JPS62299509A - Production of acrylic fiber having high physical property - Google Patents

Production of acrylic fiber having high physical property

Info

Publication number
JPS62299509A
JPS62299509A JP61144626A JP14462686A JPS62299509A JP S62299509 A JPS62299509 A JP S62299509A JP 61144626 A JP61144626 A JP 61144626A JP 14462686 A JP14462686 A JP 14462686A JP S62299509 A JPS62299509 A JP S62299509A
Authority
JP
Japan
Prior art keywords
stretching
linear velocity
spinning
temperature
discharge linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61144626A
Other languages
Japanese (ja)
Inventor
Shoki Uchida
内田 昭喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP61144626A priority Critical patent/JPS62299509A/en
Priority to KR1019860005731A priority patent/KR880001033B1/en
Publication of JPS62299509A publication Critical patent/JPS62299509A/en
Priority to US07/203,579 priority patent/US4952453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain a fiber having high strength and modulus by spinning a spinning dope of an acrylonitrile-based polymer at a specific discharge linear velocity ratio, washing the resultant gelatinous filaments with water, drawing and subjecting to dry heat treatment. CONSTITUTION:A spinning dope of an acrylonitrile-based polymer is spun while maintaining the discharge linear velocity ratio defined by the formula at >=4. The resultant spun gelatinous filaments are washed with water, drawn, regulated within the range of an inner water content of 2-20% and heat-treated under tension or drawn while dry-heating at the temperature within + or -30 deg.C of the maximum drawable temperature (about 140-180 deg.C). Thus, the filaments are drawn so that the effective total draw ratio is >=15 times. The concentration of spinning dope is preferably 7-15wt% and discharge linear velocity ratio is preferably 6-12.

Description

【発明の詳細な説明】 ((イ) 産業上の利用分野 本発明は、高物性アクリル釆繊維の工業的製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION ((a) Industrial Application Field The present invention relates to an industrial method for producing acrylic kettle fibers with high physical properties.

(ロ)従来の技術 1般tこ高強度高弾性率が要求される繊維の用途は少な
くな(、近年、アクリAI禾繊維に1ついても、その物
性向上の試みが活発になされている。
(b) Prior Art 1) In general, there are few uses for fibers that require high strength and high modulus (in recent years, attempts have been made to improve the physical properties of acrylic AI fibers as well.

かかる試みの1つとして、特開昭54−134124号
公報に記載される如く、常法に従って作製しfcMi維
を更に加圧水蒸気中において再延伸することにより高倍
率延伸を達成し、最終的に高物性繊維を製造しようとす
る手段が拳げられる。
As one such attempt, as described in JP-A No. 54-134124, fcMi fibers prepared according to a conventional method were further stretched in pressurized steam to achieve high stretching ratio, and finally high Measures to produce physical fibers are being challenged.

また、今一つの試みは、特開昭59−199809号公
報記載の発明に代表される如く、繊維形製出発原料とし
て超高分子量ポリマーを使用し1紡糸原液作製、紡糸等
の各二穆で種々の工夫を凝らすことによりポリマー分子
鎖を引き揃え、分子鎖全体を繊維軸方向tこ伸びた、い
わゆる伸び切り鎖の状■に近づけることによって高物性
を達成する手段である。
Another attempt, as typified by the invention described in Japanese Unexamined Patent Publication No. 59-199809, uses an ultra-high molecular weight polymer as a starting material for fiber formation, and various methods are used for preparing a spinning dope, spinning, etc. This is a means of achieving high physical properties by aligning the polymer molecular chains and making the entire molecular chain approximate to the shape of a so-called extended chain (2), which is extended by t in the fiber axis direction.

(ハ)発明が解決しようとする問題点 前記の加圧水蒸気中古延伸手段においては、加圧水蒸気
を用いることに伴なうシーμ等の装置上や操作上の問題
があり、また、いわゆる水の可塑化効果によりニトリル
基の凝集力を低下させ高倍率延伸を達成し得る反面、分
子が2リツグするため分子鎖全体を伸び切り鎖の状Bt
こ近づける延伸本来の効果を発現しに(<、そのため前
記特開昭に記載されるように好ましくは35〜100倍
という極めて高倍率延伸が必要とされており、更にかか
る水M気中での延伸手段においては繊維中にミクロボイ
ドを生成し易く、かかるボイドが欠陥となって高物性を
達成しにくい。
(c) Problems to be Solved by the Invention In the pressurized steam used stretching means, there are problems in terms of equipment and operation such as sea μ due to the use of pressurized steam. Although the cohesive force of the nitrile group can be reduced due to the oxidation effect and high-magnification stretching can be achieved, the entire molecular chain is extended and the chain-like Bt
Therefore, as described in the above-mentioned JP-A-Sho, extremely high stretching ratio, preferably 35 to 100 times, is required, and furthermore, in order to bring out the original effect of stretching, The stretching means tends to generate microvoids in the fibers, and these voids become defects, making it difficult to achieve high physical properties.

