JP2985090B2 - High temperature electric insulating filler and sheath heater filled with the same - Google Patents

High temperature electric insulating filler and sheath heater filled with the same

Info

Publication number
JP2985090B2
JP2985090B2 JP2045659A JP4565990A JP2985090B2 JP 2985090 B2 JP2985090 B2 JP 2985090B2 JP 2045659 A JP2045659 A JP 2045659A JP 4565990 A JP4565990 A JP 4565990A JP 2985090 B2 JP2985090 B2 JP 2985090B2
Authority
JP
Japan
Prior art keywords
magnesia
sheath heater
powder
less
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2045659A
Other languages
Japanese (ja)
Other versions
JPH03250504A (en
Inventor
房夫 河野
弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UBE MATERIARUZU KK
Original Assignee
UBE MATERIARUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UBE MATERIARUZU KK filed Critical UBE MATERIARUZU KK
Priority to JP2045659A priority Critical patent/JP2985090B2/en
Publication of JPH03250504A publication Critical patent/JPH03250504A/en
Application granted granted Critical
Publication of JP2985090B2 publication Critical patent/JP2985090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高温における電気絶縁抵抗の優れた電気絶縁
充填材に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to an electrical insulating filler having excellent electrical insulation resistance at high temperatures.

[従来の技術] シースヒーターの絶縁充填材として酸化マグネシウム
(MgO)が利用される。それはMgOが高温下での電気絶縁
抵抗が非常に高いという特徴があるためである。
[Related Art] Magnesium oxide (MgO) is used as an insulating filler of a sheath heater. This is because MgO has the characteristic that the electrical insulation resistance at high temperatures is very high.

シースヒーターはMgOを充填したのち、圧延減径・焼
鈍・封止・曲げ加工を経て製造されるが、その過程で充
填材の物性が変化する。
After the sheath heater is filled with MgO and then manufactured through rolling reduction, annealing, sealing, and bending, the physical properties of the filler change in the process.

従来使用されている電融マグネシアはその製造方法上
大きな塊状で得られるために、細いシースヒーターの絶
縁充填材として使用するにはどうしても破砕して整粒せ
ざるを得ず、その破砕粒は角張った形状をしているの
で、充填するのが困難であるばかりでなく、充填後の成
型加工時に発熱線を傷付けたり、再破砕が起こり、寿命
低下の原因となっていた。
Since conventionally used fused magnesia is obtained in a large lump due to its manufacturing method, it must be crushed and sized to be used as an insulating filler for a thin sheath heater, and the crushed grains are square. In addition, it is difficult to fill, and the heating wire is damaged or re-crushed at the time of molding after filling, resulting in a shortened life.

電融マグネシアの充填後の成型加工時の再破砕の防止
についてはディナミートノーベル社が特開昭51−150094
号に耐火性酸化物添加物を加える方法を記載している。
しかしこの方法においても、再破砕は十分に防止しえ
ず、絶縁抵抗の低下を充分に防止するには至らなかっ
た。
Regarding the prevention of re-crushing during molding after filling with electrofused magnesia, Dynamite Nobel Co., Ltd.
It describes a method of adding a refractory oxide additive to the article.
However, even in this method, re-crushing could not be sufficiently prevented, and a reduction in insulation resistance could not be sufficiently prevented.

特公昭56−4033には焼成マグネシアに1μ以下のシリ
カやアルミナを加える方法が提案されているが再粉砕は
十分に防止しえないばかりか、添加量が1%であり、Mg
O本来の高絶縁性を損なう恐れがあった。
Japanese Patent Publication No. 56-4033 proposes a method of adding silica or alumina having a particle size of 1 μ or less to calcined magnesia. However, remilling cannot be sufficiently prevented, and the amount of addition is 1%.
O There was a risk of impairing the original high insulation properties.

又、焼結マグネシアは製造し易く、電融マグネシアに
比べ充填後の成型加工時の再破砕が少なく、近年注目さ
れてはいるが本発明者らが特開昭62−90807号で記載し
た球状焼結マグネシアでも充填後の成型加工時の再破砕
は少ないが細いヒーターや高温用ヒーターを作るには未
だ絶縁抵抗が十分の大きさではなかった。
In addition, sintered magnesia is easy to manufacture, less re-crushed during molding after filling compared to electrofused magnesia, and although it has attracted attention in recent years, the spherical shape described by the present inventors in JP-A-62-90807 has been noted. Even with sintered magnesia, re-fracturing during molding after filling was small, but the insulation resistance was not yet large enough to make thin heaters or high-temperature heaters.

