JPS6230321A - Method and apparatus for exposure by electron beam - Google Patents

Method and apparatus for exposure by electron beam

Info

Publication number
JPS6230321A
JPS6230321A JP16775885A JP16775885A JPS6230321A JP S6230321 A JPS6230321 A JP S6230321A JP 16775885 A JP16775885 A JP 16775885A JP 16775885 A JP16775885 A JP 16775885A JP S6230321 A JPS6230321 A JP S6230321A
Authority
JP
Japan
Prior art keywords
electron beam
exposure
pattern
beam exposure
convergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16775885A
Other languages
Japanese (ja)
Other versions
JPH0624181B2 (en
Inventor
Bunro Komatsu
小松 文朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60167758A priority Critical patent/JPH0624181B2/en
Publication of JPS6230321A publication Critical patent/JPS6230321A/en
Publication of JPH0624181B2 publication Critical patent/JPH0624181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To enable the easy realization of reduction of a proximity effect, by utilizing a ghost effect without causing reduction of a throughput in a beam exposure process. CONSTITUTION:Exposure pattern data are converted into pattern data expressed in dots, and a converged beam B1 is applied in the form of a dot to a desired address unit position, while the irradiation by a non-converged beam B2 is conducted simultaneously. Thereby an area of exposure by the non-converged beam B2 thicker than the converged beam B1 turns to exist around a desired area (e.g. a rectangular pattern indicated by a solid line) of exposure by the converged beam. By this method, the outer side of the desired area of exposure is exposed uniformly by the non-converged beam B2, and a proximity effect is reduced by a ghost effect.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、たとえば半導体装置製造に際して電子線感応
レジス゛ト上に電子ビームを露光してパターン描画を行
なうために用いられる電子ビーム露光方法および電子ビ
ーム露光装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an electron beam exposure method and an electron beam exposure method used for exposing an electron beam sensitive resist to draw a pattern, for example, in the manufacture of semiconductor devices. Regarding equipment.

〔発明の技術的背景〕[Technical background of the invention]

一般に、半導体装置製造用フォトマスクの製作に際して
電子線感応レジストが塗布されたマスクガラス基板に対
して電子ビーム露光によるパターン描画を行なう場合と
が、半導体クエハプロセスにおいて電子線感応レジスト
が塗布されたクエハに対して電子ビーム露光によるパタ
ーン描画を行なう場合に、露光時に生じる反射電子等の
影響にょシ本来の露光パターン領域に近接する領域まで
露光されてしまうという近接効果が生じ、所望のデザイ
ンルールでのパターンが得られなくなる。
In general, when producing a photomask for semiconductor device manufacturing, a pattern is drawn by electron beam exposure on a mask glass substrate coated with an electron beam sensitive resist. When drawing patterns on a wafer using electron beam exposure, a proximity effect occurs in which areas close to the original exposure pattern area are exposed due to the effects of reflected electrons, etc. that occur during exposure, and the desired design rules are not met. pattern cannot be obtained.

このような近接効果を低減するように補正する方法とし
て、従来、次に述べるような技術が発表されている。
As a method of correcting to reduce such a proximity effect, the following techniques have been announced.

(1)  露光に先立ち、各露光パターンを計算機によ
るシミュレーションによシ分析し、近接効果が生じるお
それのめる露光/?ターンについてはパターン分割を行
ない、各分割パターン毎にドーズ量を変えて露光する。
(1) Prior to exposure, each exposure pattern is analyzed by computer simulation, and exposure/? For turns, pattern division is performed, and exposure is performed by changing the dose amount for each division pattern.

(2)  先ず、露光すべきパターン領域以外の領域を
非収束ビームにより所望のドーズ量以下で露光し、次に
露光パターン領域を収束ビームにより露光することによ
って所謂ゴースト効果を利用する。
(2) First, a region other than the pattern region to be exposed is exposed with a non-convergent beam at a dose less than a desired amount, and then the exposed pattern region is exposed with a convergent beam to utilize the so-called ghost effect.