また、超高分子量ポリマーを使用する手段においては、
汎用ポリマーとは異なった特別のポリマーを準備する必
要があり、また重合度の増大に伴ないポリマー溶gi(
紡糸原液〕の粘度が音しく増大するため、溶液の取扱い
、脱泡・紡糸などが困難になり、さらに粘度を低(する
ために溶液中のポリマー濃度を低くすると生産性や得ら
れる繊維の物性が低下する。
In addition, in means using ultra-high molecular weight polymers,
It is necessary to prepare a special polymer different from general-purpose polymers, and as the degree of polymerization increases, polymer solubility (
The viscosity of the spinning stock solution increases dramatically, making it difficult to handle the solution, defoaming, spinning, etc. Furthermore, lowering the polymer concentration in the solution to lower the viscosity reduces productivity and the physical properties of the resulting fibers. decreases.

即ちA本発明の目的は、上述した問題点なしに高物性を
有するアクリル系繊維を製造し得る工業的手段を提供す
ることである。
That is, an object of the present invention is to provide an industrial means for producing acrylic fibers having high physical properties without the above-mentioned problems.

に)問題点を解決するための手段 かかる本発明の目的は、アクリロニトリル(以下ANと
いう)系重合体紡糸原液を、下記に定義する吐呂緩速度
比を4以上に維持しながら紡糸し、得られた紡出ゲ/I
/糸を水洗、延伸し、次いで延伸後ゲル糸の内部水分率
を2〜20%の範囲内に調整した後、最大延伸可能温度
±60℃の温度条件下で緊張乾熱処理又は乾熱延伸し、
有効全延伸倍率を15倍以上とする手段によって達成さ
れる。
B.) Means for Solving the Problems The object of the present invention is to spin an acrylonitrile (hereinafter referred to as AN) polymer spinning dope while maintaining a spout/rotation speed ratio of 4 or more as defined below. Spinning game/I
/ The yarn is washed with water and stretched, and then after the stretching, the internal moisture content of the gel yarn is adjusted to within the range of 2 to 20%, and then subjected to tension dry heat treatment or dry heat stretching under a temperature condition of the maximum stretchable temperature ±60 ° C. ,
This is achieved by increasing the effective total stretching ratio to 15 times or more.

O 吐aI#i!速度比=− ■ 以下、本発明を逐次詳述する。O Vomit aI#i! Speed ratio=- ■ The present invention will be explained in detail below.

先ず、本発明で使用するhup重合体としては、AIを
80正量%以上、好ましくは90重■%以上含む重合体
である限り分子量等に制限されることなく用いることが
でき、残余の成分としてはANと共重合し得る公知のI
X ML 体、例えば(メタ)アクリル酸のメチル、エ
チル、ブチル、オクチル、メトキシエチル、フェニル、
シクロヘキシIし等のエフチル類;酢酸ビニル、グロビ
オン酸ビニ/I/1酪酸ビニ〜等のビニルヌルホン アミド及びその誘導体;(メタ〕アクリμ酸、マレイン
酸、イタコン酸等の不飽和力lレボン酸及びこれらの塩
類;ビニルヌルホン酸、(メタンアリル7ルホン ホン酸、アクリルアミドプロパン7 IL/ホン酸等の
不飽和ヌルホン酸及びこれらの塩類;塩化ビニル、臭化
ビニ/L’ N弗化ビニル、塩化ビニリデン、臭化ビニ
リデン等のハロゲン化ビニル及ヒハロゲン化ヒニリデン
類;ヌチレン、メチルヒニルケトン、メチlレビニIレ
エーテル、(メタノアリルアルフール、ビニルヒ゛リジ
ン、ジメチルアミンエチルメタクリレート、シアン化ビ
ニリデン、メタクリレートリル、グリシジ/I/(メタ
〕7クリレート等のビニル化合物類などが挙げられる。
First, the hup polymer used in the present invention can be used without any restrictions on molecular weight, etc., as long as it contains 80% by weight or more of AI, preferably 90% by weight or more, and the remaining components As for the known I which can be copolymerized with AN,
X ML form, such as methyl, ethyl, butyl, octyl, methoxyethyl, phenyl of (meth)acrylate,
Ephthyls such as cyclohexyl I; vinylnulfonamides and derivatives thereof such as vinyl acetate, vinyl globionate/I/vinyl butyrate; unsaturated compounds such as (meth)acrylic acid, maleic acid, and itaconic acid; Acids and their salts; Vinyl nulphonic acid, (methaneallyl 7 sulfonic acid, acrylamide propane 7 IL/phonic acid, etc.) and their salts; Vinyl chloride, vinyl bromide/L'N vinyl fluoride, vinylidene chloride, Vinylidene halides and hynylidene hyhalides such as vinylidene bromide; nuthylene, methylhinylketone, methyl levinyl ether, (methanoallylalfur, vinylhylysine, dimethylamine ethyl methacrylate, vinylidene cyanide, methacrylateryl, glycidi/ Examples include vinyl compounds such as I/(meth)7 acrylate.