又、充填材のカーボン含有量が多いとマグネシア粉体
に“ブラックニング”現象が起こりシースヒーターの寿
命低下につながる事は知られたところであるが、電融マ
グネシアでは溶融時にカーボン電極を使うためにある程
度のカーボンの含有は避けられなかった。
Also, it has been known that if the carbon content of the filler is large, the "blackening" phenomenon occurs in the magnesia powder and the life of the sheath heater is shortened, but in the case of electrofused magnesia, the carbon electrode is used during melting. Some carbon content was inevitable.

[発明が解決しようとする課題] 本発明は、絶縁抵抗が高く、カーボン含有量が極めて
少なくしかもシリカ粉を混合した充填材を用い、シース
ヒーターの成型加工時の再破砕等の物性変化を少なくす
ることによって、高温における電気絶縁抵抗が高い電気
絶縁充填材を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention uses a filler having a high insulation resistance, an extremely low carbon content and a mixture of silica powder, and reduces a change in physical properties such as re-crushing during molding of a sheath heater. By doing so, it is intended to provide an electric insulating filler having a high electric insulation resistance at a high temperature.

[課題を解決するための手段] マグネシア中の不純物が結晶内や結晶粒界に偏在した
り、酸化カルシウムのように固溶したして、焼結MgOの
絶縁抵抗が低い原因となっているMgOの格子歪みを熱処
理により除去し、又熱処理によりカーボン含有量が極め
て少ない焼結マグネシア粉体にシリカ粉を混合した電気
絶縁充填材を得ることができた。上で得た充填材より製
造されたシースヒーターは高温における電気絶縁抵抗が
極めて高いものであった。
[Means for Solving the Problems] MgO that causes impurities in magnesia to be unevenly distributed in a crystal or a crystal grain boundary or to form a solid solution like calcium oxide, resulting in low insulation resistance of sintered MgO. The lattice distortion was removed by a heat treatment, and an electrically insulating filler obtained by mixing a silica powder with a sintered magnesia powder having a very low carbon content was obtained by the heat treatment. The sheath heater manufactured from the filler obtained above had extremely high electric insulation resistance at high temperatures.

すなわち本発明は a)その化学組成が MgO≧93wt% CaO≦1.5wt% SiO2≦4wt% Fe2O3+Al2O3≦0.4wt% B2O3≦0.1wt% であり、 b)MgOの格子歪みが20×10-4以下 c)カーボン含有量が180ppm以下 d)充填性が1.90〜2.30g/cc e)Igloss≦0.3wt% である粉体に一次粒子径が30mμ以下であり、撥水性の
シリカ粉を0.1〜0.9wt%混合したことを特徴とする成型
加工品の成型に先立って充填される電気絶縁充填材、そ
の製造方法及びその電気絶縁充填材を用いた成型加工さ
れたシースヒーターである。
That is, according to the present invention, a) the chemical composition is MgO ≧ 93 wt% CaO ≦ 1.5 wt% SiO 2 ≦ 4 wt% Fe 2 O 3 + Al 2 O 3 ≦ 0.4 wt% B 2 O 3 ≦ 0.1 wt%, and b) MgO lattice strain is at 20 × 10 -4 or less c) carbon content of 180ppm or less d) filling property 1.90~2.30g / cc e) Igloss primary particle size in the powder is ≦ 0.3 wt% is 30mμ less, An electrically insulating filler which is filled prior to molding of a molded product, characterized by mixing 0.1 to 0.9 wt% of a water-repellent silica powder, a method for producing the same, and a molding process using the electrically insulating filler. Sheath heater.

本発明において、化学組成が上記の範囲内にあるとき
にシースヒーターの電気絶縁抵抗が極めて高く、化学組
成が上記の範囲を外れるとシースヒーターの電気絶縁抵
抗が低くなるので高温用として実用性がなくなる。特に
CaOが1.2wt%以下が望ましい。
In the present invention, when the chemical composition is within the above range, the electric insulation resistance of the sheath heater is extremely high, and when the chemical composition is out of the above range, the electric insulation resistance of the sheath heater becomes low. Disappears. Especially
CaO is desirably 1.2 wt% or less.

また、本発明において、MgO格子歪みが20×10-4以下
であることが必要であり、その範囲を外れるとシースヒ
ーターの電気絶縁抵抗が低くなるので高温用として実用
性がなくなる。
Further, in the present invention, the MgO lattice strain needs to be 20 × 10 −4 or less, and if it is out of the range, the electric insulation resistance of the sheath heater becomes low, so that the practical use for high temperature is lost.

