加熱−圧延を繰返した。 得られた熱間圧延材は、圧延時、割れないし破
壊を生じ、以後の加工を断念した材料を除いて、
直ちにシヤワー冷却により水冷却した。このシヤ
ワー水冷却の冷却速度は60〜70℃/秒であつた。 この冷却された熱間圧延材は更に、面削した
後、11mmから0.8mmの板厚まで冷間圧延した。こ
れを550℃で1時間時効処理を行ない、引張強度
を測定した。得られた結果を第2表に示す。
[Table] From Table 1, ingots containing an appropriate amount of phosphorus are of good quality unless the amount of iron is excessive (ingots No. 1 to 13), and ingots containing too little phosphorus are of good quality. (Ingot No. 14) and an ingot with an excessive amount of iron (Ingot No. 15) are found to be of poor quality. Example 2 A specimen with a width of 30 mm, a thickness of 25 mm, and a length of 100 mm was taken from an ingot that had been milled by 5 mm per side in the thickness direction in Example 1. These specimens are 850, 900, 950, 980 and
It was heated to 1000°C and hot rolled to a thickness of 12mm.
During hot rolling, the temperature of the material was measured with an infrared thermometer, and hot rolling was carried out at a temperature of 800°C or higher. Therefore, when it was determined that hot rolling was to be performed at a temperature lower than 780°C, hot rolling was performed after heating to the initial heating temperature again. This heating and rolling process was repeated as necessary until a plate thickness of 12 mm was obtained. The obtained hot-rolled materials were treated with the exception of materials that cracked or broke during rolling and were abandoned for further processing.
Immediately water cooling was performed by shower cooling. The cooling rate of this shower water cooling was 60 to 70°C/sec. This cooled hot-rolled material was further face-milled and then cold-rolled from 11 mm to a thickness of 0.8 mm. This was aged at 550°C for 1 hour, and the tensile strength was measured. The results obtained are shown in Table 2.

【表】【table】

【表】 第2表から、本発明例(鋳塊No.1〜9)の900
〜980℃に加熱し熱間圧延した試料は、他の試料
で熱間圧延が最後まで可能であつた試料に比べて
引張強度がいずれも50Kg/mm2より大きく、また、
上記試料が550℃で1時間加熱したものであるの
で断熱性も良好で、引張強度、耐熱性共に一段と
改善されること及び上記以外の試料は、鋳塊品質
の不良によると推察される引張強度測定値の大き
なバラツキを示したり、熱間圧延時に割れあるい
は破断を生じ以後の加工を断念せざるを得なかつ
たことが判る。 実施例 3 実施例2で別途採取した3本の幅30mm、厚さ25
mm、長さ100mmの本発明例の鋳塊試片から、夫々
を長さ方向に二分して6本の幅30mm、厚さ25mm、
長さ50mmの試片を用意した。 これらの試片を900℃に加熱し、実施例2と同
様に12mmの板厚まで熱間圧延した。熱間圧延が終
了した試片の冷却は、冷却開始温度は780℃未満
にならないようにしたもの及び780℃未満の約750
℃まで低下してからのものの2種類、冷却速度は
大気中放冷(0.5〜1.5℃/秒)、噴霧水による水
冷(10〜15℃/秒,)、シヤワーによる水冷(25〜
35℃/秒)及び水槽中での水焼入れ(100〜150
℃/秒)の4種類の条件で行なつた。 このように冷却された熱間圧延材は、実施例2
と同様にして引張強度を測定した。 得られた結果を第3表に示す。
[Table] From Table 2, 900 of the invention examples (ingot Nos. 1 to 9)
The samples heated to ~980°C and hot rolled had tensile strengths greater than 50 Kg/mm 2 compared to other samples that could be hot rolled to the end.
Since the above sample was heated at 550℃ for 1 hour, it has good insulation properties, and both tensile strength and heat resistance are further improved.The tensile strength of samples other than the above is presumed to be due to poor quality of the ingot. It can be seen that the measured values showed large variations, or cracks or fractures occurred during hot rolling, which forced the abandonment of further processing. Example 3 Three pieces separately collected in Example 2, width 30 mm, thickness 25
mm, length 100 mm of the ingot specimen of the present invention example, each was divided into two in the length direction, and six 30 mm wide and 25 mm thick,
A specimen with a length of 50 mm was prepared. These specimens were heated to 900° C. and hot-rolled to a thickness of 12 mm in the same manner as in Example 2. For cooling of specimens after hot rolling, the cooling start temperature should not be less than 780℃, and the cooling temperature should be about 750℃ below 780℃.
There are two types of cooling rates: air cooling in the atmosphere (0.5 to 1.5 degrees Celsius/second), water cooling by spray water (10 to 15 degrees Celsius/second), and water cooling by shower (25 to 15 degrees Celsius).
35℃/sec) and water quenching in a water bath (100~150℃)
The experiment was carried out under four types of conditions: (°C/sec). The hot-rolled material cooled in this way was prepared in Example 2.
Tensile strength was measured in the same manner as above. The results obtained are shown in Table 3.