(3)  前記(1)項と同様に計算機によるシミュレ
ーションを行なった後、近接効果が生じるおそれのある
露光パターンについてはパターン寸法のりサイズ処理を
行ない、各パターンとも同じドーズ量で露光する。
(3) After performing a computer simulation in the same manner as in the above (1), pattern size adjustment is performed for exposure patterns that are likely to cause a proximity effect, and each pattern is exposed at the same dose.

〔背景技術の問題点〕[Problems with background technology]

しかし、上述した近接効果補正方法(1)〜(3)には
それぞれ次のような問題点がある。一般に、半導体装置
製造用の電子ビーム露光装置では、必要とする露光/’
Pターン図形数が現状では数十万〜数百万のオーダーに
なるので、前記(1)の方法ハシミュレーションをメイ
ンフレームコンピュータで高速に処理する必要があり、
装置が高価になる。また、前記(1)の方法のように分
割パターンを異なるドーズ量で露光することは、露光の
途中で電子ビーム露光装置における電子光学鏡筒系のパ
ラメータの制御を追加する必要があり、ベクトルスキャ
ン型露光装置にあっては大きな制約を受けないが、多く
の商用機で見られるラスタースキャン型露光装置にあっ
ては露光時間がかなシ長くなり、露光プロセスのスルー
グツトの面で極めて不利となる。また、前記(2)の方
法は、露光を2回行なう必要があるので、露光時間が2
倍になシ、1回目の露光と2回目の露光の途中で電子光
学鏡筒系のノJ?ラメータの制御が追加されることから
・、0.01μmオーダの高精度で露光位置を制御する
ような構成が必要となる。また、前記(3)の方法は、
前述した(1)の方法と同様にメインフレームコンピュ
ータを必要とし・更にパターンのりサイズ処理を行なう
場合にアドレスユニット単位で行なわなければならない
ので、高精度化を図るだめにはよシ細かい単位のアドレ
スユニットに変換する必要がある。しかし、このように
アドレスユニットの微少化に伴ってスループットが低下
するので、近接効果補正のためのアドレスユニットの微
少化とスルーグツドとの間で調整を図らなければならな
い。
However, each of the above-described proximity effect correction methods (1) to (3) has the following problems. In general, electron beam exposure equipment for semiconductor device manufacturing requires the required exposure/'
Since the number of P-turn figures is currently on the order of hundreds of thousands to millions, it is necessary to process the simulation in method (1) at high speed on a mainframe computer.
Equipment becomes expensive. Furthermore, exposing divided patterns at different doses as in method (1) requires additional control of the parameters of the electron optical column system in the electron beam exposure device during exposure, and vector scanning is required. A type exposure device is not subject to any major restrictions, but a raster scan type exposure device, which is found in many commercial machines, requires an extremely long exposure time, which is extremely disadvantageous in terms of the throughput of the exposure process. In addition, in method (2) above, it is necessary to perform exposure twice, so the exposure time is 2 times.
In the middle of the first and second exposure, is the electron optical lens barrel system connected? Since parameter control is added, a configuration is required to control the exposure position with high accuracy on the order of 0.01 μm. In addition, the method (3) above is
Similar to method (1) above, it requires a mainframe computer, and when processing the pattern size, it must be done in address units, so if high precision is to be achieved, addresses in finer units are required. need to be converted into units. However, as the throughput decreases with miniaturization of the address unit, adjustment must be made between miniaturization of the address unit for proximity effect correction and throughput.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みてなされたもので、ビーム露
光工程でのヌル−プツトの低下をもたらすことなく、ゴ
ースト効果の利用により近接効果の低減を容易に実現し
得る電子ビーム露光方法および電子ビーム露光装置を提
供するものである。
The present invention has been made in view of the above circumstances, and includes an electron beam exposure method and an electron beam exposure method that can easily reduce the proximity effect by utilizing the ghost effect without causing a drop in nurp in the beam exposure process. A beam exposure device is provided.

