JPS62296303A - Magnesia sintered powder for electric insulation - Google Patents

Magnesia sintered powder for electric insulation

Info

Publication number
JPS62296303A
JPS62296303A JP13828486A JP13828486A JPS62296303A JP S62296303 A JPS62296303 A JP S62296303A JP 13828486 A JP13828486 A JP 13828486A JP 13828486 A JP13828486 A JP 13828486A JP S62296303 A JPS62296303 A JP S62296303A
Authority
JP
Japan
Prior art keywords
magnesia
powder
sintered powder
resistance
magnesia sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13828486A
Other languages
Japanese (ja)
Inventor
房夫 河野
丹生 国彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Kagaku Kogyo KK
Original Assignee
Shin Nihon Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Kagaku Kogyo KK filed Critical Shin Nihon Kagaku Kogyo KK
Priority to JP13828486A priority Critical patent/JPS62296303A/en
Publication of JPS62296303A publication Critical patent/JPS62296303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明はマグネシアを主成分とする耐消化性の優れた電
気絶縁用マグネシア焼結粉体に関するもので、特にシー
スヒーターの絶縁充填材として適するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to magnesia sintered powder for electrical insulation, which is mainly composed of magnesia and has excellent fire resistance. It is suitable as an insulating filler for heaters.

[従来の技術] マグネシアは高周波電気絶縁抵抗および高温下での電気
絶縁抵抗が非常に高いという特性がある。従来電気絶縁
材料、特にシースヒーターの絶縁充填材として、電融マ
グネシアを破砕した粉体が使用されている。また、シー
スヒーターの充填材の特性として、粉体の耐消化性が重
要なファクターである。つまりマグネシア粉体は熱伝導
性、電気絶縁抵抗に優れた特性があるが、吸湿性が高く
、吸湿によって、電気絶縁抵抗が劣化する。そのため、
特開昭57−189480に示すように3!Q2等でマ
グネシアの表面を被覆する方法と特公昭59−1119
6に示すようにヒーターの端部をシリコン樹脂等で密封
する方法に大別できる。その他、両方を組み合わせた方
法、特公昭59−47870にあるは撥水性SiO2扮
を被覆する方法がある。また特に電融マグネシアは、そ
の製造方法上大きな塊状で17られるために、細かいシ
ースヒーターの絶縁充填材として整粒せざるを得ず、破
砕粒の表面は活性であり著しく吸湿されやすい。そのた
め、マグネシアの表面をシリカコーティングしたり、ヒ
ーターの端部を密封する必要がある。
[Prior Art] Magnesia has the property of having very high high-frequency electrical insulation resistance and very high electrical insulation resistance at high temperatures. Conventionally, powder obtained by crushing electrofused magnesia has been used as an electrical insulating material, particularly as an insulating filler for sheath heaters. In addition, the digestibility of the powder is an important factor in the properties of the filler for sheath heaters. In other words, magnesia powder has excellent thermal conductivity and electrical insulation resistance, but it is highly hygroscopic, and the electrical insulation resistance deteriorates due to moisture absorption. Therefore,
As shown in Japanese Unexamined Patent Publication No. 57-189480, 3! Method of coating the surface of magnesia with Q2 etc. and Japanese Patent Publication No. 59-1119
As shown in 6, the method can be broadly divided into two methods: sealing the end of the heater with silicone resin or the like. In addition, there is a method that combines both methods, and a method described in Japanese Patent Publication No. 59-47870 is a method of coating with a water-repellent SiO2 layer. Further, in particular, electrofused magnesia is produced in large lumps due to its manufacturing method, so it has to be sized to be used as an insulating filler for fine sheath heaters, and the surface of the crushed particles is active and easily absorbs moisture. Therefore, it is necessary to coat the surface of the magnesia with silica and seal the ends of the heater.

[発明が解決しようとする問題点] しかし、従来の方法は製造コストも高い上に充填材の耐
消化性が必ずしも満足するものではなかった。
[Problems to be Solved by the Invention] However, in the conventional method, the manufacturing cost is high and the digestion resistance of the filler is not necessarily satisfactory.

また、電融マグネシアを用いる従来の方法はマグネシア
クリンカ−を電融するため、製造コストの増加や塊状の
電融マグネシアを破砕・整粒する煩雑な工程を必要とす
るなど製造上の欠点がある上に、このようにして得た電
融マグネシア粉体は表面が角張っているために、シース
に充填するとき、ヒーターを傷つけて、断線の原因にな
りやすい欠点も有していた。
In addition, the conventional method using electrofused magnesia involves electromelting the magnesia clinker, which has manufacturing disadvantages such as increased manufacturing costs and the need for a complicated process of crushing and sizing lumpy electrofused magnesia. Moreover, the electrofused magnesia powder obtained in this manner has an angular surface, so when it is filled into a sheath, it tends to damage the heater and cause wire breakage.