更に好ましくはMgOの格子歪みが10×10-4以下であ
る。
More preferably, the lattice distortion of MgO is 10 × 10 −4 or less.

又、本発明において、マグネシア粉体の充填性は1.90
〜2.30g/ccの範囲である必要があり、230(g/cc)を越
えると製造時に粉砕が起こり、又、1.90g/cc未満では耐
電圧が悪化して、いずれも高温用として実用性がなくな
る。更に好ましくはマグネシア粉体の充填性は2.00〜2.
20g/ccの範囲が望ましい。
In the present invention, the filling property of the magnesia powder is 1.90.
It must be within the range of ~ 2.30 g / cc. If it exceeds 230 (g / cc), pulverization will occur during production, and if it is less than 1.90 g / cc, the withstand voltage will deteriorate. Disappears. More preferably, the filling property of magnesia powder is 2.00 to 2.
A range of 20 g / cc is desirable.

又、本発明において、MgOのカーボン含有量が180ppm
以下であることが必要であり、それ以上になればシース
ヒーターの抵抗値の低下が非常に大きく、寿命が短くて
高温用として実用性がなくなる。更に好ましくはMgOの
カーボン含有量が100ppm以下である。
In the present invention, the carbon content of MgO is 180 ppm
If the temperature is higher than the above range, the resistance value of the sheath heater greatly decreases, the life is short, and practicality for high temperature use is lost. More preferably, the carbon content of MgO is 100 ppm or less.

マグネシア粉体に混合するシリカ粉の一次粒子径は30
mμ=(0.03μm)以下である必要があり、上記の範囲
を外れるとシースヒーターの電気絶縁抵抗が低くなるの
で高温用として実用性がなくなる。好ましくはシリカ粉
の一次粒子径は12mμ以下である。
The primary particle size of silica powder mixed with magnesia powder is 30
mμ = (0.03 μm) or less, and if it is out of the above range, the electric insulation resistance of the sheath heater becomes low, so that it is not practical for high temperature use. Preferably, the primary particle size of the silica powder is 12 mμ or less.

マグネシア粉体に混合するシリカ粉の比表面積は好ま
しくは84m2/g以上である必要があり、上記の範囲を外れ
るとシースヒーターの電気絶縁抵抗が低くなるので高温
用として好ましくなくなる。より好ましくはシリカ粉の
比表面積は200m2/g以上であり、更にシリカ粉の比表面
積は300m2/g以上である事が望ましい。
The specific surface area of the silica powder mixed with the magnesia powder should preferably be at least 84 m 2 / g, and if it is outside the above range, the electrical insulation resistance of the sheath heater will be low, which is not preferable for high temperature use. More preferably, the specific surface area of the silica powder is 200 m 2 / g or more, and more preferably, the specific surface area of the silica powder is 300 m 2 / g or more.

又、シリカ粉の表面はシアノール基を持ち撥水性を有
する必要があり、これは充填する際に水分等をシース内
に持ち込むのを防ぐ。しかしアルキル基等炭素を有する
官能基は抵抗劣化の原因になり好ましくない。
In addition, the surface of the silica powder must have a cyanol group and have water repellency, which prevents water and the like from being introduced into the sheath when filling. However, a functional group having carbon such as an alkyl group is not preferable because it causes resistance deterioration.

又、マグネシア粉体に混合するシリカ粉の量は0.1〜
0.9wt%である必要があり、0.1wt%未満では成型加工時
の再破砕が少なくする効果が失われてシースヒーターの
電気絶縁抵抗が低くなり高温用として実用性がなくな
る。又、0.9wt%を超えると充填時に余剰のシリカ粉が
剥離・偏析したり、又、原料の充填性が低下しヒーター
の耐電圧が悪化し、高温用として実用性がなくなる。従
って、本発明では比表面積の大きいシリカ粉を0.9wt%
以下混合することにより、破砕を防止し、MgO本来の性
質も損なうこともない。更に好ましくはシリカ粉混合量
は0.3〜0.7wt%である。
The amount of silica powder mixed with magnesia powder is 0.1 to
The content must be 0.9 wt%, and if it is less than 0.1 wt%, the effect of reducing re-crushing during molding processing is lost, the electrical insulation resistance of the sheath heater is reduced, and the practical use for high temperatures is lost. On the other hand, if the content exceeds 0.9% by weight, excess silica powder is peeled or segregated at the time of filling, and the filling property of the raw material is reduced, the withstand voltage of the heater is deteriorated, and the practical use as a high temperature use is lost. Therefore, in the present invention, silica powder having a large specific surface area is 0.9 wt%.
The following mixing prevents crushing and does not impair the intrinsic properties of MgO. More preferably, the mixed amount of silica powder is 0.3 to 0.7 wt%.