〔発明の概要〕[Summary of the invention]

即ち、本発明の電子ビーム露光方法は、収束された電子
ビームを電子線感応レジスト面上の所望のアドレスユニ
ットの位置に照射すると同時に、そのアドレスユニット
の周辺に非収束状態の電子ビームを照射することを特徴
とするものである。   ゛ これによって、露光パターン領域外はゴースト効果によ
って近接効果が低減され、しかも露光工程のスループッ
トの低下をもたらさないで済む。
That is, in the electron beam exposure method of the present invention, a focused electron beam is irradiated onto a desired address unit position on an electron beam sensitive resist surface, and at the same time, an unfocused electron beam is irradiated around the address unit. It is characterized by this. ``Thus, the proximity effect is reduced due to the ghost effect outside the exposure pattern area, and the throughput of the exposure process is not reduced.

また、本発明の電子ビーム露光装置は、対物アパーチャ
の収束電子ビーム通過孔の周辺に複数の非収束電子ビー
ム通過孔を形成し、これらの非収束電子ビーム通過孔を
通過した非収束電子ビームの軌動を制御するための制御
用電極を前記対物ア/4’−チャの下方に設けてなるこ
とを特徴とするものである。
Further, in the electron beam exposure apparatus of the present invention, a plurality of non-converging electron beam passing holes are formed around the converging electron beam passing hole of the objective aperture, and the non-converging electron beam passing through the non-converging electron beam passing holes is A control electrode for controlling the trajectory is provided below the objective armature/4'-cha.

したがって、従来の電子ビーム露光装置に対する構成上
の変更は僅かであり乍ら本発明の電子ビーム露光方法に
よる効果が得られるようになる。
Therefore, the effects of the electron beam exposure method of the present invention can be obtained even though the configuration of the conventional electron beam exposure apparatus is only slightly changed.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例を詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は電子ビーム露光装置における電子光学鏡筒内の
一部を示しており、1は対物レンズ形成用コイル、2は
対物アパーチャ、3は試料台上の試料(電子線感応レジ
ストが塗布された半導体ウェハとか半導体装置製造用マ
スク基板など)である。上記対物アパーチャ2には、た
とえば第2図に示すように中心部の収束電子ビーム通1
.(センターホール、メインホール)210周辺に複数
個(たとえば4〜8個)の非収束電子ビーム通過孔(サ
ブホール)2!・・・が形成されている。さらに、上記
対物アパーチャ2と前記試料3との間には、対物アノJ
?−チャ2のサブホール2意・・・をそれぞれ通過した
非収束ビームB、・・・の軌動を曲げてその照射位置を
制御するための制御用電極4が設けられている。
Figure 1 shows a part of the inside of an electron optical column in an electron beam exposure system, where 1 is a coil for forming an objective lens, 2 is an objective aperture, and 3 is a sample on a sample stage (on which an electron beam sensitive resist is coated). semiconductor wafers, mask substrates for semiconductor device manufacturing, etc.). For example, as shown in FIG.
.. (Center hole, main hole) 210 and multiple (for example, 4 to 8) non-converging electron beam passing holes (sub-holes) 2! ... is formed. Further, an objective aperture J is provided between the objective aperture 2 and the sample 3.
? A control electrode 4 is provided for controlling the irradiation position of the non-convergent beams B, . . . by bending the trajectory of the non-convergent beams B, .

この制御用電極4は、前記対物アパーチャ2のセンター
ホール21を通過した収束ビームB!が照射される位置
(アドレスユニット)の周辺に非収束ビームB2・・・
を照射するように制御電圧入力が印加される。この印加
電位は、たとえば電子光学鏡筒系におけるビーム加速電
圧、ビームブランキング速度により変化するものである
。そこで、たとえば第3図に示すように上記制御電圧入
力についてのデータテーブルをたとえば硼気ディスク装
置31に格納しておき、電子ビーム露光位置の制御部の
中央処理装置(ターグツ) CPU ) 32が露光条
件に応じて上記データテーブルから最適値を選択し、こ
の最適値データをデジタル・アナログ(D/A)変換器
によシアナログ電圧に変換して制御用電極4に印加する
ように構成している。
This control electrode 4 is connected to the convergent beam B! that has passed through the center hole 21 of the objective aperture 2! A non-convergent beam B2 is placed around the irradiated position (address unit).
A control voltage input is applied to irradiate. This applied potential changes depending on, for example, the beam acceleration voltage and beam blanking speed in the electron optical column system. Therefore, as shown in FIG. 3, for example, a data table regarding the control voltage input is stored in, for example, a boron disk device 31, and a central processing unit (CPU) 32 of the control section for the electron beam exposure position performs the exposure. The optimum value is selected from the above data table according to the conditions, and the optimum value data is converted into a digital-to-analog (D/A) converter into an analog voltage and applied to the control electrode 4. There is.