[問題点を解決するための手段] 本発明は特にこの電融マグネシア破砕粉末の持つ欠点を
改良し、焼結マグネシア扮を電気絶縁材料用に特に適す
るように改良したも  ゛のである。すなわち、耐消化
性の優れたマグネシア焼結粉体で、絶縁抵抗が600℃
で107Ω・cm以上である電気絶縁材料である。
[Means for Solving the Problems] The present invention particularly improves the drawbacks of the crushed electrofused magnesia powder and improves the sintered magnesia powder so that it is particularly suitable for use as an electrical insulating material. In other words, it is made of magnesia sintered powder with excellent digestion resistance, and has an insulation resistance of 600℃.
It is an electrically insulating material with a resistance of 107 Ω·cm or more.

本発明は耐消化性の優れたマグネシア粉末を提供するも
のであり、オートクレーブ法での耐消化性の測定で重量
増加率が5wt%以下、好ましくは、1wt%以下であ
ることが望ましい。
The present invention provides magnesia powder with excellent digestion resistance, and it is desirable that the weight increase rate is 5 wt % or less, preferably 1 wt % or less, when the digestion resistance is measured by an autoclave method.

この重量増加率が5wt%を越えるとシースヒーターの
絶縁抵抗の劣化が著しい。
If this weight increase rate exceeds 5 wt%, the insulation resistance of the sheath heater will deteriorate significantly.

本発明において耐消化性の優れたマグネシア焼結粉体は
フロータイムが240sec未満が良く、それ以上にな
ると充填の作業効率の低下する問題がおる。
In the present invention, the magnesia sintered powder, which has excellent digestion resistance, preferably has a flow time of less than 240 seconds; if it is longer than that, there is a problem that the filling efficiency decreases.

また、本発明のマグネシア焼結粉体の絶縁抵抗は600
°Cの温度で107Ω・cm以上であって、それ未満で
はシースヒーターの充填物として、実用に支障を来たす
。尚このためには高純度マグネシア焼結粉体を用いれば
良い。
Furthermore, the insulation resistance of the magnesia sintered powder of the present invention is 600
It has a resistance of 107 Ω·cm or more at a temperature of °C, and if it is less than that, it is difficult to put it into practical use as a filling material for a sheath heater. For this purpose, high purity magnesia sintered powder may be used.

ここでいうマグネシア焼結粉体はMCl0以外にcao
、S i 02 、Fe2O3、Al2O3、B20i
のいずれかを含むとともに、焼結助剤ZrO2等を含む
ものや、ざらにマグネシア焼結粉体の表面にシリカやジ
ルコニア等をコーティングしてもよい。
The magnesia sintered powder mentioned here is cao in addition to MCl0.
, S i 02 , Fe2O3, Al2O3, B20i
In addition, the surface of the magnesia sintered powder may be coated with silica, zirconia, or the like.

また、本発明のマグネシア焼結粉体は破砕して、その消
化性が@量増加率で5wt%以下であるものでもよい。
Furthermore, the magnesia sintered powder of the present invention may be crushed so that its digestibility is 5 wt % or less in terms of weight increase rate.

5wt%を越えると、吸湿のためヒーターの寿命が著し
く短くなる。
If it exceeds 5 wt%, the life of the heater will be significantly shortened due to moisture absorption.

その製造方法は例えば1600〜1800℃以上の温度
で焼成された1mm以下の組成調整して(qた高純度マ
グネシア扮を風力分級等により500〜25μmの分布
に粒度調整するものでおる。
The manufacturing method is, for example, by adjusting the composition of high-purity magnesia to a particle size of 1 mm or less, which has been fired at a temperature of 1,600 to 1,800° C. or higher, and adjusting the particle size to a particle size of 500 to 25 μm by wind classification or the like.

ここにおいてMqOの純度は95 W t%以上が望ま
しく、マグネシア以外の化学成分のうち、CaO/S 
i 02 (’E/L/比) に1.2[F、好ましく
は0.8以下で必ることが望ましく、CaO/S i 
02の−Eル比が大きくなると耐消化性が悪くなり、そ
の結果、絶縁抵抗の劣化も早くなる。一方、SiO2の
含有率は0.6wt%以上、特に1.5wt%以上が望
ましい範囲である。さらに他のFe2o3、 Al2O3、B2O3の含有率の合計は1wt%以下、
特にFe2O3の含有率は0.5wt%以下である必要
がおる。なお、この範囲以外の化学組成を持つマグネシ
ア焼結′灼体ではヒーターの寿命が短く、実用←支障を
来たす。
Here, the purity of MqO is preferably 95 W t% or more, and among chemical components other than magnesia, CaO/S
i 02 ('E/L/ratio) is preferably 1.2[F, preferably 0.8 or less, and CaO/S i
As the −E ratio of 02 increases, the digestion resistance deteriorates, and as a result, the insulation resistance deteriorates more quickly. On the other hand, the content of SiO2 is desirably 0.6 wt% or more, particularly 1.5 wt% or more. Furthermore, the total content of other Fe2O3, Al2O3, and B2O3 is 1 wt% or less,
In particular, the content of Fe2O3 needs to be 0.5 wt% or less. Note that magnesia sintered bodies with chemical compositions outside this range will have a short heater life, which will impede practical use.

従来、電融マグネシアの表面をシリカコーティングされ
たものはヒーターに充填したのち圧縮減径、いわゆるス
ウエージング加工でへき開からクランクが入るため、耐
消化性が悪化する問題があった。しかし、本発明はマグ
ネシア焼結体であるため、粉体の表面、あるいは粒内の
いわゆる粒界と呼ばれる部分にカルシウムシリケート等
とカルシジャージ1ツカ化合物ヤJシリカが存在し、ス
ウエージング加工でもクラックが入りにくく、たとへク
ラックが入ってもその表面にはカルジャーシリカ化合物
やシリカが存在するために耐消化1生の悪化が抑えられ
るものと思われる。
Conventionally, fused magnesia whose surface was coated with silica was compressed and reduced in diameter after being filled into a heater, a so-called swaging process, in which a crank was inserted through the cleavage, resulting in poor digestion resistance. However, since the present invention is a magnesia sintered body, calcium silicate, etc. and Calcijar compound (J silica) are present on the surface of the powder or in the so-called grain boundaries within the grains, and even during swaging process, cracks may occur. It is thought that even if cracks form in the cracks, the deterioration of the digestion resistance is suppressed due to the presence of Caljar silica compounds and silica on the surface.

また、このようにして得たマグネシア粉は、組成によっ
ては必ずしも球形にはならないので、特にマグネシア焼
結粉体の粒子径を500〜25μmの分布範囲となるよ
うにする。この分布範囲を外れるとフロータイムが悪く
なる。
Further, since the magnesia powder thus obtained does not necessarily have a spherical shape depending on the composition, the particle size of the magnesia sintered powder is particularly adjusted to be in a distribution range of 500 to 25 μm. Outside this distribution range, the flow time deteriorates.

粒子径の分布範囲はざらに望ましくは420〜44μm
であり、特に、500μmより大きい粒子は実質的に存
在しないものが好ましい。
The particle size distribution range is preferably 420 to 44 μm.
In particular, it is preferable that there be substantially no particles larger than 500 μm.

本発明における実施例の化学組成のMCl01cao、
5i02、Fe2O:+、Al2O3、B2O3はマグ
ネシア粉体を塩酸水溶液で熱溶解したのち、冷却し、日
本ジャーレルアッシュ製の575−II型のICAPを
用いて測定した。
MCl01cao of the chemical composition of the example in the present invention,
5i02, Fe2O:+, Al2O3, and B2O3 were measured by hot dissolving magnesia powder in an aqueous hydrochloric acid solution, cooling it, and using ICAP type 575-II manufactured by Nippon Jarrell Ash.

またマグネシア粉体の高温での絶縁抵抗は内径10mm
の金属パイプと外径5mmの中心棒の間隙に絶縁充填物
を約25mmの長さになるように試料を秤量、充填した
のち、1.5T/cm 2の圧力で圧縮したものに、白
金線を取り付けて電気炉内に置き、各温度での絶縁抵抗
を測定した。なお、用いた金属パイプならびに中心棒の
材質はSUS、304である。
In addition, the insulation resistance of magnesia powder at high temperatures is 10 mm in inner diameter.
After weighing and filling the sample into the gap between the metal pipe and the center rod with an outer diameter of 5 mm to a length of about 25 mm, the platinum wire was compressed at a pressure of 1.5 T/cm2. was attached and placed in an electric furnace, and the insulation resistance at each temperature was measured. The material of the metal pipe and center rod used was SUS 304.

また粉体のフロータイムはAST)l 5tandar
’dD 2755に規定されている方法によりアメリカ
のBoeh 丁ool and Die Compan
y 製の装置を用いて測定した。
Also, the powder flow time is AST)l 5tandar
'dD 2755 by the American Boeh Die Company.
It was measured using a device manufactured by Y.

粒度分布はJIS標準篩を用いて篩分して求めた。The particle size distribution was determined by sieving using a JIS standard sieve.

また粉体の耐消化性は学娠法(日本学術]辰興会、第1
24委員会分析分科会の提案による試験方法)のNo、
4に定めるマグネシアクリンカ−の消化性試験方法に準
じて行なった。
In addition, the digestibility of the powder was determined by the Gakushuho (Japanese Science) Tatsukokai, No. 1.
Test method proposed by the 24 Committee Analysis Subcommittee) No.
The test was carried out in accordance with the magnesia clinker digestibility test method specified in Section 4.

試料m20gを水蒸気圧2.0kgG/cm’ 、温度
133〜134℃の条件下で2時間保持した場合の重量
増加率を求めた。
The weight increase rate was determined when 20 g of sample m was held for 2 hours under conditions of water vapor pressure of 2.0 kgG/cm' and temperature of 133 to 134°C.

実施例1 0−タリーキルンで1800 ’Cの温度で焼成された
1mm以下の第1表に示す化学組成の高純度マグネシア
粉体をステンレス製の金網を用いて、420か’)44
μmで篩い分け、420〜44μmのマグネシア焼結粉
体を得た。その粒度分布は420〜250 μm 14
.0wt%、250〜149 μm 48.4wt%、
149〜74μm 29.1wt%、74〜44μB、
 5wt%であった。さらにこのマグネシア焼結粉体の
耐消化性、化学組成、フロータイムおよび600 ’C
における絶縁抵抗を第1表に示した。
Example 1 High-purity magnesia powder of 1 mm or less and having the chemical composition shown in Table 1, which was fired in a 0-tally kiln at a temperature of 1800'C, was heated to 420') using a stainless steel wire mesh.
The powder was sieved by μm to obtain magnesia sintered powder having a size of 420 to 44 μm. Its particle size distribution is 420-250 μm 14
.. 0 wt%, 250-149 μm 48.4 wt%,
149-74μm 29.1wt%, 74-44μB,
It was 5wt%. Furthermore, the digestion resistance, chemical composition, flow time and 60'C of this magnesia sintered powder
Table 1 shows the insulation resistance in .

実施例2 0−タリーキルンで1900’C以上の温度で焼成され
た1mm以下の第1表に示す化学組成の高純度マグネシ
ア粉体を風力分級機を用いて500μm以上、44μm
以下を分級除去した。
Example 2 High-purity magnesia powder having a chemical composition shown in Table 1 and having a size of 1 mm or less, which was fired at a temperature of 1900'C or more in a 0-tally kiln, was divided into particles of 500 μm or more and 44 μm using an air classifier.
The following were classified and removed.

このマグネシア焼結粉体の500〜44μmの占める割
合は97.5wt%で44〜25μm 2.5wt%で
あった。またこのマグネシア焼結粉体の耐消化性、化学
組成、フロータイムおJ:び600 ’Cにおける絶縁
抵抗を第1表に示した。
The ratio of 500 to 44 μm in this magnesia sintered powder was 97.5 wt%, and 2.5 wt% was 44 to 25 μm. Table 1 also shows the digestion resistance, chemical composition, flow time, and insulation resistance at 600'C of this magnesia sintered powder.

実施例3 0−タリーキルンで1900’C以上の温度で焼成した
1mm以下の第1表に示す化学組成の高純度マグネシア
粉を(騒動篩を用いて、420μm以上、44μm以下
を除去した。このマグネシア焼結粉体の粒度力V5は5
00〜420μ0.8wt%、420〜250 μm 
17.3wt%、250〜149μm 30.8wt%
、149〜74μm’28.5wt%、74〜44μm
 22.3wt%、44〜25μm 0.3wt%であ
った。このマグネシア焼結粉体の耐消化性、化学組成、
フロータイムおよび600℃における絶縁抵抗を第1表
に示す。
Example 3 High-purity magnesia powder of 1 mm or less and having the chemical composition shown in Table 1 was calcined in a 0-tally kiln at a temperature of 1900'C or higher. The particle size force V5 of the sintered powder is 5
00~420μ0.8wt%, 420~250μm
17.3wt%, 250-149μm 30.8wt%
, 149-74 μm'28.5 wt%, 74-44 μm
22.3 wt%, 44-25 μm 0.3 wt%. This magnesia sintered powder's digestion resistance, chemical composition,
Table 1 shows the flow time and insulation resistance at 600°C.

比較例1 市販の電融マグネシア°扮末の耐消化性、化学組成、フ
ロータイムおよび600 ’Cにおける絶縁抵抗を第1
表に示した。この電融マグネシアの化学組成のうち、S
iO2が高いのはマグネシアの吸湿性を防ぐため表面を
シリカコーティングしているためである。この電融マグ
ネシアの粒度分布は420〜250μm38.8wt%
、250〜149 μm29.8wt%、149〜74
μm20.2wt%、74〜44μm 6.2wt%、
44μm以下5.2wt%でめった。
Comparative Example 1 The digestion resistance, chemical composition, flow time, and insulation resistance at 600'C of commercially available fused magnesia powder were evaluated first.
Shown in the table. Of the chemical composition of this electrofused magnesia, S
The high iO2 is due to the surface being coated with silica to prevent magnesia from absorbing moisture. The particle size distribution of this fused magnesia is 420-250μm38.8wt%
, 250-149 μm29.8wt%, 149-74
μm 20.2wt%, 74-44μm 6.2wt%,
44 μm or less was found at 5.2 wt%.

比較例2 0−タリーキルンで1900℃以上の温度で焼成された
第1表に示す化学組成のlnm以下の高純度マグネシア
粉体を風力分級機を用いて500μm以上44μm以下
を分級除去した。このマグネシア焼結粉体の500〜4
4μmの占める割合は98.0wt%であった。またこ
のマグネシア焼結粉体の耐消化性、化学組成、フロータ
イムおよび600℃における絶縁抵抗を第1表に示した
Comparative Example 2 A high-purity magnesia powder of 1 nm or less having the chemical composition shown in Table 1, which was fired at a temperature of 1900° C. or higher in a 0-tally kiln, was classified to remove particles of 500 μm or more and 44 μm or less using an air classifier. 500~4 of this magnesia sintered powder
The proportion of 4 μm was 98.0 wt%. Table 1 also shows the digestion resistance, chemical composition, flow time, and insulation resistance at 600° C. of this magnesia sintered powder.

比較例3 実施例1に用いた高純度マグネシア粉体を800μmで
篩い分け、その篩い下のフロータイムを測定したところ
、300(sec)であった。
Comparative Example 3 The high-purity magnesia powder used in Example 1 was sieved at 800 μm, and the flow time under the sieve was measured to be 300 (sec).

その粒度分布は800〜500μmの割合が29,8w
t%でめった。
Its particle size distribution is 29.8w with a proportion of 800-500μm
It was rare at t%.

第1表 実施例4 実施例1、実施例2、比較例1に用いたマグネシア粉を
篩分し、250μm以上の粉体を得た。この粉末をディ
スクミルで破砕し、149〜74μmの粒径の破砕粉体
を得た。この破砕粉体の重■増加率を第2表に示した。
Table 1 Example 4 The magnesia powder used in Example 1, Example 2, and Comparative Example 1 was sieved to obtain powder of 250 μm or more. This powder was crushed with a disk mill to obtain crushed powder having a particle size of 149 to 74 μm. The weight increase rate of this crushed powder is shown in Table 2.

実際のシースヒーター製造工程では本実施例で行なった
破砕実験のように極度に破砕されることはないが加工時
のクラック等の影響は明確に示しているものである。
In the actual manufacturing process of the sheathed heater, the sheath heater is not crushed to the extreme as in the crushing experiment conducted in this example, but the influence of cracks and the like during processing is clearly shown.

第2表 以上説明したように、本発明の電気絶縁材料用マグネシ
ア焼結粉体は従来のシースヒーター用充填材に比べ、著
しく耐消化性が改良されており、マグネシア粉体の吸湿
による劣化が防止でき、著しくヒーターの寿命が延びる
効果が必る。
As explained above in Table 2, the magnesia sintered powder for electrical insulating materials of the present invention has significantly improved digestion resistance compared to conventional fillers for sheath heaters, and the magnesia powder does not deteriorate due to moisture absorption. This can be prevented and has the effect of significantly extending the life of the heater.

Claims (3)

【特許請求の範囲】[Claims] (1)耐消化性の優れたマグネシア焼結粉体で絶縁抵抗
が600℃で10^7Ω・cm以上であることを特徴と
する電気絶縁用マグネシア焼結粉体。
(1) Magnesia sintered powder for electrical insulation, which is excellent in digestion resistance and has an insulation resistance of 10^7 Ω·cm or more at 600°C.
(2)マグネシア焼結粉体の耐消化性が重量増加率で5
wt%以下である特許請求の範囲第(1)項記載の電気
絶縁用マグネシア焼結粉体。
(2) Digestion resistance of magnesia sintered powder is 5 in terms of weight increase rate.
The magnesia sintered powder for electrical insulation according to claim (1), which has a content of not more than wt%.
(3)さらに破砕したマグネシア粉体であって、その耐
消化性が重量増加率:5wt%以下である特許請求の範
囲第(1)項記載の電気絶縁用マグネシア焼結粉体。
(3) The magnesia sintered powder for electrical insulation according to claim (1), which is further crushed magnesia powder, and whose digestion resistance is less than or equal to a weight increase rate of 5 wt%.
JP13828486A 1986-06-16 1986-06-16 Magnesia sintered powder for electric insulation Pending JPS62296303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13828486A JPS62296303A (en) 1986-06-16 1986-06-16 Magnesia sintered powder for electric insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13828486A JPS62296303A (en) 1986-06-16 1986-06-16 Magnesia sintered powder for electric insulation

Publications (1)

Publication Number Publication Date
JPS62296303A true JPS62296303A (en) 1987-12-23

Family

ID=15218303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13828486A Pending JPS62296303A (en) 1986-06-16 1986-06-16 Magnesia sintered powder for electric insulation

Country Status (1)

Country Link
JP (1) JPS62296303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485804A (en) * 2010-12-02 2012-06-06 新神户电机株式会社 Manufacturing method of magnesium oxide powder, manufacturing method of thermoset resin composition, manufacturing method of prepreg and overlapped plate
JP2016145152A (en) * 2016-04-15 2016-08-12 宇部マテリアルズ株式会社 Thermally conductive filler
US9828538B2 (en) 2013-09-17 2017-11-28 Ube Material Industries, Ltd. Thermally conductive filler and thermally conductive resin composition containing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485804A (en) * 2010-12-02 2012-06-06 新神户电机株式会社 Manufacturing method of magnesium oxide powder, manufacturing method of thermoset resin composition, manufacturing method of prepreg and overlapped plate
US9828538B2 (en) 2013-09-17 2017-11-28 Ube Material Industries, Ltd. Thermally conductive filler and thermally conductive resin composition containing same
JP2016145152A (en) * 2016-04-15 2016-08-12 宇部マテリアルズ株式会社 Thermally conductive filler

Similar Documents

Publication Publication Date Title
JPH0217508B2 (en)
JPS6141875B2 (en)
JPH0211790B2 (en)
CN112430056A (en) Heat-insulating coating, preparation method thereof and heat-insulating coating
JP2002220285A (en) Silicon nitride/tungsten carbide composite sintered compact and its manufacturing method
JP3328295B2 (en) Insulating molded article and method for producing the same
JPS62296303A (en) Magnesia sintered powder for electric insulation
JPS6036351A (en) Seal glass
JP2985090B2 (en) High temperature electric insulating filler and sheath heater filled with the same
JPH0218560B2 (en)
CN114195545A (en) High-temperature-resistant low-heat-conductivity core-shell-structure nano aluminum heat insulation material and preparation method and application thereof
JPS6321706A (en) High-density electrically insulating material and manufacture thereof
JP2906354B2 (en) Electrical insulating filler and sheath heater filled with it
KR0127489B1 (en) Method of manufacturing insulated fillers
JPH01115816A (en) Magnesia sintered powder for electrical insulating material and production thereof
JP2638052B2 (en) High temperature electrical insulating filler and method for producing the same
JPS6054751B2 (en) Manufacturing method of sheathed heater
JPS5837675B2 (en) Menhatsnetsutaino Seizouhouhou
JPS59175585A (en) Electrically insulating filling material of high temperaturesheathed heater
JPS5917516B2 (en) Sheathed heater and its manufacturing method
KR910002172B1 (en) Sintered particles use for the electric insulation and preparation method thereof
JPH05270918A (en) Aluminum nitride sintered compact
JPS6286604A (en) Electrically insulating filling material and manufacture of the same
US1125616A (en) Embedding material for electrical heating units.
JPS62262305A (en) Electrical insulating filler