又シリカ粉は気相法にて合成された無定形シリカであ
ることが望ましい。
The silica powder is desirably amorphous silica synthesized by a gas phase method.

又、本発明のマグネシア粉体から製造したシースヒー
ターの中から取り出した前述のマグネシア粉体のMgOの
格子歪みが15×10-4以下である必要があり、上記の範囲
を外れるとシースヒーターの電気絶縁抵抗が低くなるの
で高温用として実用性がなくなる。更にMgOの格子歪み
が7×10-4以下が更に望ましい。
Further, the lattice distortion of MgO of the above-mentioned magnesia powder taken out from the sheath heater manufactured from the magnesia powder of the present invention must be 15 × 10 −4 or less, and when the above-mentioned range is not satisfied, the sheath heater is not heated. Since the electric insulation resistance is low, the practicability for high temperature use is lost. More preferably, the lattice distortion of MgO is 7 × 10 −4 or less.

このようなシースヒーターの充填材を製造するに当っ
て用いるマグネシア粉体は一般的方法で得られるが、マ
グネシア粉体を最高温度1000℃以上で熱処理することに
より、より容易に得ることができるものである。
Magnesia powder used in producing such a filler for the sheath heater can be obtained by a general method, but can be more easily obtained by heat-treating magnesia powder at a maximum temperature of 1000 ° C. or more. It is.

ここで最高温度1000℃以下では熱処理の効果が小さ
く、1000℃以上、好ましくは1200〜1400℃が望ましい。
Here, when the maximum temperature is 1000 ° C. or less, the effect of the heat treatment is small, and the temperature is preferably 1000 ° C. or more, preferably 1200 to 1400 ° C.

本発明において、酸性溶液に接触した後最高温度1000
℃以上で熱処理する方が一層好ましい。
In the present invention, after contacting the acidic solution, the maximum temperature 1000
It is more preferable to perform the heat treatment at a temperature of not less than ° C.

又、本発明において、充填材であるマグネシア粉体は
上記範囲内のものである限り電融マグネシアと焼結マグ
ネシアのいずれでもよいが焼結マグネシアが望ましい。
Further, in the present invention, as long as the magnesia powder as the filler is within the above range, any of electrofused magnesia and sintered magnesia may be used, but sintered magnesia is preferable.

又、マグネシア粉体のうち420μmの篩を通過し、25
μmの篩を通過しない部分を採取するのが適当である。
又、粉体にはZrO2などの助剤等の他の成分が影響のない
範囲で含まれていても良い。
Also, the magnesia powder passed through a 420 μm sieve,
It is appropriate to collect a portion that does not pass through a μm sieve.
Further, the powder may contain other components such as an auxiliary agent such as ZrO 2 to the extent that there is no influence.

[実施例] 以下、本発明を実施例及び比較例によって、具体的に
説明する。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

本発明における実施例の化学組成のうちMgO、CaO、Si
O2、Fe2O3、Al2O3、B2O3はマグネシア粉末を塩酸水溶液
で熱溶解したのち、又ZrO2は炭酸ソーダーと炭酸ボレー
トの混合物を用い、アルカリ溶融したのち、硝酸水溶液
に熱溶解し、日本ジャーレルアッシュ製の575−II製のI
CPAを用いて測定した。
MgO, CaO, Si among the chemical compositions of the examples of the present invention
O 2 , Fe 2 O 3 , Al 2 O 3 , and B 2 O 3 are obtained by hot-dissolving magnesia powder with an aqueous hydrochloric acid solution, and ZrO 2 is a mixture of sodium carbonate and carbonate borate, alkali-melted, and then nitric acid aqueous solution. And heat-melted to 575-II made by Nippon Jarrell Ash.
It was measured using CPA.

Ig−lossは試料10gを精秤し、白金ルツボに入れ、そ
れを電気炉で1000℃で1時間加熱後の減量を元の重量に
対する百分率で示したものである。
The Ig-loss is the result of accurately weighing 10 g of a sample, placing it in a platinum crucible, and heating it in an electric furnace at 1000 ° C. for 1 hour, and showing the weight loss as a percentage of the original weight.

又、マグネシア粉体のカーボン含有量は試料粉を窒素
気流中で2300℃の温度にした後に酸素吹き込み、カーボ
ンを酸素と反応させて二酸化炭素とする。それを赤外吸
収により測定した。測定機器はレコー社のLoec−CS44型
である。
Further, the carbon content of the magnesia powder is obtained by blowing oxygen after blowing the sample powder at a temperature of 2300 ° C. in a nitrogen stream, and reacting the carbon with oxygen to form carbon dioxide. It was measured by infrared absorption. The measuring instrument is a Loec-CS44 type from Reco.

又粉体の比表面積はBET法にて測定した。 The specific surface area of the powder was measured by the BET method.

格子歪みの測定はX線回折(理学電機製IR−1A型)に
より40kV、20mA、1/4deg/mm、time constant 5secの条
件でMgOの(1.1.1)、(2.0.0)、(2.2.0)、(3.1.
1)、(2.2.2)、(4.0.0)、(4.2.0)の各ピークの積
分幅を測定し、kα、kαの分離補正(文献1)、
スタンダード補正(文献1)を行い、真の半価幅を求め
る。得られた半価幅からHallプロット(文献2)を行
い、最小二重法による直線回帰から傾きを求め、傾きの
1/2の値をもって格子歪みとした。なお標準試料はMgO純
度99.9%のマグネシア単結晶を粉砕したのち、44〜20μ
mのものを1300℃で5時間熱処理したものを用いた。測
定試料も粒径44〜20μmのものを用いた。
The lattice strain was measured by X-ray diffraction (IR-1A, manufactured by Rigaku Denki) under the conditions of 40 kV, 20 mA, 1/4 deg / mm, and time constant of 5 sec. (1.1.1), (2.0.0), (2.2 .0), (3.1.
1), (2.2.2), (4.0.0), (each peak integration width of 4.2.0) was measured, ka 1, ka 2 separate correction (Document 1),
Standard correction (Reference 1) is performed to determine the true half width. A Hall plot (Reference 2) is performed from the obtained half-value width, and a slope is obtained from linear regression by the least double method.
The value of 1/2 was regarded as lattice distortion. The standard sample was prepared by grinding a magnesia single crystal with an MgO purity of 99.9%,
m was heat-treated at 1300 ° C. for 5 hours. The measurement sample used had a particle size of 44 to 20 μm.

(上記文献1)「The measurement of particle size b
y the X−ray method」by F.W.Jones.,Prpc.Roy.Soc.,A
166,16(1938)。
(Reference 1) "The measurement of particle size b
y the X-ray method '' by FWJones., Prpc.Roy.Soc., A
166,16 (1938).

(上記文献2)Hall,W.H.,Proc.Phys.Soc.,A62.,741(1
949)。
(Reference 2) Hall, WH, Proc. Phys. Soc., A62., 741 (1
949).

又、粉末の充填密度及びフロータイムはASTM standar
ds D 2755に規定されている方法によりアメリカのBoeh
Tool and Die Company製の装置を用いて測定した。
The packing density and flow time of the powder are as per ASTM standar
American Boeh by the method specified in ds D 2755
The measurement was performed using an apparatus manufactured by Tool and Die Company.

粒度分布はJIS標準篩を用いて求めた。 The particle size distribution was determined using a JIS standard sieve.

又、本発明の実施例及び比較例に用いたシースヒータ
は線径0.45mmのニクロム線と外径8mm、長さ650mmのイン
コロイパイプの間隙にマグネシア粉体を充填した後、6.
8mmまで圧延減径し、1050℃で30分焼鈍した後にガラス
シールとシリコンシールしたものを用いた。
The sheath heater used in Examples and Comparative Examples of the present invention was filled with magnesia powder in the gap between a nichrome wire having a wire diameter of 0.45 mm and an outer diameter of 8 mm and a length of 650 mm of an incoloy pipe.
After rolling reduction to 8 mm, annealing at 1050 ° C. for 30 minutes, a glass seal and a silicon seal were used.

更にマグネシア粉体を充填したシースヒーターの絶縁
抵抗テストは100Vを印加し、20分ON−10分OFFの繰り返
しで2000回まで行った。
Further, the insulation resistance test of the sheath heater filled with magnesia powder was performed up to 2000 times by applying ON voltage of 100 V and repeating ON for 10 minutes and OFF for 10 minutes.

実施例1及び比較例1 ロータリーキルンで2000℃の温度で焼成して得た所定
の1mm以下の高純度マグニシア粉をステンレス製の金網
を用いて、420μmから25μmで篩い分けた。これに一
次粒子径が12mμ、比表面積が200m2/gであり表面にシラ
ノール基を有するシリカ粉を0.5wt%ミキサーを使い混
合した。
Example 1 and Comparative Example 1 Predetermined 1 mm or less high-purity magnesia powder obtained by firing at a temperature of 2000 ° C. in a rotary kiln was sieved from 420 μm to 25 μm using a stainless steel wire mesh. Silica powder having a primary particle diameter of 12 mμ, a specific surface area of 200 m 2 / g and having a silanol group on the surface was mixed with a 0.5 wt% mixer.

このマグネシア粉体の化学組成、粒度分布、充填性、
フロータイム、格子歪み及び初期の絶縁抵抗を第1表に
示した。更にこのマグネシア粉体を原料としシースヒー
ターを作り、所定の条件で絶縁抵抗の経時変化を第1図
に示す。
The chemical composition of this magnesia powder, particle size distribution, filling properties,
Table 1 shows the flow time, lattice strain, and initial insulation resistance. Further, a sheath heater was manufactured using the magnesia powder as a raw material, and the change with time of the insulation resistance under predetermined conditions is shown in FIG.

又、比較例1として原料に用いたマグネシア粉の上記
測定値を併記した。
As Comparative Example 1, the above measured values of magnesia powder used as a raw material are also shown.

第1図において、実施例1(A)は繰り返し2000回ま
での絶縁抵抗の低下が30%であるのに対し、比較例1
(X)は75%である。
In FIG. 1, in Example 1 (A), the decrease in insulation resistance up to 2,000 repetitions was 30%, while in Comparative Example 1
(X) is 75%.

実施例2 ロータリーキルンで2000℃の温度で焼成したマグネシ
アクリンカーを破砕し、ステンレス製の金網を用いて、
420μmから25μmで篩分けた後、pH=3以下の酸性溶
液で水洗した。これを1200℃の温度で熱処理した後、一
次粒子径が12mμ、比表面積200m2/gであり表面にシラノ
ール基を持つシリカ粉を0.5wt%ミキサーを使い混合し
た。
Example 2 A magnesia clinker fired at a temperature of 2000 ° C. in a rotary kiln was crushed, and a stainless steel wire mesh was used.
After sieving at 420 μm to 25 μm, the mixture was washed with an acidic solution having a pH of 3 or less. After heat-treating this at 1200 ° C., silica powder having a primary particle diameter of 12 μm, a specific surface area of 200 m 2 / g and having a silanol group on the surface was mixed using a 0.5 wt% mixer.

このマグネシア粉体の化学組成、粒度分布、充填製、
フロータイム、格子歪み及び初期の絶縁抵抗を第2表に
示した。更にこのマグネシア粉体を原料としシースヒー
ターを作り、所定の条件で絶縁抵抗の経時変化を測定し
た結果を第1図に示す。
The chemical composition of this magnesia powder, particle size distribution, filling,
Table 2 shows the flow time, lattice strain, and initial insulation resistance. Further, FIG. 1 shows the result of measuring the change with time of the insulation resistance under a predetermined condition under the condition that a sheath heater was manufactured using the magnesia powder as a raw material.

第1図に示すように、実施例2(B)は繰り返し2000
回までの絶縁抵抗の低下が32%である。
As shown in FIG. 1, Example 2 (B)
The decrease in insulation resistance up to 32 times is 32%.

実施例3 カーボン含有量の異なるマグネシア粉体を用いてシー
スヒーターを作成し、前述の方法で寿命テストを行い、
その結果を第3表に示した。なお、化学組成、粒度分
布、充填性、フロータイムは実施例1と同じである。
Example 3 A sheath heater was prepared using magnesia powders having different carbon contents, and a life test was performed by the method described above.
The results are shown in Table 3. The chemical composition, particle size distribution, filling properties, and flow time are the same as in Example 1.

実施例4 実施例1に用いたマグネシア粉体に一次粒子径、比表
面積を変えたシリカ粉を混合したのちヒーターを作製
し、前述の方法で初期抵抗(7w/cm2)の測定を行い、そ
の結果を第4表に示した。
Example 4 A magnesia powder used in Example 1 was mixed with silica powder having a different primary particle diameter and specific surface area, and then a heater was prepared. The initial resistance (7 w / cm 2 ) was measured by the method described above. The results are shown in Table 4.