次に、上記構成の電子ビーム露光装置による電子ビーム
露光方法について説明する。電子ビーム露光装置は、露
光ノ!ターンデータをドツト単位で表わさ・・れる/I
Pターンデータ(ドツトデータ)に変換し、第4図に示
すように収束ビームB、を所望のアドレスユニット位置
にドツト状に照射すると同時に非収束ビームB2による
照射を行なう。これによりて、収束ビームB1による所
望の露光領域(たとえば実線で示す矩形パターン)の周
辺に収束ビームより太い非収束ビームB2による露光領
域が存在するようになる、したがって、所望の露光領域
の外側は非収束ビームB2によシ一様に露光されること
によって、ゴースト効果により近接効果の影響が低減さ
れるようになる。
Next, an electron beam exposure method using the electron beam exposure apparatus having the above configuration will be explained. Electron beam exposure equipment is the best for exposure! Turn data is expressed in dots/I
The data is converted into P-turn data (dot data), and as shown in FIG. 4, a focused beam B is irradiated to a desired address unit position in the form of a dot, and at the same time, irradiation is performed by a non-focused beam B2. As a result, around the desired exposure area (for example, a rectangular pattern shown by a solid line) by the convergent beam B1, there is an exposure area by the non-convergent beam B2 which is thicker than the convergent beam. Therefore, the area outside the desired exposure area is By being uniformly exposed to the non-convergent beam B2, the influence of the proximity effect is reduced due to the ghost effect.

また、上記したような電子ビーム露光方法は、露光パタ
ーンデータに対して近接効果に関するコンピュータシミ
ュレーションとかノ!ターン分割とかパターン寸法のり
サイズ処理を必要とせず、露光途中でドーズ量を変える
だめの制御も必要とせず、露光回数は2回も必要とせず
、1回で済み、従来の近接効果補正方法に比べて容易に
実行することが可能である。
In addition, the above-mentioned electron beam exposure method uses computer simulations related to the proximity effect on exposure pattern data. It does not require turn division or pattern size processing, it does not require control to change the dose amount during exposure, it does not require two exposures, it only requires one exposure, and it is similar to the conventional proximity effect correction method. It can be easily executed compared to the above.

また、前記したような電子ビーム露光装置は、既存の対
物ア・2−チャ2に対して収束電子ビーム通過孔21の
周辺に複数の非収束電子ビーム通過孔2鵞・・・を設け
ておき、この対物ア・!−チャ2を通過した非収束電子
ビームを収束電子ビームによシ照射された位置(アドレ
スユニット)の周辺に照射させるように上記非収束電子
ビームの軌動を曲げるための制御用電極4を設けたもの
であり、従来の電子ビーム露光装置に対する改造部分は
僅かでおり、容易かつ安価に実現することが可能である
Further, in the above-mentioned electron beam exposure apparatus, a plurality of non-convergent electron beam passage holes 2 are provided around the convergent electron beam passage hole 21 for the existing objective aperture 2. , this objective a! - A control electrode 4 is provided for bending the trajectory of the unfocused electron beam so that the unfocused electron beam that has passed through the chamber 2 is irradiated around the position (address unit) irradiated by the focused electron beam. It requires only a few modifications to the conventional electron beam exposure apparatus, and can be realized easily and inexpensively.

第5図は、本発明による2雅類の電子ビーム露光装置に
よりそれぞれ描画したパターンの各パターン寸法に対す
るパターン寸法交換差の測定結果(実線A、B)と、従
来の電子ビーム露光装置によシ描画した場合の測定結果
(実線A 。
FIG. 5 shows the measurement results (solid lines A and B) of pattern dimension exchange differences for each pattern dimension of patterns drawn using the two types of electron beam exposure apparatus according to the present invention, and those drawn using the conventional electron beam exposure apparatus. Measurement results when drawn (solid line A).

B’)とを対比して示している。ここで、5μm以上の
パターンと2μmのパターンとの間に従来は〜0.1μ
mの寸法変換差(主に反射電子の寄与によるパターン内
近接効果である)が生じているのに対して4本発明装置
ではゴースト効果により上記寸法変換差が〜0.03μ
m以内に改善されていることが分る。
B') is shown in comparison. Here, conventionally, the distance between a pattern of 5 μm or more and a pattern of 2 μm is ~0.1 μm.
While a dimensional conversion difference of m (mainly due to the intra-pattern proximity effect due to the contribution of reflected electrons) occurs, in the device of the present invention, the above dimensional conversion difference is ~0.03μ due to the ghost effect.
It can be seen that the improvement was achieved within m.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、ビーム露光工iでのス
ループットの低下をもたらすことなく、ゴースト効果の
利用によシ近接効果の低減を容易に実現し得る電子ビー
ム露光方法および電子ビーム露光装置を提供できるもの
である。
As described above, the present invention provides an electron beam exposure method and an electron beam exposure apparatus that can easily reduce the proximity effect by using the ghost effect without reducing throughput in the beam exposure process i. It is possible to provide

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電子ビーム露光装置の一実施例の要部
を示す構成説明図、第2図は第1図中の対物アパーチャ
の一例を示す平面図、第3図は第1図中の制御用電極に
対する制御電圧供給系の一例を示す構成説明図、第4図
は本発明方法によるビーム露光の照射軌跡を示す図、第
5図は本発明装置による近接効果の低減に関する実測デ
ータを示す図である。 2・・・対物アパーチャ、21・・・収束電子ビーム通
過孔、22・・・非収束電子ビーム通過孔、3・・・試
料、4・・・制御用電極。 田願人代理人  弁理士 鈴 江 武 彦第3図 第4図
FIG. 1 is a configuration explanatory diagram showing essential parts of an embodiment of an electron beam exposure apparatus of the present invention, FIG. 2 is a plan view showing an example of the objective aperture in FIG. 1, and FIG. 3 is a diagram showing an example of the objective aperture in FIG. 4 is a diagram showing the irradiation locus of beam exposure according to the method of the present invention, and FIG. 5 is a diagram showing actual measurement data regarding the reduction of the proximity effect by the apparatus of the present invention. FIG. 2... Objective aperture, 21... Convergent electron beam passage hole, 22... Non-convergent electron beam passage hole, 3... Sample, 4... Control electrode. Tagani's agent Patent attorney Takehiko Suzue Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)電子線感応レジストが塗布された試料面上に電子
ビーム露光によりパターン描画を行なう際に、収束され
た電子ビームを所望のアドレスユニットの位置に照射す
ると同時にそのアドレスユニットの周辺に非収束状態の
電子ビームを照射することを特徴とする電子ビーム露光
方法。
(1) When drawing a pattern by electron beam exposure on a sample surface coated with electron beam sensitive resist, a focused electron beam is irradiated onto the desired address unit position and at the same time is not focused around the address unit. An electron beam exposure method characterized by irradiating with an electron beam of a state.
(2)電子線感応レジストが塗布された試料面上に電子
ビーム露光によりパターン描画を行なう電子ビーム露光
装置において、対物アパーチャの収束電子ビーム通過孔
の周辺に非収束電子ビーム通過孔を複数形成し、これら
の非収束電子ビーム通過孔を通過した非収束電子ビーム
の軌道を制御するための制御用電極を前記対物アパーチ
ャの下方に設けてなることを特徴とする電子ビーム露光
装置。
(2) In an electron beam exposure device that draws a pattern by electron beam exposure on a sample surface coated with an electron beam sensitive resist, a plurality of non-convergent electron beam passage holes are formed around the convergent electron beam passage hole of the objective aperture. An electron beam exposure apparatus characterized in that a control electrode is provided below the objective aperture for controlling the trajectory of the unfocused electron beam that has passed through these unfocused electron beam passage holes.
JP60167758A 1985-07-31 1985-07-31 Electronic beam exposure method and electronic beam exposure apparatus Expired - Lifetime JPH0624181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167758A JPH0624181B2 (en) 1985-07-31 1985-07-31 Electronic beam exposure method and electronic beam exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167758A JPH0624181B2 (en) 1985-07-31 1985-07-31 Electronic beam exposure method and electronic beam exposure apparatus

Publications (2)

Publication Number Publication Date
JPS6230321A true JPS6230321A (en) 1987-02-09
JPH0624181B2 JPH0624181B2 (en) 1994-03-30

Family

ID=15855544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167758A Expired - Lifetime JPH0624181B2 (en) 1985-07-31 1985-07-31 Electronic beam exposure method and electronic beam exposure apparatus

Country Status (1)

Country Link
JP (1) JPH0624181B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622911U (en) * 1992-05-22 1994-03-25 久夫 近藤 Leveling mount for receiver for level planar
JP2003109900A (en) * 2002-09-02 2003-04-11 Toshiba Corp Near field effect correction method in electron beam exposure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138232A (en) * 1979-04-12 1980-10-28 Chiyou Lsi Gijutsu Kenkyu Kumiai Drawing device
JPS57172734A (en) * 1981-04-16 1982-10-23 Sanyo Electric Co Ltd Exposing process for electronic beam
JPS6182423A (en) * 1984-09-29 1986-04-26 Toshiba Corp Charged beam lithography method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138232A (en) * 1979-04-12 1980-10-28 Chiyou Lsi Gijutsu Kenkyu Kumiai Drawing device
JPS57172734A (en) * 1981-04-16 1982-10-23 Sanyo Electric Co Ltd Exposing process for electronic beam
JPS6182423A (en) * 1984-09-29 1986-04-26 Toshiba Corp Charged beam lithography method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622911U (en) * 1992-05-22 1994-03-25 久夫 近藤 Leveling mount for receiver for level planar
JP2003109900A (en) * 2002-09-02 2003-04-11 Toshiba Corp Near field effect correction method in electron beam exposure

Also Published As

Publication number Publication date
JPH0624181B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US6333138B1 (en) Exposure method utilizing partial exposure stitch area
JPH06132203A (en) Charged particle beam exposure method
GB2349737A (en) Electron beam exposure apparatus
KR100389725B1 (en) Electron beam writing method, electron beam lithography apparatus, and mask used in the method and apparatus
JPH11204415A (en) Method and device for electron beam drawing
JPH02125609A (en) Semiconductor manufacturing equipment
JPH1064783A (en) Electron beam mask and exposure method
JPS59184524A (en) Electron beam exposure device
JPS594017A (en) Electron-beam exposure method
KR20010051381A (en) Method of producing mask data for partial one-shot transfer exposure and exposure method
JP2003100591A (en) Exposing method in charged particle beam exposure device, method for manufacturing semiconductor device, and charged particle beam exposure device
JP2874688B2 (en) Mask and electron beam exposure method using the same
KR940010150B1 (en) Method of electron beam exposure and apparatus the same
JPS6230321A (en) Method and apparatus for exposure by electron beam
JP2001015428A (en) Electron beam exposure system
JPH0669112A (en) Transparent mask plate
JPH1064794A (en) Electron beam exposure correcting method
JPH11274038A (en) Pattern drawing method and drawing apparatus thereof
JPH05160009A (en) Charged beam lithography device and pattern forming method using charged beam
JPH04302132A (en) Scanning type projection electron beam exposure system and method
JP2898726B2 (en) Charged particle beam exposure method
JP2588183B2 (en) Electronic beam exposure system
JP3330644B2 (en) Charged particle beam exposure method
JPH05335223A (en) Method for forming resist pattern
JPH06140309A (en) Method for electron beam expoure