かかる重合体を溶解して紡糸原液を作製するための溶剤
としては、ジメチルアセトアミド、ジメチルアセトアミ
ド、ジメチルヌlレホキシド等の有機溶剤;ロダンソー
ダ、ロダンカリウム、pダンアンモニウム等のロダン塩
、硝酸、塩化亜鉛の水溶液等の無機溶剤を挙げることが
できるが為後述する本発明の紡糸条件と相俟って本発明
の目的を有利に達成し得ることから無機溶剤、中でもロ
ダン塩の水溶液が望ましい。なお、ポリマー濃度につい
ては何ら制約は認められないが、工業的観点から概ね5
〜30重景%、更に好ましくは7〜15重量%の範囲内
に設定することが望ましい。
Solvents for preparing a spinning dope by dissolving such polymers include organic solvents such as dimethylacetamide, dimethylacetamide, and dimethyl urethoxide; rhodan salts such as rhodan soda, rhodan potassium, and p-dan ammonium; nitric acid, and zinc chloride; Inorganic solvents such as aqueous solutions can be mentioned, but in combination with the spinning conditions of the present invention described later, the objects of the present invention can be advantageously achieved, and among these inorganic solvents, an aqueous solution of rhodan salt is preferable. There are no restrictions on the polymer concentration, but from an industrial perspective it is approximately 5.
It is desirable to set the content within the range of 30% by weight, more preferably 7% to 15% by weight.

本発明においては、上記紡糸原液な吐呂線速度比を4以
上、好ましくは5〜20、更に好ましくは6〜12に維
持しながら紡糸することが重要である。かかる範囲の下
限を外れる場合には、延伸性が低下し100℃以上の高
沸点媒体中での多段延伸など特殊な延伸操名ト ることができなくなると共に、最終的に得られる繊維の
物性も劣ったものしか得られない。
In the present invention, it is important to perform spinning while maintaining the linear speed ratio of the spinning dope at 4 or more, preferably 5 to 20, more preferably 6 to 12. If the lower limit of this range is exceeded, the drawability will decrease and special drawing operations such as multi-stage drawing in a high boiling point medium of 100°C or higher will not be possible, and the physical properties of the final fiber will deteriorate. You can only get something inferior.

また、かかる範囲の上限を外れる場合には、凝固浴槽を
深(する必要がある、物性等が不均一になるなどの問題
を派生してくる。なお、上記の条件を満足しながら紡糸
口金より吐出された糸条が凝固浴から巻取ら(引き出さ
)れる限り、通常の湿式紡糸法だけでなく、一旦空気等
の不活性雰囲気中に吐出したのち凝固浴中に導入するい
わゆる乾湿式紡糸法も採用することができる。
In addition, if the upper limit of this range is exceeded, problems such as the need to deepen the coagulation bath and non-uniformity of physical properties may arise. As long as the discharged yarn is wound up (pulled out) from the coagulation bath, it can be applied not only to the normal wet spinning method, but also to the so-called wet-dry spinning method in which the yarn is discharged into an inert atmosphere such as air and then introduced into the coagulation bath. Can be adopted.

凝固浴から引き出された紡出ゲル糸は、次いで水洗、延
伸される。
The spun gel yarn pulled out from the coagulation bath is then washed with water and stretched.

かかる水洗、延伸工程については、常法tこ従って水洗
(脱溶媒)しながら又は水洗し之後に冷延伸、熱延伸操
作を施せばよく、冷/熱延伸のいずれも多段階で行なう
ことも可能である。
For such water washing and stretching steps, cold stretching and hot stretching operations may be performed while or after water washing (solvent removal) according to the conventional method, and both cold and hot stretching can be performed in multiple stages. It is.

なお、かかる延伸工程を経た直後のゲll/糸の内部水
分率を繊維形成重合体乾燥1ifflに対して150%
以下、更に好ましくは130%以下に設定することが望
ましく、かかる水分率の制御手段については例えば紡糸
原液中の重合体濃度や凝固浴、水洗、延伸等の各温度な
どを挙げることができるが、特tこ前記吐出線速度比条
件を踏まえながら上記冷/熱延伸工程における延伸倍率
を10倍以上、好ましくは12〜20倍とすることによ
り、該水分率を有利に制御し得、最終的に高物性繊維を
工業的有利に提供することができる。また、かかる延伸
倍率の中でも、冷延伸と熱延伸との配分を下記の如(調
節することをこより、一層望ましい結果を与えることが
できる。
In addition, the internal moisture content of the gel/yarn immediately after the stretching process is 150% with respect to 1 iffl of dry fiber-forming polymer.
Hereinafter, it is more preferable to set the moisture content to 130% or less, and examples of means for controlling the moisture content include the polymer concentration in the spinning dope and the temperatures of the coagulation bath, water washing, stretching, etc. In particular, by setting the stretching ratio in the cold/hot stretching step to 10 times or more, preferably 12 to 20 times, taking into account the above discharge linear speed ratio conditions, the moisture content can be advantageously controlled, and finally High physical property fibers can be provided industrially advantageously. Moreover, even among such stretching ratios, even more desirable results can be obtained by adjusting the distribution of cold stretching and hot stretching as described below.

 0gA logA+logB このようにして紡糸、水洗、延伸して得られたfJiI
liは、次いで、前記延伸後ゲ/I/糸の内部水分率を
2〜20%、好ましくは5〜15%の範囲内に調整した
後、緊張乾熱処理又は乾熱延伸することが重要である。
0gA logA+logB fJiI obtained by spinning, washing, and stretching in this way
It is important that the li is then subjected to tension dry heat treatment or dry heat stretching after adjusting the internal moisture content of the stretched yarn to a range of 2 to 20%, preferably 5 to 15%. .

かかる内部水分率の調整手段については、工業的観点か
ら次のような手段が挙げられる。
From an industrial perspective, the following methods can be used to adjust the internal moisture content.

部ち、熱延伸後ゲル糸を、引続いて緊張((約1.2倍
以下ン条件下に加PAI:+−ル上で乾燥し、ゲル糸の
内部水分率を所定の範囲内に調整する。なお、かかる加
熱ロールの温度としては、急激な乾燥は物性低下の原因
ともなるので、概ね140℃以下、好ましくは60〜1
20℃、更に好ましくは70〜100℃の範囲内に設定
するこさが望ましい。
After hot stretching, the gel yarn is subsequently stretched (approximately 1.2 times or less) and dried on a PAI: +- wheel to adjust the internal moisture content of the gel yarn within a predetermined range. The temperature of the heating roll should be approximately 140°C or lower, preferably 60°C to 10°C, since rapid drying may cause deterioration of physical properties.
It is desirable to set the temperature at 20°C, more preferably within the range of 70 to 100°C.

なお、かかる内部水分率が本発明の範囲を外れるときは
、特に後続の工程(特に乾熱延伸]において糸切れ、延
伸性の低下などの操業上の問題を派生し易い。
Note that when the internal moisture content is outside the range of the present invention, operational problems such as yarn breakage and reduction in drawability are likely to occur particularly in subsequent steps (especially dry heat stretching).

緊張乾熱処理又は乾熱延伸工程においては、特に温度条
件が重要であり、かかる温度を最大延伸可能温度(乾熱
延伸時に、糸切れを起こすことな(最大の延伸倍率を与
えることのできる温度)を中心として±30℃、好まし
くは±20℃の範囲内に設定する必要があり1かかる温
度条件を満足して初めて、別設の工程で盛り込まれた高
物性を発現し1かかる範囲を外れる場合には、本発明の
目的とする繊維を調進することはできない。なお、本発
明の目的達成上、かかる温度条件下で、105倍以上、
好ましくは1.1〜2.5倍、更に好ましくは1.2〜
2.3倍乾熱延伸することが望ましい。また、上述の各
工程、各条件のもとで作製されるアクリル繊維は、最終
的に有効全延伸倍率が15倍以上、好1しくは18倍以
上、更に好ましくは20倍以上となるように延伸条件を
設定する必要があり、これらの各要件を満足させること
によって、最終的に高物性アクリル繊維を操業上の問題
なく工業的有利に製造することができる。
Temperature conditions are particularly important in the tension dry heat treatment or dry heat stretching process, and the temperature is the maximum stretching temperature (the temperature that can give the maximum stretching ratio without causing yarn breakage during dry heat stretching). It is necessary to set the temperature within a range of ±30°C, preferably ±20°C around However, in order to achieve the purpose of the present invention, under such temperature conditions, the fibers that are the object of the present invention cannot be developed.
Preferably 1.1 to 2.5 times, more preferably 1.2 to 2.5 times
It is desirable to carry out dry heat stretching by 2.3 times. In addition, the acrylic fibers produced under the above-mentioned steps and conditions should be such that the final effective total stretching ratio is 15 times or more, preferably 18 times or more, and more preferably 20 times or more. It is necessary to set the stretching conditions, and by satisfying each of these requirements, it is possible to finally produce acrylic fibers with high physical properties without any operational problems and with industrial advantage.

なお1最大延伸可能温度は、ポリマー組成、ポリマーの
分子五11紡糸条件などにより大きく変化するので、−
6的に言及することはできないが、実用的ポリマー組成
及び分子E1、例えばAN≧85重■%、Mm平均分子
ff7〜25万の場合には、概ね140〜180℃の範
囲内で変化する。かかる温度の正確な値は、例えば供試
繊維について乾熱延伸温度を逐次開化させ、各温度条件
において繊維が切断するまでの延伸倍率を求めることに
より、最大の延伸倍率を与える乾熱延伸温度を求めるこ
とができる。
Note that the maximum drawing temperature varies greatly depending on the polymer composition, polymer molecules, spinning conditions, etc.
Although it cannot be mentioned specifically, in the case of a practical polymer composition and molecule E1, for example, AN≧85% by weight, and Mm average molecular ff 7 to 250,000, the temperature changes generally within the range of 140 to 180°C. The exact value of this temperature can be determined, for example, by gradually increasing the dry heat drawing temperature for the test fiber and determining the draw ratio until the fiber breaks under each temperature condition, and then determining the dry heat drawing temperature that gives the maximum draw ratio. You can ask for it.

このようにして、概ね8 g/d以上、好ましくは10
 g/d以上の引張強度、120 g/d以上、好まし
くは140 g/d以上の弾性率を有するアクリ/vI
H維を@造することができる。
In this way, approximately 8 g/d or more, preferably 10
Acrylic/vI having a tensile strength of at least 120 g/d, preferably at least 140 g/d.
H-fiber can be made.

(ホ)  作  用 上述した本発明の各工程要件を結合採択することにより
高物性アクリル繊維を工業的有利に製造し得る理由につ
いては明らかでないが、下記のように推定される。
(E) Effect The reason why high physical property acrylic fibers can be produced industrially advantageously by combining the above-mentioned process requirements of the present invention is not clear, but it is presumed as follows.

即ち、本発明で推奨する吐呂線速度比条件下での紡糸に
つれた脱溶媒、凝固速度が、妨呂ゲIv糸中ホ゛リマー
の分子溝造を、後続の延伸工程において優れた延伸、配
向性を発現し得る状態に形製させ得、またそれをこ続く
水洗・延伸と、その後の内部水分率調整及び特定湿度条
件下での緊張乾熱処理又は乾が延伸が、ボイド欠陥を形
成させる二七なく最終的に形製される繊維中のポリマー
分子鎖を伸び切り鎖に近い状態で引き揃えることに寄与
し、以て高物性を発現させ得るものと考えられる。
In other words, the desolvation and coagulation rate during spinning under the linear velocity ratio conditions recommended in the present invention improve the molecular groove formation of the polymer in the yarn, resulting in excellent drawing and orientation properties in the subsequent drawing process. It is possible to form it into a state in which it can express a void defect, and subsequent washing and stretching with water, subsequent adjustment of the internal moisture content, and tension dry heat treatment or dry stretching under specific humidity conditions will cause void defects to be formed. It is thought that this contributes to aligning the polymer molecular chains in the finally formed fiber in a state close to that of stretched chains, thereby making it possible to develop high physical properties.

(へ) 発明の効果 上述したように、繊維形製出発原料として特別のポリマ
ーを準備したり、装置上や操作上或は物性上に問題のあ
る加圧水蒸気中での延伸を必須の手段として使用するこ
となく、高物性アクリル繊維を操業上の問題なく工業的
有利に製造する手段を提供し得た点が、本発明の特筆す
べき効果である。
(f) Effects of the invention As mentioned above, it is necessary to prepare a special polymer as a starting material for fiber formation, or to use stretching in pressurized steam, which has problems in terms of equipment, operation, or physical properties. A noteworthy effect of the present invention is that it has provided a means for industrially advantageously producing acrylic fibers with high physical properties without any operational problems.

また、本発明Pこおいては高粘度紡糸原液を用いる必要
がないことから、溶液、脱泡、紡糸などにおける取扱い
や操作上の困難を伴なうことがなく、またかかる困難性
を回避するために紡糸原液中のポリマー感度を低くして
生産性や繊維物性を低下させる等の問題のない手段を提
供し得た点が、本発明の特徴的利点である。
In addition, since it is not necessary to use a high-viscosity spinning dope in the present invention P, there is no need to use a high-viscosity spinning dope, so there are no handling or operational difficulties in solution, defoaming, spinning, etc., and such difficulties can be avoided. A characteristic advantage of the present invention is that it provides a method that does not cause problems such as lowering the sensitivity of the polymer in the spinning dope and reducing productivity and fiber properties.

(トノ  実  hfh  例 本発明の理解を容易にするため、以下に実施例を示すが
、本発明はかかる実施例の記載により、その範囲を何ら
限定されるものではない。なお、実施例中に示される百
分率は、特に断りのない限り恵量基q!=こよる。
(Examples) In order to facilitate understanding of the present invention, examples are shown below, but the scope of the present invention is not limited in any way by the description of such examples. Percentages shown are based on merit unless otherwise specified.

参考例 1 AN90%及びアクリル酸メチ/l/(M A )10
%からなるAN梁共恵合体(30℃のジを、50%濃度
のロダンソーダ水溶液に溶解して重合体濃度が10%の
紡糸原液(30Cでの粘度:55ボイズ)を作製した。
Reference example 1 AN90% and methi acrylate/l/(M A )10
A spinning stock solution with a polymer concentration of 10% (viscosity at 30C: 55 voids) was prepared by dissolving AN Liang Kyongei coalescence (30° C.) consisting of 10% polymer concentration in a Rodan soda aqueous solution of 50% concentration.

80Cの紡糸D/、Hをo、 09 mmφ、50ホー
ルのノズIしより、−6℃、15%のロダンソーダ水溶
液中に押し呂し、上記第1まく記載のように吐呂砿速度
比を変えて巻取った。
Spinning yarn D/H of 80C was passed through a nozzle I with a diameter of 09 mm and 50 holes, and placed in a 15% Rodan soda aqueous solution at -6°C, and the speed ratio of spinning was adjusted as described in the first section above. I changed it and took it up.

次に、3.0倍の冷延伸を施した後S弊水中で熱延伸し
て最大熱延伸倍率を求めた。
Next, the film was cold-stretched to 3.0 times and then hot-stretched in S water to determine the maximum hot-stretching ratio.

その、h呆を、第1表に示す。The h-absence is shown in Table 1.

率を下げたものである。This is a lower rate.

上表から、吐出線速度比を上げることにより、全延伸倍
率(糸切れを起こさないで延伸し得る最大の延伸倍率)
を顕著に増大させることができる事実が理解される。
From the above table, by increasing the discharge linear speed ratio, the total stretching ratio (maximum stretching ratio that can be stretched without causing yarn breakage)
It is understood that the amount can be significantly increased.

参考例 2 熱延伸倍率を5.3倍とする外は参考例11lls5と
同様にして水膨潤ゲル状繊維(内部水分率ニア3%)を
作製した。
Reference Example 2 Water-swellable gel-like fibers (internal moisture content near 3%) were produced in the same manner as Reference Example 11lls5 except that the hot stretching ratio was 5.3 times.

次いで、定長下、80℃の加熱ローμ上で内部水分率が
10%になるように乾燥して得た供試繊維を1下記第2
表記載のようtこ加熱ロールの温度を変化させて乾熱延
伸し、各温度における最大延伸借出(切断するまでの乾
熱延伸倍率)を求めた。
Next, the test fiber obtained by drying on a heating roller μ at 80°C under a fixed length so that the internal moisture content becomes 10% was
Dry heat stretching was carried out by varying the temperature of the heating roll as shown in the table, and the maximum stretching ratio (dry heat stretching ratio until cutting) at each temperature was determined.

その結果を、第2表に示す。The results are shown in Table 2.

上表から1供試繊維の最大延伸可能温度は150℃であ
ることが理解される。
It is understood from the above table that the maximum drawable temperature of one sample fiber is 150°C.

実施例 1 参考例2記載の供試繊維(但し、熱延伸倍率4倍)を、
下記第3表記載の条件で乾熱延伸し、8種類の繊維(A
−H)を作製した。
Example 1 The test fiber described in Reference Example 2 (however, the hot drawing ratio was 4 times) was
Eight types of fibers (A
-H) was produced.

これらの繊維の物性を測定した結果を、第6表に示す。Table 6 shows the results of measuring the physical properties of these fibers.

なお、これらはいずれも乾熱延伸時に糸切れを起こすこ
となく、良好な操業性を示したが、未乾燥(内部水分率
73%)及び内部水分率が1%になるように乾燥した供
試繊維を腸MkDと同様tこ乾熱延伸したところ、糸切
れが著しく、操業に耐えなかった。
All of these exhibited good operability without causing yarn breakage during dry-heat stretching, but the test samples were undried (internal moisture content 73%) and dried to an internal moisture content of 1%. When the fibers were subjected to dry heat drawing in the same manner as intestine MkD, the fibers were severely broken and could not withstand operation.

上表から、本発明品が優れた物性を有する事実が、また
乾熱延伸温度が本発明の範囲を外れる場合には、有効全
延伸倍率が同じであっ7でも本発明品に比べて劣った物
性の繊維しか得られない事実が、明瞭に理解される。
From the above table, the fact that the product of the present invention has excellent physical properties, and when the dry heat stretching temperature is outside the range of the present invention, it is inferior to the product of the present invention even if the effective total stretching ratio is the same is 7. The fact that only fibers with physical properties can be obtained is clearly understood.

実施例 2 下記第4表記載のように吐出線速度比を変化させる外は
実施例I A Dの繊維と同様にして、4種類の繊維(
工〜L)を作製した。
Example 2 Four types of fibers (
(Eng.-L) were prepared.

にに これらの職碓の熱価伸度ゲIV糸の内部水分率及び最終
繊維物性を測定した結果を、第4表に示す。
Table 4 shows the results of measuring the internal moisture content and final fiber physical properties of these yarns with thermal elongation and IV yarns.

3.5倍で作製した。Produced at 3.5 times magnification.

上表から1本発明品が侵れた物性を有する事実が、また
吐出線速度比が本発明の範囲を外れる場合(、瓢工)に
は延伸性が劣り高物性繊維が得られない事実が、明瞭に
理解される。
From the above table, one fact is that the product of the present invention has poor physical properties, and the other is the fact that when the discharge linear velocity ratio is out of the range of the present invention (hyoko), the drawability is poor and a fiber with high physical properties cannot be obtained. , clearly understood.

実施例 3 AMM共重合体の分子n ((17):1.8 )を変
えるか−1またはA N系共重合体の組成(AN97%
及びMA3%)を変え、乾熱延伸温度として下記第5表
記載の最大延伸可能温度を採用する外は57!施例I 
A Kと同様tこしてm維(M及びN)を作製した。
Example 3 The molecule n ((17):1.8) of the AMM copolymer was changed to -1 or the composition of the A N-based copolymer (AN97%
57! Example I
M fibers (M and N) were prepared by straining in the same manner as in AK.

これらのm維の物性等を測定した結果を、第5表に示す
Table 5 shows the results of measuring the physical properties of these m-fibers.

第5表 上表より、本発明品が優れた物性を有する事突が、明瞭
に理解される。
From the upper table of Table 5, it is clearly understood that the product of the present invention has excellent physical properties.

Claims (1)

【特許請求の範囲】 アクリロニトリル系重合体紡糸原液を、下記に定義する
吐出線速度比を4以上に維持しながら紡糸し、得られた
紡出ゲル糸を水洗、延伸し、次いで延伸後ゲル糸の内部
水分率を2〜20%の範囲内に調整した後、最大延伸可
能温度±30℃の温度条件下で緊張乾熱処理又は乾熱延
伸し、有効全延伸倍率を15倍以上とすることを特徴と
する高物性アクリル繊維の製造法。 吐出線速度比=V_0/V (V_0:紡糸原液の吐出線速度(m/分)V:紡出ゲ
ル糸の巻取り速度(m/分))
[Claims] An acrylonitrile polymer spinning stock solution is spun while maintaining a discharge linear velocity ratio of 4 or more as defined below, and the resulting spun gel yarn is washed with water and stretched, and then, after stretching, the gel yarn is After adjusting the internal moisture content within the range of 2 to 20%, tension dry heat treatment or dry heat stretching is carried out under the temperature conditions of the maximum stretchable temperature ± 30 ° C, and the effective total stretching ratio is 15 times or more. A manufacturing method for acrylic fiber with high physical properties. Discharge linear velocity ratio = V_0/V (V_0: Discharge linear velocity of spinning dope (m/min) V: Winding speed of spun gel yarn (m/min))
JP61144626A 1985-08-05 1986-06-19 Production of acrylic fiber having high physical property Pending JPS62299509A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61144626A JPS62299509A (en) 1986-06-19 1986-06-19 Production of acrylic fiber having high physical property
KR1019860005731A KR880001033B1 (en) 1985-08-05 1986-07-15 Acrylic fiber and it's making method
US07/203,579 US4952453A (en) 1985-08-05 1988-05-27 Acrylic fibers with high physical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144626A JPS62299509A (en) 1986-06-19 1986-06-19 Production of acrylic fiber having high physical property

Publications (1)

Publication Number Publication Date
JPS62299509A true JPS62299509A (en) 1987-12-26

Family

ID=15366411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144626A Pending JPS62299509A (en) 1985-08-05 1986-06-19 Production of acrylic fiber having high physical property

Country Status (1)

Country Link
JP (1) JPS62299509A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119815A (en) * 1974-08-08 1976-02-17 Asahi Chemical Ind AKURIRONITORIRUKEIGOSEISENINO SEIZOHO
JPS5443616A (en) * 1977-09-13 1979-04-06 Fuji Photo Film Co Ltd Continuous running type film scanner
JPS54134124A (en) * 1978-04-06 1979-10-18 American Cyanamid Co Production of acrylonitrile polymer fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119815A (en) * 1974-08-08 1976-02-17 Asahi Chemical Ind AKURIRONITORIRUKEIGOSEISENINO SEIZOHO
JPS5443616A (en) * 1977-09-13 1979-04-06 Fuji Photo Film Co Ltd Continuous running type film scanner
JPS54134124A (en) * 1978-04-06 1979-10-18 American Cyanamid Co Production of acrylonitrile polymer fiber

Similar Documents

Publication Publication Date Title
JPS60126312A (en) High-strength and high-modulus polyvinyl alcohol based fiber and production thereof
US4658004A (en) Polyacrylonitrile fiber with high strength and high modulus of elasticity
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
JPS62299509A (en) Production of acrylic fiber having high physical property
KR880001033B1 (en) Acrylic fiber and it's making method
JP3021944B2 (en) Manufacturing method of polyvinyl alcohol fiber with excellent strength
JPS63275718A (en) Production of high-tenacity carbon fiber
JP3048449B2 (en) Acrylonitrile precursor fiber
JP3154595B2 (en) Method for producing acrylonitrile fiber
JPH0657524A (en) Production of acrylic fiber
JPH0157165B2 (en)
JPS62149909A (en) Polyvinyl alcohol fiber
JPS6385108A (en) Highly strong acrylic fiber and production thereof
JPS62299510A (en) Acrylic fiber having high physical property and production thereof
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JP2947954B2 (en) Dry heat drawing method of acrylic fiber
JPH05339813A (en) Acrylonitrile fiber and its production
JPH01124611A (en) Production of polyvinyl alcohol yarn
JP2001288613A (en) Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber
JPH0465523A (en) Production of acrylic synthetic fiber with deep wrinkle
JPH026627A (en) Production of novel carbon fiber using predetermined stretching
JPH08284013A (en) Polyvinyl alcohol monofilament yarn having excellent hot-water resistance, high strength and high initial modulus of elasticity