実施例5 実施例2に用いたマグネシア粉体に、一次粒子径12m
μ、比表面積200m2/gであり表面にシラノール基を持つ
シリカ粉を第5表に示す添加量を加え、ミキサーを使い
混合した。この原料を用いてヒーターを作製し、前述の
方法で初期抵抗(7w/cm2.)の測定を行い、その結果を
第5表に示した。
Example 5 The magnesia powder used in Example 2 had a primary particle diameter of 12 m.
μ, silica powder having a specific surface area of 200 m 2 / g and having a silanol group on the surface was added in the amount shown in Table 5 and mixed using a mixer. A heater was manufactured using this raw material, and the initial resistance (7 w / cm 2 ) was measured by the method described above. The results are shown in Table 5.

実施例6 実施例1に用いたマグネシア粉体の充填密度を変え、
一次粒子径12mμ、比表面積200m2/gのシリカ粉を0.5wt
%混合した後ヒーターを作製し、前述の方法で初期抵抗
の測定とその経時変化の測定を行い、その結果を第6表
に示した。
Example 6 The filling density of the magnesia powder used in Example 1 was changed,
Primary particle size 12Emumyu, a silica powder having a specific surface area of 200m 2 / g 0.5wt
%, A heater was prepared, and the initial resistance and the change with time were measured by the above-described method. The results are shown in Table 6.

実施例7 格子歪みの異なるマグネシア粉体に一次粒子径12m
μ、比表面積200m2/gのシリカ粉を0.5wt%混合した後ヒ
ーターを作製し、初期の絶縁抵抗を測定し、その結果を
第7表に示した。又、格子歪みは原料としたマグネシア
粉体の値とヒーターから取り出したマグネシア粉体の値
とを併記した。なお、化学組成、粒度分布、充填性、フ
ロータイムは実施例1と同じである。
Example 7 Magnesia powders having different lattice strains have a primary particle diameter of 12 m
After mixing 0.5% by weight of silica powder having a specific surface area of 200 m 2 / g, a heater was prepared, and the initial insulation resistance was measured. The results are shown in Table 7. As the lattice distortion, the value of the magnesia powder used as the raw material and the value of the magnesia powder taken out from the heater are also shown. The chemical composition, particle size distribution, filling properties, and flow time are the same as in Example 1.

実施例8 実施例1のマグネシア粉体を1200℃で1時間加熱・冷
却した後、一次粒子径12mμ、比表面積200m2/gのシリカ
粉を0.5wt%混合した後ヒーターを作製し、初期の絶縁
抵抗を測定し、その結果を第8表に示した。
Example 8 After heating and cooling the magnesia powder of Example 1 at 1200 ° C. for 1 hour, 0.5 wt% of a silica powder having a primary particle diameter of 12 μm and a specific surface area of 200 m 2 / g was mixed, and a heater was prepared. The insulation resistance was measured, and the results are shown in Table 8.

[発明の効果] 以上説明したように、本発明の電気絶縁充填材はシー
スヒーターの原料として極めて優れており、これから製
造されたシースヒーターは初期の絶縁抵抗が優れている
ばかりでなく、絶縁抵抗の劣化が極めて小さく、ヒータ
ーの寿命が非常に長くなる。
[Effects of the Invention] As described above, the electrically insulating filler of the present invention is extremely excellent as a raw material for a sheath heater, and the sheath heater manufactured from this material has not only an excellent initial insulation resistance but also an excellent insulation resistance. Deterioration of the heater is extremely small, and the service life of the heater becomes very long.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1(A)、実施例2(B)、比較例1
(X)の絶縁抵抗の経時変化を示すグラフである。
FIG. 1 shows Example 1 (A), Example 2 (B), Comparative Example 1.
It is a graph which shows the time-dependent change of the insulation resistance of (X).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−90807(JP,A) 特開 平1−166481(JP,A) 特開 平2−307821(JP,A) 特開 平3−210705(JP,A) 特公 昭56−4033(JP,B2) (58)調査した分野(Int.Cl.6,DB名) H01B 3/12 333 H05B 3/48 H05B 3/10 C04B 35/04 C01F 5/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-90807 (JP, A) JP-A-1-166481 (JP, A) JP-A-2-307821 (JP, A) JP-A-3-307 210705 (JP, A) JP 56-4033 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) H01B 3/12 333 H05B 3/48 H05B 3/10 C04B 35/04 C01F 5/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マグネシアで a)その化学組成が MgO≧93wt% CaO≦1.5wt% SiO2≦4wt% Fe2O3+Al2O3≦0.4wt% B2O3≦0.1wt% であり、 b)MgOの格子歪みが20×10-4以下 c)カーボン含有量が180ppm以下 d)充填性が1.90〜2.30g/cc e)Igloss≦0.3wt% である粉体に一次粒子径が30mμ以下であり、撥水性の
シリカ粉を0.1〜0.9wt%混合したことを特徴とする成型
加工品の成型に先立って充填される電気絶縁充填材。
1. Magnesia a) The chemical composition is MgO ≧ 93 wt% CaO ≦ 1.5 wt% SiO 2 ≦ 4 wt% Fe 2 O 3 + Al 2 O 3 ≦ 0.4 wt% B 2 O 3 ≦ 0.1 wt% b) The lattice distortion of MgO is 20 × 10 -4 or less c) The carbon content is 180 ppm or less d) The filling property is 1.90 to 2.30 g / cc e) The primary particle diameter is 30 mμ or less in the powder having Igloss ≦ 0.3 wt% An electric insulating filler which is filled prior to molding of a molded product, wherein 0.1 to 0.9 wt% of water-repellent silica powder is mixed.
【請求項2】上記請求項(1)記載の電気絶縁充填材が
充填されていることを特徴とする成型加工されたシース
ヒーター。
2. A molded sheath heater characterized by being filled with the electrically insulating filler according to claim (1).
JP2045659A 1990-02-28 1990-02-28 High temperature electric insulating filler and sheath heater filled with the same Expired - Fee Related JP2985090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2045659A JP2985090B2 (en) 1990-02-28 1990-02-28 High temperature electric insulating filler and sheath heater filled with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045659A JP2985090B2 (en) 1990-02-28 1990-02-28 High temperature electric insulating filler and sheath heater filled with the same

Publications (2)

Publication Number Publication Date
JPH03250504A JPH03250504A (en) 1991-11-08
JP2985090B2 true JP2985090B2 (en) 1999-11-29

Family

ID=12725507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045659A Expired - Fee Related JP2985090B2 (en) 1990-02-28 1990-02-28 High temperature electric insulating filler and sheath heater filled with the same

Country Status (1)

Country Link
JP (1) JP2985090B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532971B2 (en) * 2004-04-20 2010-08-25 株式会社ニッカトー Magnesia sintered body with excellent durability
TW200613235A (en) * 2004-06-04 2006-05-01 Tateho Kagaku Kogyo Kk Monocrystal oxide magnesium sintered body and fabricating method thereof and plasma display panel
CN100351177C (en) * 2006-03-10 2007-11-28 庄伟� Process for preparing magnesium oxide powder for fire-proof cable

Also Published As

Publication number Publication date
JPH03250504A (en) 1991-11-08

Similar Documents

Publication Publication Date Title
JP4495757B2 (en) Process for producing conductive mayenite type compound
JP4497484B2 (en) Process for producing conductive mayenite type compound
US4627815A (en) Ceramic temperature stabilization body, and method of making same
WO2022071245A1 (en) Hexagonal boron nitride powder and method for producing sintered body
JP5061427B2 (en) Process for producing conductive mayenite type compound
JP2002220285A (en) Silicon nitride/tungsten carbide composite sintered compact and its manufacturing method
JP7317737B2 (en) Hexagonal boron nitride powder and raw material composition for sintered body
JP2985090B2 (en) High temperature electric insulating filler and sheath heater filled with the same
KR102003193B1 (en) Manufacturing method of sintered AlN ceramics
JPH0218560B2 (en)
JP2001335367A (en) Lanthanum sulfide or cerium sulfide sintered compact and manufacturing method therefor
US3051924A (en) Sintered electric resistance heating elements and methods of producing such elements
JPH03210705A (en) Manufacture of electric insulation filler material for high temperature and sheath heater where same is filled
JP2906354B2 (en) Electrical insulating filler and sheath heater filled with it
JP2638052B2 (en) High temperature electrical insulating filler and method for producing the same
JP4368975B2 (en) High voltage endurance alumina-based sintered body and method for producing the same
JPH0648839A (en) Production of boron nitride sintered body
JP3441313B2 (en) Ceramic heater and method of manufacturing the same
JPS62296303A (en) Magnesia sintered powder for electric insulation
JP2019064850A (en) Silicon carbide powder
JPH1050460A (en) Ceramic heater
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
KR102121436B1 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
JPH05330919A (en) Silicon nitride-based sintered compact and its production
JPH0664906A (en) Powdery silicon nitride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees