JPS62296457A - Cmos-type semiconductor integrated circuit - Google Patents

Cmos-type semiconductor integrated circuit

Info

Publication number
JPS62296457A
JPS62296457A JP61140572A JP14057286A JPS62296457A JP S62296457 A JPS62296457 A JP S62296457A JP 61140572 A JP61140572 A JP 61140572A JP 14057286 A JP14057286 A JP 14057286A JP S62296457 A JPS62296457 A JP S62296457A
Authority
JP
Japan
Prior art keywords
transistor
resistance
power supply
source
latch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61140572A
Other languages
Japanese (ja)
Inventor
Kohei Matsuda
松田 公平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61140572A priority Critical patent/JPS62296457A/en
Publication of JPS62296457A publication Critical patent/JPS62296457A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Abstract

PURPOSE:To easily enable a CMOS semiconductor integrated circuit to be difficult to cause power supply latch-up by connecting the source of a MOS transistor constituting the internal circuit and the power supply terminal via a polycrystalline silicon resistance layer. CONSTITUTION:In the equivalent circuit diagram of a parasitic bi-polar transistor, a transistor Tr1 is a pnp transistor consisting of a p<+> type diffusion region 4 which is the source of a p-MOS transistor, an n-type silicon substrate 1 and a well region 2, and a transistor Tr2 is an npn transistor consisting of the source 7 of an n-MOS transistor, a p-well region 2 and the n-type silicon substrate 1. Further, a parasitic resistance R1 is the resistance value between the p-well region 2 and an n<+> type diffusion layer 5, and a resistance R3 is the resistance value of a polycrystalline silicon resistance layer 15. When the power supply voltage VDD rises and Tr2 breaks over, a current flows through R1. When the current flowing through R1 becomes large, emitter-base of Tr1 is forwardly biased and Tr1 attempts to turn on, the potential of the emitter lowers due to the resistance R3, preventing Tr1 from turning on. As a result, latch-up is difficult to occur.

Description

【発明の詳細な説明】 発明の詳細な説明 〔産業上の利用分野〕 本発明はCMOS型半導体集積回路に関する。[Detailed description of the invention] Detailed description of the invention [Industrial application field] The present invention relates to a CMOS type semiconductor integrated circuit.

〔従来の技術〕[Conventional technology]

CMOS型半導体集積回路は、9MO3)ランジスタと
nMO3)ランジスタを組み合せたものであるため寄生
サイリスタが構成されており、外部雑音によりこの寄生
サイリスタが導通するいわゆるラッチアップが起こりや
すいという欠点がある。
Since a CMOS type semiconductor integrated circuit is a combination of a 9MO3) transistor and an nMO3) transistor, a parasitic thyristor is formed, and there is a drawback that so-called latch-up, in which the parasitic thyristor becomes conductive due to external noise, is likely to occur.

第3図は従来のCMOS型半導体集積回路の主要部の断
面図である。
FIG. 3 is a sectional view of the main parts of a conventional CMOS type semiconductor integrated circuit.

第4図は第3図の従来例のラッチアップを説明するため
の等価回路図である。
FIG. 4 is an equivalent circuit diagram for explaining the latch-up of the conventional example shown in FIG.

抵抗R1はn型シリコン基板1の寄生抵抗、抵抗R2は
pウェル領域2の寄生抵抗、Tr、はp1型拡散領域4
をエミッタ、n型シリコン基板1をベース、pウェル領
域2をコレクタとする寄生pnp)ランジスタ、T、□
はn+型拡散領域7をエミッタ、pウェル領域2をベー
ス、n型シリコン基板1をコレクタとする寄生npn 
)ランジスタである。Trl、Tr2により寄生サイリ
スタが構成されラッチアップを引き起こすことは公知の
通りである。
Resistance R1 is a parasitic resistance of the n-type silicon substrate 1, resistance R2 is a parasitic resistance of the p-well region 2, and Tr is a parasitic resistance of the p-type diffusion region 4.
A parasitic pnp) transistor with T as an emitter, an n-type silicon substrate 1 as a base, and a p-well region 2 as a collector, T, □
is a parasitic npn with the n+ type diffusion region 7 as the emitter, the p well region 2 as the base, and the n type silicon substrate 1 as the collector.
) is a transistor. As is known, Trl and Tr2 constitute a parasitic thyristor and cause latch-up.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ラッチアップには、発生原因である雑音源により電源ラ
ッチアップ、入力アッチアップ、出力ラッチアップの3
種類がある。ラッチアップを強くする対策として9MO
3)ランジスタとnM。
There are three types of latch-up: power supply latch-up, input latch-up, and output latch-up, depending on the noise source that causes the latch-up.
There are different types. 9MO as a measure to strengthen latch-up
3) transistor and nM.

Sトランジスタの半導体基板上での間隔を広げる事が非
常に効果がある。このため、入力バッファおよび出力バ
ッファについてはこの対策がとられラッチアップに強い
ものができている。しかしながら内部回路を構成するト
ランジスタについてはトランジスタの数が非常に多い事
とできるだけ面積を小さくしてコストを低くする要求の
ため上述のpMOs)ランジスタとn M OS )ラ
ンジスタの間隔を広く取るという手段は非現実的であっ
た。このため従来のCMOS型半導体集積回路は電源ラ
ッチアップを強くする事が困難であった。
Increasing the distance between the S transistors on the semiconductor substrate is very effective. For this reason, this countermeasure is taken for the input buffer and output buffer, making them resistant to latch-up. However, due to the large number of transistors constituting the internal circuit and the need to reduce cost by reducing the area as much as possible, it is not possible to widen the distance between the pMOS transistors and nMOS transistors mentioned above. It was unrealistic. For this reason, it has been difficult to strengthen the power supply latch-up in conventional CMOS type semiconductor integrated circuits.

本発明の目的は、電源ラッチアップ耐量の向上したCM
OS型半導体集積回路を提供することにある。
An object of the present invention is to provide a CM with improved power supply latch-up resistance.
An object of the present invention is to provide an OS type semiconductor integrated circuit.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のCM OS型半導体集積回路は、入力バッファ
及び出力バッファを除く内部回路を構成するn M O
S トランジスタとpMOSトランジスタの内、少なく
とも一方のMOS)ランジスタのソースが多結晶シリコ
ン抵抗層を介して電源端子に接続されてなるものである
The CMOS type semiconductor integrated circuit of the present invention comprises an internal circuit excluding an input buffer and an output buffer.
The source of at least one of the S transistor and the PMOS transistor is connected to a power supply terminal via a polycrystalline silicon resistance layer.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例あ主要部を示す半導体チップ
の断面図である。
FIG. 1 is a sectional view of a semiconductor chip showing the main parts of an embodiment of the present invention.

この実施例は、入力バッファ及び出力バッファを除く内
部回路を構成するnMOs トランジスタと9MO3)
ランジスタの内、pMOSトランジスタのソースが多結
晶シリコン抵抗層15を介して電源端子に接続されてな
るものである。
This embodiment uses nMOS transistors and 9MO3) that constitute the internal circuits excluding the input buffer and output buffer.
Among the transistors, the source of a PMOS transistor is connected to a power supply terminal via a polycrystalline silicon resistance layer 15.

n型シリコン基板1内に形成されたp++拡散領域3.
4をそれぞれドレイン領域、ソース領域とし、ゲート酸
化膜13−1、ゲート電極12−1を有する9MO3)
ランジスタが形成されている。n型シリコン基板1内に
形成されたpウェル領域2内に形成されたn++拡散領
域6,7をそれぞれドレイン領域6、ソース領域としゲ
ート酸化膜13−2、ゲート電極12−2を有するnM
○Sトランジスタが形成されている。n型シリコン基板
1とpウェル領域2とにそれぞれ電源電位を与えるため
n型シリコン基板1内にn++拡散領域8及びpウェル
領域2内にp++拡散領域5が形成されている。n++
拡散領域8に電源端子VDDに接続する電極10が形成
されている。nMO5)ランジスタのソース電極とp+
+拡散領域5に接地端子V55に接続する電極9が形成
されている0次に、pMoSトランジスタのソース領域
であるp++拡散領域4と電源端子VDDである電極は
絶縁膜14上に形成された多結晶抵抗層15により接続
されている。
A p++ diffusion region 3 formed in an n-type silicon substrate 1.
9MO3) which has a gate oxide film 13-1 and a gate electrode 12-1, with 4 as a drain region and a source region, respectively.
A transistor is formed. An nM transistor having a gate oxide film 13-2 and a gate electrode 12-2 with n++ diffusion regions 6 and 7 formed in a p-well region 2 formed in an n-type silicon substrate 1 as a drain region 6 and a source region, respectively.
○S transistor is formed. An n++ diffusion region 8 is formed in the n-type silicon substrate 1 and a p++ diffusion region 5 is formed in the p-well region 2 in order to apply a power supply potential to the n-type silicon substrate 1 and the p-well region 2, respectively. n++
An electrode 10 connected to the power supply terminal VDD is formed in the diffusion region 8 . nMO5) Source electrode of transistor and p+
An electrode 9 connected to the ground terminal V55 is formed in the + diffusion region 5. Next, the p++ diffusion region 4, which is the source region of the pMoS transistor, and the electrode, which is the power supply terminal VDD, are formed in the They are connected by a crystal resistance layer 15.

次に、本実施例によるラッチアップの改善効果について
説明する。
Next, the effect of improving latch-up according to this embodiment will be explained.

第2図は第1図のCMO3型NO型口07回路される寄
生バイポーラトランジスタの等価回路図である。トラン
ジスタT1□はpMOSトランジスタのソースであるp
++拡散領域4、n型シリコン基板1、pウェル領域2
で形成されるpnp)ランジスタ、トランジスタTr2
はnMOSトランジスタソース7、pウェル領域2、n
型シリコン基板1で構成されるnpn)ランジスタであ
る。
FIG. 2 is an equivalent circuit diagram of the parasitic bipolar transistor which is the CMO3 type NO type gate 07 circuit of FIG. Transistor T1□ is the source of pMOS transistor p
++ Diffusion region 4, n-type silicon substrate 1, p-well region 2
pnp) transistor formed by transistor Tr2
are nMOS transistor source 7, p well region 2, n
This is an npn) transistor composed of a type silicon substrate 1.

寄生抵抗R1はpウェル領域2からn+型型数散層5間
抵抗値、抵抗R3は多結晶シリコン抵抗層15の抵抗値
である。
The parasitic resistance R1 is the resistance value between the p-well region 2 and the n+ type scattering layer 5, and the resistance R3 is the resistance value of the polycrystalline silicon resistance layer 15.

第2図に於て、電源電圧V。0が上昇しT12がブレー
クオーバするとR1に電流が流れる。R1に流れる電流
が大きくなってTrlのエミッタ・ベース間が順バイア
スされてTrlがオンするとTrlとTr2で構成され
るサイリスタが導通してラッチアップが起こる。しかし
ながら、Trlがオンしようとすると抵抗R3によりエ
ミッタの電位が下がってTrlがオンするのを妨げる結
果としてラッチアップが起こりにくくなる。
In FIG. 2, the power supply voltage V. When 0 rises and T12 breaks over, current flows through R1. When the current flowing through R1 becomes large and the emitter-base of Trl is forward biased and Trl is turned on, the thyristor composed of Trl and Tr2 becomes conductive and latch-up occurs. However, when Trl tries to turn on, the emitter potential decreases due to resistor R3, preventing Trl from turning on, and as a result, latch-up is less likely to occur.

ラッチアップを起こさせない条件としてR3> RI 
 ・・・(1) を満足する抵抗値に多結晶シリコン抵抗層の層抵抗1寸
法を設計すれば良い。
As a condition to prevent latch-up, R3>RI
...(1) One dimension of the layer resistance of the polycrystalline silicon resistance layer may be designed to a resistance value that satisfies the following.

なお、n M OS )ランジスタのソースと接地端子
VB2間に多結晶シリコン抵抗層を挿入してもよい。
Note that a polycrystalline silicon resistance layer may be inserted between the source of the nMOS transistor and the ground terminal VB2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように内部回路を構成するMOSトランジ
スタのソースと電源端子を多結晶シリコン抵抗層で接続
する事によりCMO3半導体集積回路を容易に電源ラッ
チアップに強くする事ができる効果がある。
As explained above, by connecting the sources of the MOS transistors constituting the internal circuit and the power supply terminals through a polycrystalline silicon resistance layer, there is an effect that the CMO3 semiconductor integrated circuit can be easily made resistant to power supply latch-up.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の主要部を示す半導体チップ
の断面図、第2図は第1図に示す実施例の寄生サイリス
タの等価回路図、第3図は従来例の主要部を示す半導体
チップの断面図、第4図は第3図に示す従来例の寄生サ
イリスタを説明する等価回路図である。 1・・・n型シリコン基板、2・・・pウェル領域、3
.4.5・・・p+型拡散領域、6,7.8・・・n+
型拡散領域、9.10.11・・・電極、12−1゜1
2−2・・・電極、13−1.13−2・・・ゲート酸
化膜、14・・・絶縁膜、15・・・多結晶シリコン抵
抗層。 第1図 第2図 第30 第4図
Fig. 1 is a cross-sectional view of a semiconductor chip showing the main parts of an embodiment of the present invention, Fig. 2 is an equivalent circuit diagram of the parasitic thyristor of the embodiment shown in Fig. 1, and Fig. 3 shows the main parts of a conventional example. FIG. 4 is an equivalent circuit diagram illustrating the conventional parasitic thyristor shown in FIG. 3. 1... N-type silicon substrate, 2... P well region, 3
.. 4.5...p+ type diffusion region, 6,7.8...n+
Mold diffusion region, 9.10.11...electrode, 12-1゜1
2-2... Electrode, 13-1.13-2... Gate oxide film, 14... Insulating film, 15... Polycrystalline silicon resistance layer. Figure 1 Figure 2 Figure 30 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 入力バッファ及び出力バッファを除く内部回路を構成す
るnMOSトランジスタとpMOSトランジスタの内、
少なくとも一方のMOSトランジスタのソースが多結晶
シリコン抵抗層を介して電源端子に接続されてなること
を特徴とするCMOS型半導体集積回路。
Of the nMOS transistors and pMOS transistors that constitute the internal circuit excluding the input buffer and output buffer,
A CMOS type semiconductor integrated circuit characterized in that a source of at least one MOS transistor is connected to a power supply terminal via a polycrystalline silicon resistance layer.
JP61140572A 1986-06-16 1986-06-16 Cmos-type semiconductor integrated circuit Pending JPS62296457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61140572A JPS62296457A (en) 1986-06-16 1986-06-16 Cmos-type semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61140572A JPS62296457A (en) 1986-06-16 1986-06-16 Cmos-type semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS62296457A true JPS62296457A (en) 1987-12-23

Family

ID=15271803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140572A Pending JPS62296457A (en) 1986-06-16 1986-06-16 Cmos-type semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62296457A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232452A (en) * 1983-06-16 1984-12-27 Nec Corp Cmos integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232452A (en) * 1983-06-16 1984-12-27 Nec Corp Cmos integrated circuit

Similar Documents

Publication Publication Date Title
JP3246807B2 (en) Semiconductor integrated circuit device
US5376816A (en) Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors
US4672584A (en) CMOS integrated circuit
JP2633746B2 (en) Semiconductor device
JP3184298B2 (en) CMOS output circuit
JPH10340996A (en) Protection circuit
KR20050016107A (en) Semiconductor device
KR100379286B1 (en) Semiconductor device having a protective circuit
JPH07193195A (en) Cmos integrated circuit device
US5892263A (en) CMOS device connected to at least three power supplies for preventing latch-up
JPH09102551A (en) Semiconductor device
JP3184168B2 (en) Semiconductor device protection device
JPS5931987B2 (en) Complementary MOS transistor
JPH044755B2 (en)
JPS62296457A (en) Cmos-type semiconductor integrated circuit
JPS5819137B2 (en) Complementary MOS transistor
JPH0532908B2 (en)
JPS6281053A (en) Semiconductor integrated circuit device
JPH05326862A (en) Semiconductor device
JP3038744B2 (en) CMOS type semiconductor integrated circuit device
JP3437831B2 (en) CMOS output circuit
JP3386679B2 (en) Protection circuit
JPS62285463A (en) Complementary mos integrated circuit device
JPH0314232B2 (en)
JPS6193655A (en) Semiconductor device