【表】 第3表から、冷却開始温度が780℃未満の約750
℃では十分な引張強度が得られないこと、冷却速
度が大である程大きな引張強度が得られること、
並びに冷却開始温度が780℃以上で、且つ冷却速
度が25〜35℃/秒及び10〜150℃/秒において引
張強度がいずれも50Kg/mm2より大きく、又、耐熱
性も良好で、引張強度、耐熱性共に他の条件の場
合に比べて一段と改善されることが判る。 実施例 4 実施例2において900℃に加熱し以後別途、同
様にして面削された熱間圧延材を得た後(圧延
時、割れないし破壊を生じ以後の加工を断念した
材料は除く)、更に次のような処理を行なつた。 即ち、この熱間圧延材を11mmから3mmの板厚ま
で冷間圧延し、550℃で1時間時効処理を行なつ
た後、板厚0.25mmまで冷間圧延した。 得られた板材及び市販の従来合金3種{CDA
合金194(2.3重量%Fe、0.12重量%Zn、0.003重量
%P、残部Cu)、燐青銅2種(6.0重量%Sn、0.1
重量%P、残部Cu)及びFe−42Ni合金}につい
て、引張強度、硬度、半軟化温度(耐熱性)、及
び導電率を測定した。 得られた結果を第4表に示す。
[Table] From Table 3, approximately 750
℃, sufficient tensile strength cannot be obtained, and the faster the cooling rate, the greater the tensile strength obtained.
In addition, when the cooling start temperature is 780℃ or higher and the cooling rate is 25 to 35℃/sec and 10 to 150℃/sec, the tensile strength is both greater than 50Kg/ mm2 , and the heat resistance is also good. It can be seen that both the heat resistance and the heat resistance are much improved compared to the case under other conditions. Example 4 After obtaining a hot-rolled material that was heated to 900°C in Example 2 and subsequently face-milled in the same manner (excluding materials that cracked or broke during rolling and abandoned further processing), Furthermore, the following processing was performed. That is, this hot rolled material was cold rolled from 11 mm to a thickness of 3 mm, aged at 550° C. for 1 hour, and then cold rolled to a thickness of 0.25 mm. Obtained plate material and three commercially available conventional alloys {CDA
Alloy 194 (2.3 wt% Fe, 0.12 wt% Zn, 0.003 wt% P, balance Cu), phosphor bronze type 2 (6.0 wt% Sn, 0.1 wt%
(wt% P, balance Cu) and Fe-42Ni alloy}, the tensile strength, hardness, semi-softening temperature (heat resistance), and electrical conductivity were measured. The results obtained are shown in Table 4.

〔発明の効果〕〔Effect of the invention〕

以上から、本発明方法は、従来のコバールや
Fe−42Ni合金のような高価な非銅系リードフレ
ーム材に代替することができる、鉄、錫含有銅合
金を比較的安価な量産品として製造することを可
能にするものであり、その工業的価値は極めて大
きいものである。
From the above, the method of the present invention is similar to the conventional Kovar and
This makes it possible to manufacture iron and tin-containing copper alloys as relatively inexpensive mass-produced products, which can replace expensive non-copper lead frame materials such as Fe-42Ni alloys, and is highly effective for industrial use. The value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

図は、実施例4における本発明の製造方法によ
る合金(鋳塊No.8)を300℃で3時間低温焼鈍し
たものの金属組織を示した電子顕微鎗写真(倍率
100000倍)である。
The figure is an electron micrograph (magnification:
100,000 times).

Claims (1)

【特許請求の範囲】[Claims] 1 1.5〜3.0重量%、錫0.8〜2.5重量%、燐0.005
〜0.1重量%を含み、残部が本質的に銅からなる
銅合金鋳塊を880〜990℃に加熱し熱間加工した
後、該熱間加工材を780℃以上から20℃/秒以上
の冷却速度で冷却し、次いで冷間加工して、時効
処理した後、更に冷間加工を行なうことを特徴と
する高力高耐熱性銅合金の製造方法。
1 1.5-3.0% by weight, tin 0.8-2.5% by weight, phosphorus 0.005
After heating and hot working a copper alloy ingot containing ~0.1% by weight and the remainder consisting essentially of copper to 880-990°C, the hot-processed material is cooled from 780°C or higher at a rate of 20°C/second or more. A method for producing a high-strength, high-heat-resistant copper alloy, which comprises cooling at a high speed, followed by cold working, aging treatment, and then further cold working.
JP2575285A 1985-02-13 1985-02-13 High strength copper alloy having high heat resistance and its manufacture Granted JPS61186441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2575285A JPS61186441A (en) 1985-02-13 1985-02-13 High strength copper alloy having high heat resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2575285A JPS61186441A (en) 1985-02-13 1985-02-13 High strength copper alloy having high heat resistance and its manufacture

Publications (2)

Publication Number Publication Date
JPS61186441A JPS61186441A (en) 1986-08-20
JPH0413421B2 true JPH0413421B2 (en) 1992-03-09

Family

ID=12174562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2575285A Granted JPS61186441A (en) 1985-02-13 1985-02-13 High strength copper alloy having high heat resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPS61186441A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69503996T2 (en) * 1994-04-04 1999-04-15 Rohm Co Ltd DEVICE FOR DETECTING THE EXHAUST OF THE INK SUPPLY AND INK JET PRINTER
US5882442A (en) * 1995-10-20 1999-03-16 Olin Corporation Iron modified phosphor-bronze

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123844A (en) * 1982-01-20 1983-07-23 Furukawa Electric Co Ltd:The Copper alloy for lead material for semiconductor apparatus
JPS5920438A (en) * 1982-07-21 1984-02-02 Furukawa Electric Co Ltd:The Copper alloy for lead material of semiconductor apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123844A (en) * 1982-01-20 1983-07-23 Furukawa Electric Co Ltd:The Copper alloy for lead material for semiconductor apparatus
JPS5920438A (en) * 1982-07-21 1984-02-02 Furukawa Electric Co Ltd:The Copper alloy for lead material of semiconductor apparatus

Also Published As

Publication number Publication date
JPS61186441A (en) 1986-08-20

Similar Documents

Publication Publication Date Title
JP5105389B2 (en) Aluminum alloy manufacturing method
JP2003520295A5 (en)
JPH04228529A (en) Copper alloy and preparation thereof
JPH0569888B2 (en)
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JPS6242985B2 (en)
CN115747564B (en) Copper-nickel-silicon-phosphorus alloy and preparation method thereof
CN111575528A (en) Method for producing Zr-containing copper alloy material and copper alloy material produced thereby
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JPS58113334A (en) Phosphor bronze with superior hot workability
JPH0413421B2 (en)
JPS6365402B2 (en)
JPH0424420B2 (en)
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
KR102044983B1 (en) High corrosion resistant magnesium alloy and method for manufacturing the same
JP4807484B2 (en) Aluminum alloy plate for forming and method for producing the same
JPS6146534B2 (en)
JP3766051B2 (en) Copper alloy having excellent heat resistance and method for producing the same
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPH1053825A (en) Copper alloy for lead frame
JPH09176805A (en) Production of aluminum fin material
JPH02111850A (en) Manufacture of copper alloy for lead frame
JPS6144930B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees