JPH0571659B2 - - Google Patents

Info

Publication number
JPH0571659B2
JPH0571659B2 JP25114284A JP25114284A JPH0571659B2 JP H0571659 B2 JPH0571659 B2 JP H0571659B2 JP 25114284 A JP25114284 A JP 25114284A JP 25114284 A JP25114284 A JP 25114284A JP H0571659 B2 JPH0571659 B2 JP H0571659B2
Authority
JP
Japan
Prior art keywords
phosphor bronze
processing
hot
present
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25114284A
Other languages
Japanese (ja)
Other versions
JPS61130478A (en
Inventor
Norihiko Kamyama
Kiichi Akasaka
Toshiaki Takano
Yasuo Maeda
Arata Tokunaga
Yoshihiro Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP25114284A priority Critical patent/JPS61130478A/en
Publication of JPS61130478A publication Critical patent/JPS61130478A/en
Publication of JPH0571659B2 publication Critical patent/JPH0571659B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はりん青銅の加工方法の改良に関するも
のであり、特に熱間加工を可能にして製造工程の
合理化を図つたものである。 〔従来の技術〕 一般にSn3〜12wt%、P0.01〜0.5wt%、残部
Cuからなる合金はりん青銅とよばれ、優れた強
度と、他の非鉄ばね材料に比して優れたばね鉄性
を有するため電気磁器及び電子機器の部品として
広く使用されている。然しながらりん青銅を加工
するにおいて熱間加工性が悪いため専ら冷間加工
のみで加工されているため必然的にその製品はコ
ストアツプになつている。 即ちりん青銅の鋳塊を熱間圧延すると圧延板の
表面に大きな亀裂を生じその後の圧延加工を不可
能にする。従つて従来は冷間圧延のみで加工を行
つているものである。又りん青銅は加工硬化が大
きいため中間焼鈍を多数回行う必要があり、これ
が製品の工程を複雑化してコストアツプに著しい
影響を及ぼしているものである。 〔発明が解決しようとする問題点〕 本発明はかかる現状に鑑み鋭意研究を行つた結
果、りん青銅の加工方法としてりん青銅の鋳塊を
熱間加工により圧延するも冷間加工の場合に比し
て何等遜色のない表面状態即ち何等割れを発生し
ない製品をうる加工方法を開発したものである。 〔問題点を解決するための手段〕 本発明方法はSn3〜12wt%、P0.01〜0.5wt%、
残部Cuからなるりん青銅の鋳塊を加工率10〜30
%にて熱間加工を行つた後、冷却し再度加熱して
熱間加工を施すことを特徴とするものである。 即ちりん青銅の鋳塊について種々の加工率にて
熱間加工例えば熱間圧延を行つたところ、1回目
の熱間圧延率を10〜30%の範囲により行い、一旦
冷却した後再度加熱することにより通常の銅合金
にて行われている90〜95%程度の熱間圧延を行つ
ても何等亀裂を生じないことを見出したものであ
る。 本発明方法は第1回目の熱間加工を10〜30%の
加工率にて行うことが極めて重要であり、この加
工率を10〜30%に限定した理由は、10%未満にて
行つた場合には、加工が不十分なため熱間加工後
の冷却過程及び再熱過程において微細な再結晶粒
が充分に生成せず更に熱間加工を行わんとすると
表面に亀裂を生ずるためである。又30%を超えた
場合には圧延板の表面に亀裂を生じ2回目の熱間
加工時にこれが大きな亀裂に成長するためであ
る。 なお熱間加圧の加熱温度は600〜800℃の範囲に
て行うことが望ましく、600℃未満では十分に加
工することが出来ず、800℃を超えた場合には、
加熱に余分なエネルギーを要し、経済的でないた
めである。 又本発明方法において熱間加工後、冷却するも
のがあるが、その温度は常温附近まで冷却するこ
とが必要である。 〔作用〕 本発明方法はりん青銅の加工方法において熱間
加工により行いうるため従来の冷間加工に対し変
形抵抗を極めて小さくして加工を行うことが出来
る。即ちりん青銅は硬質な銅合金であるため冷間
加工による場合には前記の如く中間焼鈍にて加工
し莫大な動力並に特種な工具を必要とするもので
あるが、熱間加工を行うことにより上記の中間焼
鈍を行うことなく、動力費は低減し且つ通常の工
具により加工することが出来る。 〔実施例〕 高周波溶解炉により銅を溶解し、これにSnを
添加した後、Pで脱酸し連続水冷鋳造により鋳造
を行つて、第1表に示す組成からなるりん青銅鋳
塊(厚さ100mm、巾250mm、300Kg/1チヤージ)
を作製した。この鋳塊を600°〜750℃の範囲で加
熱し、種々の加工率にて熱間圧延を行い、常温に
冷却せしめた後、再度600°〜750℃の範囲で加熱
を行つて厚さ10mm及び5mmまで熱間圧延を行つて
本発明りん青銅板をえた。 なお本発明りん青銅板と比較するために、上記
のりん青銅鋳塊を第1表に示す如く本発明方法以
外の条件にて圧延を行つて比較例りん青銅板をえ
た。 斯くして得た本発明りん青銅板及び比較例りん
青銅板について、その表面のわれ発生の有無を試
験した。その結果は第1表に示す通りである。
[Industrial Field of Application] The present invention relates to an improvement in a method for processing phosphor bronze, and in particular, to rationalize the manufacturing process by making hot processing possible. [Conventional technology] Generally Sn3~12wt%, P0.01~0.5wt%, balance
An alloy made of Cu is called phosphor bronze, and it is widely used as parts of electric ceramics and electronic devices because it has excellent strength and spring ferrous properties compared to other non-ferrous spring materials. However, since phosphor bronze has poor hot workability, it is processed exclusively by cold working, which inevitably increases the cost of the product. That is, when a phosphor bronze ingot is hot-rolled, large cracks occur on the surface of the rolled plate, making subsequent rolling impossible. Therefore, conventionally, processing has been carried out only by cold rolling. Furthermore, since phosphor bronze is highly work hardened, it is necessary to perform intermediate annealing many times, which complicates the manufacturing process and significantly increases costs. [Problems to be Solved by the Invention] The present invention has been made as a result of intensive research in view of the current situation.As a processing method for phosphor bronze, a phosphor bronze ingot is rolled by hot working, but compared to the case of cold working. We have developed a processing method that yields a product with a surface condition that is comparable to that of the previous one, that is, without any cracks. [Means for solving the problems] The method of the present invention uses Sn3 to 12wt%, P0.01 to 0.5wt%,
Processing rate of 10 to 30 for phosphor bronze ingots with remainder Cu
%, then cooled, heated again, and hot worked. That is, when a phosphor bronze ingot is subjected to hot working, for example, hot rolling, at various working rates, the first hot rolling rate is in the range of 10 to 30%, and then once cooled, it is heated again. It was discovered that no cracks were formed even when the copper alloy was subjected to about 90 to 95% hot rolling, which is the method used for ordinary copper alloys. In the method of the present invention, it is extremely important to perform the first hot working at a processing rate of 10 to 30%, and the reason for limiting this processing rate to 10 to 30% is that In some cases, insufficient processing results in insufficient formation of fine recrystallized grains during the cooling and reheating processes after hot processing, resulting in cracks on the surface when further hot processing is attempted. . Moreover, if it exceeds 30%, cracks will occur on the surface of the rolled plate, which will grow into large cracks during the second hot working. It is preferable that the heating temperature for hot pressing be in the range of 600 to 800℃; if it is less than 600℃, sufficient processing cannot be achieved, and if it exceeds 800℃,
This is because heating requires extra energy and is not economical. In some methods of the present invention, cooling is performed after hot working, but the temperature must be cooled to around room temperature. [Function] Since the method of the present invention can be carried out by hot working in a phosphor bronze processing method, processing can be carried out with extremely low deformation resistance compared to conventional cold working. In other words, since phosphor bronze is a hard copper alloy, cold working requires intermediate annealing as described above, which requires a huge amount of power and special tools, but hot working is not possible. Therefore, the power cost can be reduced and processing can be performed using ordinary tools without performing the above-mentioned intermediate annealing. [Example] After melting copper in a high-frequency melting furnace and adding Sn to it, deoxidizing it with P and casting by continuous water cooling casting, a phosphor bronze ingot (thickness: 100mm, width 250mm, 300Kg/1 charge)
was created. This ingot was heated in the range of 600° to 750°C, hot rolled at various processing rates, cooled to room temperature, and then heated again in the range of 600° to 750°C to a thickness of 10 mm. Then, hot rolling was performed to a thickness of 5 mm to obtain a phosphor bronze plate of the present invention. In order to compare with the phosphor bronze plate of the present invention, the above phosphor bronze ingot was rolled under conditions other than the method of the present invention as shown in Table 1 to obtain a comparative phosphor bronze plate. The thus obtained phosphor bronze plates of the present invention and comparative phosphor bronze plates were tested for the presence or absence of cracks on their surfaces. The results are shown in Table 1.

【表】【table】

〔効果〕〔effect〕

以上詳述した如く本発明方法によれば製造工程
を短縮しうると共に製造コストを著しく低減しう
る等工業的に極めて有用である。
As detailed above, the method of the present invention is extremely useful industrially, as it can shorten the manufacturing process and significantly reduce manufacturing costs.

Claims (1)

【特許請求の範囲】 1 Sn3〜12wt%、P0.01〜0.5wt%、残部Cuか
らなるりん青銅の鋳塊を加工率10〜30%にて熱間
加工を行つた後、冷却し再度加熱して熱間加工を
施すことを特徴とするりん青銅の加工方法。 2 熱間加工温度を600°〜800℃の範囲にて行う
ことを特徴とする特許請求の範囲第1項記載のり
ん青銅の加工方法。
[Claims] 1. A phosphor bronze ingot consisting of 3 to 12 wt% Sn, 0.01 to 0.5 wt% P, and the balance Cu is hot worked at a processing rate of 10 to 30%, then cooled and heated again. A method of processing phosphor bronze characterized by subjecting it to hot working. 2. The method for processing phosphor bronze according to claim 1, characterized in that hot working is carried out at a temperature in the range of 600° to 800°C.
JP25114284A 1984-11-28 1984-11-28 Method for working phosphor bronze Granted JPS61130478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25114284A JPS61130478A (en) 1984-11-28 1984-11-28 Method for working phosphor bronze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25114284A JPS61130478A (en) 1984-11-28 1984-11-28 Method for working phosphor bronze

Publications (2)

Publication Number Publication Date
JPS61130478A JPS61130478A (en) 1986-06-18
JPH0571659B2 true JPH0571659B2 (en) 1993-10-07

Family

ID=17218295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25114284A Granted JPS61130478A (en) 1984-11-28 1984-11-28 Method for working phosphor bronze

Country Status (1)

Country Link
JP (1) JPS61130478A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3999676B2 (en) 2003-01-22 2007-10-31 Dowaホールディングス株式会社 Copper-based alloy and method for producing the same
ES2930080T3 (en) * 2013-03-15 2022-12-07 Materion Corp Uniform grain size in hot worked spinodal copper alloy

Also Published As

Publication number Publication date
JPS61130478A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
US3522112A (en) Process for treating copper base alloy
CN105861935B (en) Excellent Fe 36Ni invar alloy materials of a kind of thermoplasticity and preparation method thereof
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
US2859143A (en) Ferritic aluminum-iron base alloys and method of producing same
JPH0790520A (en) Production of high-strength cu alloy sheet bar
CN111636011A (en) High-strength high-conductivity copper-nickel-silicon alloy with good formability and preparation method thereof
CN116005078A (en) Manufacturing method of lamellar heterogeneous structure high-strength steel
JPH0571659B2 (en)
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPS623232B2 (en)
JPH0424420B2 (en)
US3376171A (en) Copper alloy
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
KR102633119B1 (en) Aluminum-copper Composite and Manufacturing Method of the Same
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JP3872753B2 (en) Aluminum alloy for hole expansion processing and manufacturing method
JP2530657B2 (en) Copper alloy and method for producing the same
JPH02111850A (en) Manufacture of copper alloy for lead frame
JPH02111828A (en) Manufacture of copper alloy for lead frame
JPS58221603A (en) Method for preventing cracking in hot rolling of extra- low carbon steel
JPH0413421B2 (en)
JPH0336246A (en) Production of phosphor bronze alloy
JPH0243350A (en) Production of precipitation-hardening type copper alloy
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture